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Acronyms and Abbreviations 

FEM Finite Element Method 

GUI Graphical User’s Interface 

  

 

Nomenclature 

Variable Description Units 
a   Equation coefficients - 

A  Area 2m  

C  Specific heat   /J kg K   

D  Liquid transport coefficient 2 /m s  for l  and  2/kg m s  for    

E   Diffusion coefficient for stagnant air 2 /m s  

g  Mass flux density  2/kg m s  

G  Gravity acceleration 2/m s   

G  Total discharge 3 /m s  

h  Specific enthalpy /J kg  

H  Enthalpy of the system J 

I  Transfer rate between states  3/kg m s  

k  Intrinsic permeability of the medium 2m   

L   Length  m   

M  Mass  kg   

P  Pressure Pa  or  2/kg m s   

q   Heat flux density 3/W m  or  2/J m s  

Q  Heat source  3/J m s  

pQ  Energy available for a potential phase change 3/J m  

R   Roughness factor - 

RH   Relative Humidity - 

S  Water source  3/kg m s  

t  Time s   

T  Temperature K  or C  
v  Velocity /m s  

V  Volume 3m  

W   View factor - 

x   Humidity ratio /kg kg  

Z  Altitude m   
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Greek-letter notation 

Variable Explanation Units 
  Heat transfer coefficient  2/W m K  or  2/J m K s   

  Water vapor transfer coefficient /m s  
   Material mass over given domain 3/kg m  

  Water vapor permeability 2 /m s  

  emissivity  - 

   Dynamic viscosity Pa s   

  Thermal conductivity   /W m K  or  /J m K s   

  Water vapor transfer resistance factor - 

  Sorption curve slope 3/kg m    
  Density 3/kg m   

  Stefan-Boltzmann constant (5.67∙10-8 
W/(m2∙K4) 

2 4/ ( )J m K s   

  Porosity - 

   Relative humidity - 

   Tilt angle - 
  Specific volume 3 /m kg  

 

Subscripts and other Symbols 

Subscript Description 

adv   Advection 

air  Moist air 
atm   Atmospheric 

boundary  Boundary 

C   Celsius 

conv  convective 

d  Dry 

diff   Diffusion 

den   Density 
eq  equivalent 
ex   exterior 

f   Forced 

gnd  ground 

i  Water (ice) 

il  Ice to liquid 

in   interior 

k   State 

l   Water (liquid) 

gl  Liquid to gas 

lw  Long wave 
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n   Direction 
p   Pore 

sat   saturation 

sky  sky 

surf  Surface 

sw  Short wave 
tot  total 
v   Vapor 
vent   Ventilation 
w   Water total 

10w  Reference at 10 m 
   Relative Humidity 

s   Suction 
r   Redistribution 

   Derivative 

   Nabla operator 
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1. Introduction and Background 

The DOE’s and nation’s goals for ZNE buildings, in order to mitigate the negative effects of 
accelerated global climate change, are leading to more and more buildings being built with highly 
insulated and very tight envelopes. By failing to account for the moisture characteristics in the 
thermal envelope, designers and builders can introduce moisture-related problems that endanger 
the health and safety of building occupants as well as the durability of the building itself.  It is 
imperative that we solve the problems of designing and constructing building envelopes that are 
correctly detailed for ensuring excellent thermal performance without introducing moisture 
problems. Damage due to moisture problems is one of the leading causes of lawsuits in 
construction, and having the best tools for modeling moisture and thermal characteristics will help 
ensure that United States can meet its energy, comfort, health and durability goals in buildings. 
Because moisture research by itself doesn’t save energy, it is rarely supported by energy agencies. 
But the development of an integrated thermal and moisture tool will make sure that we design for 
energy efficiency while avoiding collateral problems in our buildings. 

Analysis of moisture migration through building structures is primarily done by engineers using 1-
D simplified models (e.g., WUFI – software tool for analyzing moisture migration through the 
building structure). These models ignore or make crude assumptions about thermal bridges and 
non-homogeneities in building construction. Considering that such elements are primary pathways 
and causes for condensation and moisture buildups, it is important to properly consider them in 
thermal/moisture analysis. Thermal analysis of building structures, including thermal bridges, is 
often done with the software program THERM. The LBNL team developed THERM in the early 
1990s in response to the need for a user-friendly 2-D heat transfer tool for the analysis of windows 
and thermal bridges in building envelopes. THERM is a freely available computer program in wide 
use, with 20,000 unique users downloading the program annually, and over 500,000 program 
launches. THERM is used for calculating two-dimensional (2-D) heat transfer in building 
components such as windows, walls, foundations, roofs, and doors, as well as appliances and other 
products where thermal bridges are of concern. THERM is based on the finite element numerical 
method (FEM) and incorporates sophisticated automated meshing and error estimation for rapid 
model generation that ensures accurate results. THERM is used by building component 
manufacturers, engineers, educators, students, architects, and others, but most prominently it is 
used as an official tool in NFRC (National Fenestration Rating Council). It is also used by PHIUS 
(Passive House Institute US) and will soon be used by AERC (Window Attachment Energy Rating 
Council). In addition to THERM, the LBNL team has developed several other software tools, widely 
used by industry, both nationally and internationally (i.e., WINDOW, OPTICS, RESFEN, COMFEN, 
RADIANCE) over the past 30+ years.  
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2. Theoretical Model 

This chapter sets the theoretical background for the moisture and heat transfer model in porous 
media. Some general equations (laws) that are used as drivers for developing certain models are 
given in the Appendixes so it is easier to understand the limitations for which models are derived. 
The final result is a finite element model that will be able to calculate mass and temperature 
distribution within a given domain and within a given time. 

The model calculates water, moisture and air transfer through the model along with the calculation 
of temperature distribution. Because water and air distribution depend on temperature and vice 
versa, the temperature field will depend on the water and air content, and thus these two cannot be 
observed and calculated separately. In addition, water content can change its phase during the 
process, which makes the model even harder to calculate. In order to perform calculations of such a 
complex physical model, the calculation must be simplified into several smaller models that will be 
calculated iteratively (see Figure 1) during each timestep. 

The first model to be solved is Air Pressure Distribution which is a very important driver for water 
distribution and thus affects everything else in the domain. During the air pressure calculation, it is 
assumed that the mass of water, and the temperature of the domain, are not changing. After 
calculating air pressure within the domain, the next step is to calculate Mass Distribution (Transfer). 
Again, in this step it is assumed that pressure and temperatures remain constant. Finally, the last 
step is to calculate Temperature Distribution, under the constant mass and pressure field. The newly 
calculated temperature field results in the amount of heat flux, and therefore allows the calculation 
of Phase Change. Since the re-calculation of every model results in a different mass and temperature 
distribution, all of this must be calculated within iteration loops until the convergence criteria has 
been achieved (Figure 1). 
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Figure 1. Steps in Solving Coupled Heat, Air and Moisture Transport 

Note: Convergence must be satisfied over all three fields (pressure, mass and temperature) before 
proceeding to the next timestep. 

2.1 Coupled Heat, Air and Moisture Transport (HAM) 

2.1.1 Heat Transfer (Energy) Equations 

The change in enthalpy depends on the conductive heat transport, the mass transport of water and 
the air and enthalpy transport by water vapor transport as well as potential phase changes. 

2.1.1.1 Conduction Heat Transfer 

The heat flux density due to conduction can be described using Fourier’s law, as seen in Equation 
(6.9) and (6.10).  

c x y

T T
q k k

x y

    
     

     

  (2.1) 
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Where 

 cq  = heat flux density [W/m2] 

k  = Thermal conductivity of material [W/(m∙K)]  

Since materials typically contains water, the resulting thermal conductivity is needed. One option is 
to calculate an equivalent thermal conductivity based on dry material thermal conductivity and 
water content. Values obtained this way are usually not precise and that is why the thermal 
conductivity of material with different water content is provided through a set of measurements. 

Using Equation (6.10), the temperature can be solved as: 

, ,

,,

, , , ,

eq eq

x y l l x l y

v yv x

v v diff x v diff y lg

T
C

t

T T T T
k k C g g

x x y y x y

ggT T
C g g h Q

x y x y




 


          
           

           

   
        

      

  (2.2) 

Where 

 
lgh  = Enthalpy of Vaporization [J/kg] 

 lC  = Heat capacity of water [J/K] 

vC  = Heat capacity of water vapor [J/K] 

Q  = Additional sensible heat source [J/(m3∙s)] 

NOTE: Reference point is zero Celsius. 
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Table 1. Thermal Conductivity of water liquid and ice, as a function of temperature. 

Temperature 
Water Liquid Ice 

Conductivity Density Conductivity Density 

[C] [W/(mK)] [kg/dm3] [W/(mK)] [kg/dm3] 

100 0.68 0.958     

90 0.68 0.965     

80 0.67 0.972     

70 0.67 0.978     

60 0.66 0.983     

50 0.65 0.988     

40 0.63 0.992     

30 0.62 0.996     

20 0.61 0.998     

10 0.59 1.000     

5 0.58 1.000     

0 0.57 1.000 2.050 916.2 

-5    2.027 917.5 

-10    2.000 918.9 

-15    1.972 919.4 

-20    1.943 919.4 

-25    1.913 919.6 

-30    1.882 920.0 

-35    1.850 920.4 

-40    1.818 920.8 

-45    1.785 921.2 

-50     1.751 921.6 

 

2.1.1.2 Heat Transfer Summary 

Heat transfer may also occur through advection. The total energy equation is defined as: 

, , , , , , ,

eq eq il il

v v
lg

l l x l y v v x v y air d air x air y

T
C S h I

t

g gT T
k k h

x x y y x y

T T T T T T
C g g C g g C g g Q

x y x y x y




    


        
         
          

          
                 

          

 (2.3) 

With 

 S  = 0 for non-freezing conditions and 1 for freezing conditions 

 
ilH  = Additional heat capacity due to heat of fusion [J/(m3∙s)] 
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,air dC  = Heat capacity of dry air [J/K] 

The above energy equation assumes  

eq  = An equivalent density of all material  components [kg/m3] 

eqC  = An equivalent specific heat of all material components [J/(kg·K)] 

air  = Density of moist air, see Equation (2.52) [kg/m3] 

airC  = Specific heat of moist air [J/(kg·K)] 

Bulk material dry density, as it is measured including pores is: 

 1bulk d air           

d  = It is material density as it is measured without pores [kg/m3] 

Equivalent density of moist material can be then calculated as: 

 eq bulk ice ice l l air air                  

Since air influence is very small, approximated equation is to calculate the equivalent density of the 
material: 

eq bulk ice ice l l           (2.4) 

The same approach can be used for equivalent capacitance: 

eq bulk ice ice l lC C C C         (2.5) 

The moist air heat capacity is found using a relation between the dry air and water vapor capacities 
respectively. 

  ,1air air d gC x C x C        (2.6) 

The humidity ratio, x , is given in Equation (2.46). 

2.1.2 Mass Transfer (Moisture) 

For the mass balance equation (6.19) the material must take into consideration phase change. For a 
given phase k (vapor, liquid or solid), a transient mass balance on the liquid/vapor/ice yields: 

 k
k k k

M
M v S

t


    


T

 

Where: 

Mk = Mass of water in phase state [kg] 

 kT = Rate of water mass that is transforming into state k [kg/s] 

 v  = Velocity [m/s] 
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 kS = External source of water (state k) [kg/s]  

t = time [s] 

If we introduce content of mass per volume, the equation becomes: 

 k
k k k

k
k k k

v I S
t

g I S
t







   




  



 

Where: (2.7) 

k
k

M

V
  = Moisture/water/ice content in given domain [kg/m3] 

k
kI

V

T

 = transfer of water from the phase k due to phase change [kg/(m3∙s)] 

V  = Domain volume [m3] 

,k volS  = External volumetric source of water (state k) [kg/(m3∙s)] 

kg  = flux density of water of state k [kg/(m2∙s)] 

In subsequent derivations, the subscript k is replaced with v  for vapor, l  for liquid water and i  for 
ice. For vapor, the following equation results: 

v v v
v v

g g
I S

t x y

    
     

   
 (2.8) 

Where: 

vg = water vapor flux [kg/(m2s)] 

 vS = Water vapor source [kg/(m3·s)]  

vI  = Transfer from water liquid to water vapor phase [kg/(m3·s)] 

For liquid water: 

l l l
l l

g g
I S

t x y

    
     

   
 (2.9) 

l l l
l

g g
I

t x y

   
   
     

Where  

lg = water liquid flux [kg/(m2s)] 
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 lS = Water liquid source [kg/(m3s)] 

lI  = Transfer from ice, or water vapor to liquid phase [kg/(m3s)] 

For ice, there is no ice flow, nor source: 

i
iI

t




  (2.10) 

The summation of the above equations gives: 

     

, , ,

v l i v l v l

k k

i l v l v

g g g g
I S

t x y

         
     

   
   (2.11) 

However, the total change in phase state is equal to zero: 

, ,

0k

i l v

I   (2.12) 

Thus, the equation can be simplified to a total change in water content, w , (independent of phase 

state).  

   ( ) v l v lv l i w
v l

g g g g
S S

t t x y

           
     

    

 (2.13) 

The total change in water content, w

t




, can be found using the water liquid flux, lg , , the water 

vapor flux, vg ,  and the ice. A separation of the phase state is not required for the total water 

content. 

Once, the total change in water content is found, the new water content can be found after a given 

time step, t , as: 

    w
w wt t t t

t


 


    


  (2.14) 

There is a relation between the water content, w , and the relative humidity,   , that can be 

illustrated using a sorption isotherm (moisture storage function). 
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Figure 2. Water sorption isotherm of arbitrary porous material illustrating the relationship 

between water content and relative humidity.  

Thus, using the sorption isotherm, the relative humidity is given.  

   v l v lw w
v l

g g g g
S S

t t x y

  



      
       

     
  (2.15) 

Next, we need to express change of vapor and liquid water flow as functions of relative humidity. 

Once the relative humidity is known, together with temperature, the water vapor content can be 
found using (2.49) and (2.50): 

7235
77.345 0.0057

9.2461.4

T
T

v air

e

T
  

 
   

 

  
  

 

 (2.16) 

Where air  is given by (6.18).  

Similarly, the water vapor pressure can be found using (2.48) and (2.51): 

7235
77.345 0.0057

8.2

T
T

v

e
P

T


 
   

 

   

 

 (2.17) 

Relative Humidity, φ 100%
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2.1.2.1 Water Liquid Transportation - Capillary Transport 

If we have Darcy’s velocity v , the following relation is given: 

l
l

l

g
v


  (2.18) 

where 

lv = Water liquid velocity [m/s] 

lg = water liquid flux [kg/(m2s)] 

l  = Liquid water content [kg/m3] 

The water transport flux density is defined in accordance with (6.31) for Darcy’s velocity: 

, ,p x p yl l
l l l l

l

P P
v g i j G j

x y


 



  
          

  

k

 

 l l
l p l

l

g P G





    
k

 (2.19) 

Where: 

lk = Water liquid permeability [m2] 

l = Dynamic viscosity of liquid water [kg/ms] 

pP = Pore water pressure [Pa] 

G  = Gravity acceleration (9.81 m/s2) [m/s2] 

The pore water pressure, lP , will change with water content, l . Therefore, the water liquid flux, 

can also be defined using a liquid transport coefficient in combination with the water content 

gradient (Fick’s second law (6.23)): 

2 2
2

2 2f f

M M M
D M D

t x y

   
    

     

l l lg D       (2.20) 

where   

 lD = Liquid transport coefficient [m2/s] 

Combining equations we find; 
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 l l
l l l

l l

k
P G

D


 




     


   (2.21) 

Since gravitational forces only occur in vertical direction (y), and allows the water transport flux 

density to be defined as; 

l l l l
l l l l

l l

k
g D D G

x y D

  




   
      

    

   (2.22) 

The resulting change in total water content due to liquid flow is given as: 

w l l

w l l l l
l l l

l l

g g

t x y

k
D D G

t x x y y D



   




  
 

  

        
                   

  (2.23) 

The relationship between the liquid and relative humidity transport coefficients is; 

w
l lD D D







  


   (2.24) 

Where   is the slope of the sorption isotherm, also called moisture storage function. 

The following equation is expressed as a function of relative humidity (ignoring the gravitational 

part): 

, ,l x yg D D
x y

 

    
     

    
  (2.25) 

where   

 D = Relative humidity transport coefficient [kg/(m∙s)] 

Thus, the resulting change in water liquid content is: 

, ,
w

x yD D
t x x y y

 

           
      

         
  (2.26) 

On fully wetted surfaces, liquid water transport is dominated by larger capillaries, as they have 
lower flow resistance. When no new water is taken up, the redistribution of the water in the 
material is dominated by smaller capillaries with higher capillary tension. Therefore, two different 

transport coefficients, sD  and rD are introduced according to Künzel (Künzel 1995).  

s

r

D
D

D








 
  

( )

( )

if rain

if norain
  (2.27) 
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sD  , the liquid conduction coefficient for suction, is applied if liquid water from rain or source is 

present. rD  , the liquid conduction coefficient for redistribution, is applied if no liquid water from 

rain or source is present.  

2.1.2.2 Water Vapor Transportation 

Water vapor transportation can be divided into two components: 

 Transportation from diffusion 

 Transportation from advection (airflow) 

Therefore, the change in vapor content is: 

, ,v diff v advv

t t t

   
 

  
 (2.28) 

And the total vapor flux density vg  is: 

, ,v v diff v advg g g    (2.29) 

2.1.2.2.1 Transportation from Diffusion 

The vapor diffusion flux is derived from the first Fick law (see (6.22)) 

,
v v

v diff x yg
x y

 
 

 
  

 
  (2.30) 

Where: 

 n  = Water vapor permeability in direction n [m2/s]  

 v = Humidity by volume [kg/m3] 

The water vapor permeability n  in direction n, can be expressed as a quotient of the diffusion 

coefficient D  for stagnant air and the resistance factor   that describes the reduction of the 

diffusive flow in porous materials. This results is a diffusive flux according to the following equation 
: 

,
v v

v diff

x y

E E
g

x y

 

 

 
  

 
 (2.31) 

With 

,v diffg  = vapor diffusion flux [kg/(m2∙s)] 

E  = diffusion coefficient for stagnant air [m2/s] 

  = water vapor diffusion resistance factor [-] 

Hagentoft (Hagentoft 2001)describes that the diffusion coefficient E for stagnant air can be 
calculated depending on the temperature with equation: 
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6(22.2 0.14 ) 10CE T       (2.32) 

With 

CT  = Temperature in Celsius [°C] 

The resulting change in water content due to water vapor flow is given as: 

 w v v
x y

t x x y y

  
 

     
    

       
 (2.33) 

Which can also be expressed as a function of relative humidity and the vapor diffusion resistance 
factor: 

sat satv vw

x y

E E

t x x y y

 

 

     
             

 (2.34) 

where 
satv is found using (2.49). 

2.1.2.2.2 Transportation from advection (airflow) 

Using the air flow rate found in (2.54), the vapor flux density due to advection can be calculated 
with the following equation: 

,v adv airg g x   (2.35) 

Where x  is the humidity ratio given in Equation (2.46). The resulting change in water content due 
to advective vapor flow utilizing Equation (2.56) is: 

, , ,sat sat satair x v air y v air y vw air air
air

air air air

k k kP P
G

t x x y y y

  


  

           
         

          
  (2.36) 

2.1.2.2.3 Water Vapor Transportation – Liquid Source 

A water liquid source lS may come from precipitation or water leakage. If this source exists, it will 

be added directly to the material. 

There may also be a liquid source from air leakage (Section 2.1.4), if the dew-point temperature of 

the air is higher than that of the surface material. However, this phenomenon is accounted for in the 

overall equation for mass transfer.  

2.1.2.3 Water Transfer Summary 

There is a relationship between water content and relative humidity. In addition, there is also a 
phenomenon referred to as hysteresis. The hysteresis effect is illustrated in Figure 3 and is driven 
by whether the material is subject to dryer (desorption), or wetter (sorption) conditions.  
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Figure 3. Sorption and desorption curves due to the hysteresis effect. 

Studies have shown that this phenomenon has, for most cases, insignificant effect on the water 
transportation (Zhang et al. 2016), and is thus neglected in the governing equations of mass 
transportation for this document. 

The sorption isotherm illustrates how much moisture can be absorbed or released at any given 
temperature, due to both liquid and vapor transportation. In general, at a relative humidity below 
50%, the main transportation mechanism is from the exchange of vapor. Once the pores inside the 
material are filled with water, more and more liquid transportation will occur, and this 
transportation mechanism will start to dominate. The hygroscopic range covers the interval of 
approximately 0 to 98% relative humidity. For a material to reach levels beyond the hygroscopic 
range, the material needs to be in direct contact with water. 

Summarizing the total water transfer, but neglecting the gravitational effects yields the following 
equation: 

, ,

, ,

sat sat

sat sat

v vw

x y

air x v air y vair air

air air

x y l v

E E

t x x y y

k kP P

x x y y

D D S S
x x y y

 

  

  

 

 

 

      
              

      
      

      

        
      

        

 (2.37) 

Where l  can be calculated from sorption curves as: 
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l
l w

l i


 

 

 
  

 
  (2.38) 

2.1.3 Air flow through Porous Materials 

Air flow, or mass flow of air over time, is caused by an air pressure difference, and air mass body 
forces such as gravity. For air flow through materials, the air permeability of the material will affect 
the resulting air flow. Using Darcy’s law, as presented in Appendix C, Section 6.7.2, the air flow rate 
can be defined as 

air air
air

air

V k A P

t L

  
   

 
G    (2.39)  

Where: 

 
airV  = Air volume [m3] 

 t   = Time [s] 

 
airG  = Total air discharge [m3/s] 

 airk   = Intrinsic permeability of the medium [m2] 

 A   = Cross-sectional area to flow [m2] 

 P   = Total pressure [Pa] 

 air  = Dynamic viscosity of air [Pa∙s] 

 L   = Length over which pressure drop is taking place [m] 

In general, the air pressure gradient is induced by a combination of conditions, such as wind, 
buoyance, and ventilation forces. Wind is a surface phenomenon and will be further discussed in 
Section 2.1.7 for boundary conditions. Buoyance forces cause an air pressure gradient, induced by a 
density differential. Changes in density mainly exist due to variations in temperature and moisture 
conditions.  

The resulting pressure gradient is defined as: 

air vent
PP PP

L L L L

 
  

   
  (2.40) 

Where: 

 airP  = Forced air pressure differences, such as wind loads [Pa] 

 P = Gravitational air pressure gradient by body (density) forces [Pa] 

 ventP  = Mechanical air pressure differences induced by ventilation system [Pa] 

Assuming a balanced air ventilation system, and combining Equation (2.39) and (2.40), the air flow 
is defined as: 
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air air
air

air

Pk A P

L L





  
    

  
G    (2.41) 

Specifically, the forced air pressure difference can be calculate based on the loads from which it 
originates. The gravitational pressure gradient can be expressed using the air density, together with 
the gravity acceleration. Thus (2.41) becomes: 

air
air air

air
air

air

V
P G

k A A

L





  
          

 
 
 

G   (2.42)

   

Where: 

G = Gravity acceleration (9.81) [m/s2] 

air  = air content in given domain [kg/m3] 

A = Area [m2] 

In order to solve Equation (2.42), and thus the total air flow rate, both the forced air and the gravity 

driven pressure gradients must be found. Since the forced air pressure gradient is caused by wind 

loads, this gradient is solved under surface boundary condition, Section 2.1.7. The gravity driven 

pressure gradient, and thus the moist air density, is solved in Section 2.1.3.1 below. 

2.1.3.1 Air Density of Moist Air 

For air flow through porous materials, the air pressure gradient and the air permeability, airk , of 

the materials govern the resulting air flow rate.  

According to the ASHRAE Handbook of Fundamentals (American Society of Heating, Refrigerating 
and Air-Conditioning Engineers 2017), the density of moist air can be expressed as: 

 
1

1air x


    (2.43) 

Where 

air  = density of moist air [kg/m3] 

  = specific volume (…) 

x  = humidity ratio [kg/kg] 

The specific volume,  , can be defined as: 

  287.042 273.15 1 1.607858

atm

T x

P


  
   (2.44) 

in which the atmospheric air pressure, atmP  in Pa, can be given or calculated for a given altitude 

with: 
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 
5.2559

5101325 1 2.25577 10atmP Z     , (2.45) 

where 

 Z = Altitude [m], 

and the humidity ratio, x: 

0.621945 v

atm v

P
x

P P
 


  (2.46) 

With 

vP  = Partial vapor pressure [Pa] 

Further, per (Hagentoft 2001), the partial pressure of water vapor at saturation can be estimated 
as: 

461.4
sat satv vP T      (2.47) 

Where 

v
v

M

V
  = Vapor content in given domain [kg/m3] 

T  = Temperature [K] 

Also, 
satvP can be defined as a function of temperature in K as; 

7235
77.345 0.0057

8.2sat

T
T

v

e
P

T

 
   

 

   (2.48) 

Using (2.47) and (2.48), the vapor content in a given domain at saturation is found accordingly: 

7235
77.345 0.0057

9.2461.4sat

T
T

v

e

T


 
   

 




   (2.49) 

With 

 ,v sat  = saturation vapor content [kg/m3] 

The relative humidity   [-] of air can thus be expressed as: 

sat

v

v





  , (2.50) 

or as; 

satv vP P    (2.51) 

Utilizing Equation (2.43) based on Equations (2.44) through (2.50) gives: 
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 

  
1

1

287.042 273.15 1 1.607858

atm

air atm

P x
P K

T x



  

 
  (2.52) 

And as a result, 
1K  computes to: 

 

  
1

1

287.042 273.15 1 1.607858

x
K

T x




 
   (2.53) 

2.1.3.2 Resulting Air Flow 

By applying Equation (6.27), the areal air flow rate, ignoring gravitational effects, can be found as 

,, air yair x air air
air air air air

air air

kk P P
g v

x y
 

 

  
    

  

  (2.54) 

where, 

airg  = Areal air flow rate [kg/(m2∙s)] 

airv  = Air velocity [m/s]   

Introducing air  as air content ( air air air    ) in kg/m3, we can write the continuity equation for 

air in porous media: 

0air
airg

t


  


  (2.55) 

Where, 

 air  = Air content [kg/m3] 

Finally, as seen in (6.32), the resulting air flow rate through a porous material is defined as: 

air air air air air air air air

air air air

P k P k P

P t x x y y

  

 

         
      

        
  (2.56) 

2.1.4 Phase Change of Water 

The phase change of water will either provide or consume energy, depending on which phase state 
the water is transforming into. There is a jump in specific enthalpy at 0º C, which must be 
accounted for in hygrothermal simulations. 
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Figure 4. Specific enthalpy of water as a function of temperature [ºC] 

As described in (Diachao Sheng 1993), the enthalpy of phase change can be evaluated through an 
averaging technique. Otherwise, this direct evaluation may run the risk of skipping the phase 
change interval in a single timestep. 

2.1.4.1 Heat of fusion 

If a phase change occurs in water between its liquid and solid form, the phase change is referred to 

as fusion. The enthalpy of fusion, ilh , which defines the amount of energy required to change the 

phase of water from solid, i , to liquid, l , is 333.55 kJ/Kg.  

2.1.4.2 Heat of evaporation 

Water, in its free form and at typical air pressure, evaporates at 100ºC. However, a partial phase 
change, between available liquid, l , and gas, g , form of water occurs regardless of temperature 

change. With changing temperature, gradients in partial pressure exists, causing saturated 
humidity levels to change accordingly, as seen in (2.48). Since vaporization, or condensation, 
consumes or generates energy respectively, the enthalpy of vaporization is defined as: 

 2 32500.8 2.36 0.016 0.00006lg c c ch T T T         [KJ/kg] (2.57) 

Here, cT  is given in degree Celsius. 

2.1.5 Heat Transfer in Air Cavities 

A frame cavity shall be treated as though it contains an opaque solid which is assigned an effective 
conductivity.  This effective conductivity accounts for both radiative and convective heat transfer 
and shall be determined as follows.   

dhh  )( rceff  (2.58) 

where 

eff  = the effective conductivity; 

ch  = the convective heat transfer coefficient; 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-300 -250 -200 -150 -100 -50 0 50 100 150 200

Temperature [C]

Specific Enthalpy of Water [KJ/Kg]



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │27 

rh  = the radiative heat transfer coefficient (hr=0 in the case when detailed radiation procedure 

is used); 

d  = the thickness or width of the air cavity in the direction of heat flow. 

The convective heat transfer coefficient, hc, is calculated from the Nusselt number, Nu, which can be 

determined from various correlations, depending on aspect ratio, orientation and direction of heat 
flow.   

d
Nuh air

c


  (2.59) 

There are three different cases to be considered, depending on whether the heat flow is upward, 
downward, or horizontal. 

2.1.5.1 Heat flow downward 

1.0Nu  (2.60) 

 

Figure 5. Illustration of rectangular frame cavity downward flow direction 

2.1.5.2 Heat flow upward 

This situation is inherently unstable and will yield a Nusselt number that is dependent on the 
height-to-width aspect ratio, Lv/Lh, where Lv and Lh are the largest cavity dimensions in the 

vertical and horizontal directions, as shown in Figure 6. 

 

Figure 6. Illustration of rectangular frame cavity upward flow direction 
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a) for 1
h

v 
L

L
 convection is restricted by wall friction, and 

1.0Nu  (2.61) 

b) for 51
h

v 
L

L
 the Nusselt number is calculated according to the method given by  

1
3

crit1
3 0.95 1

1 ln 2crit1 1 1 2( 2) 1 1
5380


 

          

 
      

             
       

 

Ra

Ra
kRa Ra

Nu k k e
Ra

 (2.62) 

where 

1 1.40k  

1
3

2
450.5


Ra

k
 

 
2

xx
x






 

critRa  is a critical Rayleigh number, which is found by least squares regression of tabulated values. 

h

v

0.721 7.46

crit

 
 

 

L

L
Ra e

 

Ra is the Rayleigh number for the air cavity: 
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3

v

2
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

 TTCgL
Ra

airp 


 

c) for 5
h

v 
L

L
 the Nusselt number is: 

1
31708

1 1.44 1 1
5830


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2.1.5.3 Horizontal heat flow 

 

Figure 7. Illustration of rectangular frame cavity horizontal flow direction 

 

a) for 
2

1

h

v 
L

L
 the Nusselt number is: 

2
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Nu Ra Ra
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 (2.63) 

where Ra is Raleigh number and is defined as: 

airair

coldhotairp,

3

h

2

air )(



 TTCgL
Ra




   

b) for 5
h

v 
L

L
 the following correlation, also the maximum Nu is gives as:  

 

1
33

0.293

ct 1.36

0.104
1

6310
1

  
  
   
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 (2.64) 
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h
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L
Nu Ra

L
 (2.65) 

1
3

t 0.0605Nu Ra  (2.66) 

Note: For more details, see Reference (Wright 1996). 
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c) for 5
2

1

h

v 
L

L
 the Nusselt number is found using a linear interpolation between the endpoints 

of (a) and (b) above. 

For jamb frame sections, frame cavities are oriented vertically and therefore the height of the cavity 
is in the direction normal to the plane of the cross section.  For these cavities, it is assumed that the 
heat flow is always in horizontal direction with Lv/Lh > 5, and so correlations in Equations (2.64) to 
(2.66) in 6.6.3.b shall be used. 

The temperatures Thot and Tcold are not known in advance, so it is necessary to estimate them.  From 
previous experience it is recommended to apply Thot=10C and Tcold=0C.  However, after the 
simulation is completed, it is necessary to update these temperatures from the results of the 
previous simulation.  This procedure shall be repeated until the values of Thot-Tcold from two 
consecutive simulations are within 1C.  Also, it is important to inspect the direction of heat flow 
after the initial simulation, because if the direction of the bulk of heat flow is different than initially 
specified, it will need to be corrected for the next simulation. 

For an unventilated irregularly shaped frame cavity, the geometry shall be converted into equivalent 
rectangular cavity according to the procedure in ISO 10077-2 (see also Figure 8).  For these cavities, 
the following procedure shall be used to determine which surfaces belong to vertical and horizontal 
surfaces of equivalent rectangular cavity (see also Figure 9). 

If the shortest distance between two opposite surfaces is smaller than 5 mm then the frame cavity 
shall be split at this "throat" region.  Also: 

a) any surface whose normal is between 315 and 45  is a left vertical surface 

b) any surface whose normal is between 45 and 135  is a bottom horizontal surface 

c) any surface whose normal is between 135 and 225  is a right vertical surface 

d) any surface whose normal is between 225 and 315  is a top horizontal surface 
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Figure 8. Illustration of the treatment of irregularly shaped frame cavities 

 

Figure 9. Illustration of how to select surface orientation for frame cavities; dashed lines indicate 

the direction of the normal to the surface with cut of angles at 45, 135, 225 and 315. 

Temperatures of equivalent vertical and horizontal surfaces shall be calculated as the mean of the surface 

temperatures according to the classification shown above.  The direction of heat flow shall be determined 

from the temperature difference between vertical and horizontal surfaces of the equivalent cavity.  The 

following rule shall be used (see also Figure 10). 

heat flow is horizontal if the absolute value of the temperature difference between vertical cavity surfaces 

is larger than between horizontal the cavity surfaces; 

a) heat flow is vertical heat flow up if the absolute temperature difference between horizontal 

cavity surfaces is larger than between vertical cavity surfaces, and the temperature 

difference between the top horizontal cavity surface and bottom horizontal cavity surface is 

negative; 

b) heat flow is vertical, heat flow down if the absolute temperature difference between 

horizontal cavity surfaces is larger than between vertical cavity surfaces and the 

temperature difference between the top horizontal cavity surface and bottom horizontal 

cavity surface is positive. 
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a)   
bottomtopleftright TTTT                      heat flow is horizontal; 

b)   
bottomtopleftright TTTT  and bottomtop TT                heat flow is vertical, heat flow up; 

c)   
bottomtopleftright TTTT   and bottomtop TT               heat flow is vertical, heat flow down. 

 

Figure 10. Illustration of how to select heat flow direction  

2.1.5.4 Radiant heat flow  

The radiative heat transfer can be calculated two ways: 1) a simplified approach utilizing the 
correlation for radiative surface heat transfer coefficient hr , and 2) utilizing the detailed, view 

factor-based radiation heat transfer calculation 2-D grey body radiation theory.  

2.1.5.4.1 Simplified Radiation Heat Transfer Calculation 

hr shall be calculated using: 

Km

W

L

L

L

L

T
h

2

v

h

2

1
2

v

h

hotcold

3

ave
r

11(
2

1

1
2

11

4

















































  (2.67) 

where: 

2

hotcold
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T


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The above notation assumes radiant heat flow in the horizontal direction.  If the heat flow direction 
is vertical then the inverse of the ratio Lh/Lv shall be used (i.e., Lv/Lh). 
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2.1.5.4.2 Detailed, View Factor-Based Radiation Heat Transfer Calculation 

The net radiation heat transfer at any surface "i" is the difference between emitted radiation and 
the absorbed portion of incident radiation.  The temperatures of the surfaces do not appreciably 
differ, so using Kirchhoff’s law: 

 ii

4

iiir, GTq    (2.68)  

where, Gi is irradiance at surface i from all other surfaces. 

  
N

j

jjii JFG   

and Fi-j is the  view factor from surface i to surface j.  The radiosity of surface j, Jj, is given by: 

jj

4

jjj GTJ    (2.69) 

Assuming all surfaces are grey: ρj = 1- εj.  Substituting j and Gj and using subscript i for 
convenience, Equation (2.68) becomes: 

 



N

1j

jjii

4

iii 1 JFTJ    (2.70) 

Equation (2.70) represents a system of N linear algebraic equations for the N unknown radiosities, 
Jj, which are determined from the solution of this system of equations.  The system of Equation 
(2.70) when expressed in matrix form becomes: 

    FJC    (2.71) 

where 

 

i

jiiij

ij

1



 


F
C   (2.72) 

4

ii TF    (2.73) 

Ti in Equation (2.73) is the known temperature from the previous iteration k, (i.e., Ti|k).  For the first 
iteration, the values for Ti are initial guesses. 

Temperatures are calculated from the solution to the conduction problem, while net radiation heat 
flow rate (see Equation(2.68)) is calculated using Ji values from Equation (2.70) and linearized term 
Ti

4, by using the first two terms of its Taylor series expansion about Ti|k. 

   4i

1

i

3

i

4

i 34
kkk

TTTT 


  (2.74) 

This procedure is repeated until the following condition is satisfied: 

tol
T

TT

k

kk








1

1

  (2.75) 

where tol is the solution tolerance, whose value is typically less than 10-3.  denotes the norm or 

root mean square value of the temperature vector. 
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View factors Fi-j can be calculated using Hottel's cross-string rule, detailed below.  If the view 
between two radiating surfaces is obstructed by a third surface, the effect of this obstruction shall 
be included, which is also detailed below. 

2.1.5.4.3 View Factor Calculation 

The view factor is defined as the fraction of energy leaving a surface that arrives at a second 
surface. For surfaces with finite areas, the view factors are defined by 

 

  (2.76) 

where S is the distance from a point on surface  to a point on surface . The angles  and  

are measured between the line S and the normal to the surface as shown in Figure 11. 

 

Figure 11. Nomenclature for enclosure radiation 

From equation(2.76), following equation is obtained: 

 

 (2.77) 

There are several ways to calculate view factors. One of them is the “cross-string” rule which is 
illustrated in Figure 12. 
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Figure 12. Cross-string rule 

 

and given by following equation: 

 

 (2.78) 

When partial, or third shadowing exists, the two radiating surfaces are subdivided into n finite sub-
surfaces and contribute to the summation in equation 

 

 (2.79) 

of those subsurfaces in which ray  intersects a shadowing surface is excluded (Figure 13). 
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Figure 13. Third Surface Shadowing 

2.1.6 Moisture Transfer in Air Cavities 

Moisture transport in air cavities follows the approach for heat transfer in air cavities (Chapter 
2.1.5) and treats the frame cavity as though it contains an opaque solid, which is assigned an 
effective water vapor diffusion coefficient. The water vapor transfer coefficient depends on the 
convective heat transfer coefficient according to the Lewis Formula (2.87). The convective heat 
transfer coefficient, hc, depends on the Nusselt number, Nu, which depends on several geometric 

and environmental parameters (Chapter 2.1.5). The effective mass transfer shall be determined as 
follows. 

𝛿𝑒𝑓𝑓 = 𝑁𝑢 ⋅ 𝛽𝑐𝑜𝑛𝑣 ⋅ 𝑑 = 𝑁𝑢 ⋅
ℎ𝑐

𝜌𝑎𝑐𝑝𝑎
⋅ 𝑑 (2.80) 

Where 

𝛿eff is the effective water vapor permeability (m2/s); 

Nu is the Nusselt number; 

𝛽𝑐𝑜𝑛𝑣  is the water vapor transfer coefficient (m/s); 

ch  is the convective heat transfer coefficient (W/m2K); 

a   is the density of air (kg/m3); 

pac   is the heat capacity of air (J/(kgK)); 

d  is the thickness or width of the air cavity in the direction of heat flow. 

2.1.7 Boundary Conditions 

There are two different options for defining the boundary conditions. The simple option is to 
provide temperature and relative humidity boundary conditions right at the surface nodes. In this 

k=1
k=2

k=n

l=1 l=2

l=n

Li

Lj

Blocking Surface 
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case, equation (2.81) applies: 

surf boundary

surf boundary

surf boundary

T T

RH RH

P P







  (2.81) 

The second option is to provide surrounding air properties and calculate the resulting heat/mass 
flux on the surfaces depending on the surface heat and moisture transfer coefficients. For pressure 
boundary conditions, Equation (2.81) always applies. 

The difference in absolute air pressure on the inside and outside of the component is a function of 
three primary mechanisms: Wind, stack effect and mechanical air handling equipment. Various 
methods to calculate wind and stack effect pressures exist, which are always applicable under 

certain conditions. They can be utilized to calculate dynamic pressure differences P between 
inside and outside. The resulting pressure boundary conditions are found in Equation (2.82): 

,

,

surf in atm

surf ex atm

P P

P P P



 
  (2.82) 

With 

,surf inP
 = Absolute pressure on interior surface (Pa) 

,surf exP
 = Absolute pressure on exterior surface (Pa) 

P
 = Pressure difference between inside and outside surface (Pa) 

The total heat flux on a surface boundary consists of advection heat flux, shortwave solar heat flux 
and long-wave radiation heat flux. The shortwave heat flux does not depend on the conditions of 
the element; advection and long-wave radiation heat exchange do depend on the temperature 
conditions of the surface. 

The total heat flux on a component surface follows Equation (2.83): 

tot conv sw lw vaporq q q q q      (2.83) 

With 

totq  = total heat flux density (W/m2) 

swq  = shortwave radiation heat flux density (W/m2) 

lwq  = long-wave radiation heat flux density (W/m2) 

vaporq  = heat flux density from vapor (W/m2) 

The convective heat flux can be calculated according to (2.84): 

( )conv conv surf airq T T     (2.84) 
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With 

conv  = convective heat transfer coefficient (W/(m2K)) 

surfT  = surface temperature (C) 

airT  = air temperature (C) 

The vapor heat flux density can be calculated as: 

 lg , , , ,vapor conv air v sat air v sat surfq h            (2.85) 

Where, 

 
air  = humidity of ambient air, 

  , ,v sat air  = saturation concentration at air temperature (see (2.49)), 

    = humidity at the surface, 

  , ,v sat surf  = saturation concentration at surface temperature (see (2.49)), 

  lgh  = heat of evaporation 

 
conv  = Lewis formula coefficient (see (2.87))  

Similarly, the water vapor flux density can be calculated according to (2.86): 

( )conv conv surf airg        (2.86) 

convg  = water vapor flux density (kg/(m2s)) 

conv  = water vapor transfer coefficient (m/s) 

surf  = water vapor content on the surface (kg/m3) 

air  = water vapor content in the air (kg/m3) 

The water vapor transfer coefficient depends on the convective heat transfer coefficient according 
to Lewis Formula (2.87):  

co v
conv

n

a pac


 


  (2.87) 

With 

a  = density of air (kg/m3) 

pac  = heat capacity of air (J/(kgK)) 

The following sections will provide information on how to calculate the convective heat transfer 
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coefficient. In case the required input information is missing, it should also be possible to provide a 

user defined convh .  

2.1.7.1 Exterior surface – Heat transfer 

2.1.7.1.1 Short-wave radiative flux 

The total solar gain on any exterior surface it a combination of the absorption of direct and diffuse 
solar radiation and is calculated according to equation (362) in the Engineering Reference Manual 
for Energy Plus (Plus). 

2.1.7.1.2 Long-wave radiative flux 

The long-wave radiative flux describes the radiation exchange between the surface and its 
surroundings. The heat flux is calculated from the surface absorptivity, the temperature of the 
surface, and of all surfaces in sight of this surface with the corresponding view factors. For 
simplification, the area in view is usually divided into ground, air and sky. The ground surface 
temperature is assumed to be the same as the air temperature. Therefore the total long-wave heat 
flux is the sum of all those components: 

,lw ex gnd sky airq q q q     (2.88) 

With 

,lw exq  = exterior long wave radiation heat flux density (W/m2) 

gndq  = heat flux density to the ground (W/m2) 

skyq  = heat flux density to the sky (W/m2) 

airq  = heat flux density to the exterior air (W/m2) 

 

With the application of the Stefan-Boltzmann Law to each component we get: 

4 4 4 4

, , ,( ) ( )lw ex gnd gnd surf ex sky sky surf exq W T T W T T        (2.89) 

With 

  = long-wave emissivity of the surface (-) 

  = Stefan-Boltzmann constant = 5.6704 (W/(m2K4)) 

,surf exT  = temperature of the external surface (C) 

gndW  = view factor to the ground (C) 

gndT  = temperature of the ground (C) 

skyW  = view factor to the sky (C) 

skyT  = temperature of the sky (C) 
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The view factors to ground and sky can be calculated according to Walton (Walton 1983): 

0.5 (1 cos )

0.5 (1 cos )

gnd

sky

W

W





  

  
  (2.90) 

With 

  = tilt angle of the surface (-) 

2.1.7.1.3 Convective heat flux 

The convective heat flux is calculated according to equation (2.84). There are numerous models to 
estimate the exterior convection coefficient. As the moisture transfer coefficient depends on the 
convective heat transfer coefficient, an accurate model is desirable. The total convective heat 
transfer on an external surface is a result of combined natural and forced convection. The total 
convective heat transfer coefficient is therefore: 

, , , , , ,conv ex tot conv ex f conv ex n       (2.91) 

With 

, ,conv ex tot  = convective heat transfer coefficient, external, total (W/(m2K)) 

, ,conv ex f  = convective heat transfer coefficient, external, forced (W/(m2K)) 

, ,conv ex n  = convective heat transfer coefficient, external, natural (W/(m2K)) 

A new and comprehensive model to calculate the forced convective heat transfer coefficient for 
very smooth surfaces is presented in (Montazeri, Blocken 2017). It computes the convective heat 
transfer coefficient based on building dimensions and reference wind speed for windward, leeward 
and side facades as well as roofs. However, this model is only applicable for very smooth surfaces. 
The TARP algorithm (as described in (Plus 2008) referencing (Walton 1983)) uses surface 
roughness multipliers to adjust the coefficients. A combination of both approaches yields: 

exp 2 3 4 2 3

, , 10 0 1 2 3 4 5 6 7

4 2 3 2 2 2

8 9 10 11 12 13

2 3 3 3 2 3 3

14 15 16 17

(

)

a

conv ex f i wR v a a W a W a W a W a H a H a H

a H a W H a W H a W H a W H a W H

a W H a W H a W H a W H

                  

               

           

  (2.92) 

With 

iR  = Roughness index (-) (see Table 3) 

10wv  = reference wind speed in 10 m height (m/s) 

expa  = windspeed exponent coefficient (-) 

0 17a a  = equation coefficients (-) (see Table 2) 

W  = Building Width (m) 

H  = Building Height (m) 
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With the coefficients in Table 2: 

Table 2. Coefficients for the calculation of external forced convective heat transfer coefficient for 

windward, leeward and side facades and for roofs 

Coefficient Windward Leeward Side facade Roof 

aexp 0.84 0.89 0.88 0.90 

a0 7.559 3.691E-1 3.217 5.383 

a1 -2.277E-1 5.848E-2 -4.235E-3 -1.320E-1 

a2 6.0337E-3 -3.662E-3 1.118E-3 2.211E-3 

a3 -7.801E-5 6.995E-5 -2.301E-5 -6.099E-6 

a4 3.810E-7 -4.174E-7 1.382E-7 -6.369E-8 

a5 4.485E-2 5.621E-2 6.551E-3 2.320E-1 

a6 -8.190E-4 -2.847E-3 1.843E-3 -4.653E-3 

a7 1.080E-5 5.155E-5 -4.576E-5 4.830E-5 

a8 -6.020E-8 -3.011E-7 3.014E-7 -2.004E-7 

a9 1.047E-3 7.582E-3 -6.985E-3 5.224E-3 

a10 -2.430E-5 -1.455E-4 1.402E-4 -1.244E-4 

a11 1.793E-7 8.924E-7 -8.728E-7 9.642E-7 

a12 -3.591E-6 -1.488E-4 1.043E-4 -1.643E-4 

a13 1.385E-7 2.751E-6 -2.052E-6 3.810E-6 

a14 -1.353E-9 -1.646E-8 1.268E-8 -2.892E-8 

a15 -9.369E-8 8.907E-7 -5.537E-7 1.115E-6 

a16 1.757E-9 -1.569E-8 1.070E-8 -2.541E-8 

a17 -9.134E-12 9.019E-11 -6.574E-11 1.921E-10 

 

And with the surface roughness indexes in Table 3: 
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Table 3. Roughness index values for the calculation of the exterior forced surface transfer 

coefficients 

Roughness Index Ri Example Material 

1 (Very Rough) 2.17 Stucco 

2 (Rough) 1.67 Brick 

3 (Medium Rough) 1.52 Concrete 

4 (Medium Smooth) 1.13 Clear Pine 

5 (Smooth) 1.11 Smooth Plaster 

6 (Very Smooth) 1 Glass 

 

The heat transfer coefficient due to natural convection is also calculated with the TARP algorithm. 
The part of the convective heat transfer coefficient due to natural ventilation for a vertical surface 
computes to: 

1

3
, , , ,1.31 ( )conv ex n surf ex air exT T     (2.93) 

With 

,surf exT  = Temperature of the exterior surface (C) 

,air exT  = Temperature of the exterior air (C) 

For an inclined surface, upward facing and lower air temperature than surface temperature, or 
downward facing and higher air temperature than surface temperature: 

1

3
, ,

, ,

9.482 ( )

7.283 cos

surf ex air ex

conv ex n

T T




 



  (2.94) 

With 

  = tilt angle of the surface (-) 

And for an inclined surface, upward facing and higher air temperature than surface temperature or 
downward facing and lower air temperature than surface temperature: 

1

3
, ,

, ,

1.810 ( )

1.382 cos

surf ex air ex

conv ex n

T T




 



  (2.95) 

2.1.7.2 Exterior surface – Moisture transfer 

2.1.7.2.1 Convective moisture flux 

The exterior convective moisture flux is calculated with equation (2.97): 

, , , , , ,( )conv ex conv ex v surf ex v air exg        (2.96) 
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With 

,conv exg  = water vapor flux density, exterior (kg/(m2s)) 

,conv ex  = water vapor transfer coefficient, exterior (kg/(m2sPa)) 

, ,v surf ex  = partial water vapor concentration on the exterior surface (kg/m3) 

, ,v air ex  = partial water vapor concentration of the exterior air (kg/m3) 

Utilizing (2.48) and (2.49) the equation can be rewritten to 

, ,
, ,

,

7235 7235
77.345 0.0057 77.345 0.0057

, , 9.2 9.2

,

( )
461.4 461.4

surf ex air ex
surf ex air ex

surf ex

T T
T T

conv ex conv ex ext

air ex

e e
g

T T
  

   
        
   
   

    
 

  (2.97) 

With 

,conv exg  = water vapor flux density, exterior (kg/(m2s)) 

,conv ex  = water vapor transfer coefficient, exterior (kg/(m2sPa)) 

, ,v surf ex  = partial water vapor concentration on the exterior surface (kg/m3) 

, ,v air ex  = partial water vapor concentration of the exterior air (kg/m3) 

The exterior vapor transfer coefficient ,conv e  is calculated according to (2.87) with: 

, ,

co v,

,

conv ex tot

n ex

a air exC


 


  (2.98) 

With 

,conv ex  = water vapor transfer coefficient, exterior (kg/(m2sPa)) 

, ,conv ex tot  = convective heat transfer coefficient, exterior, total (W/(m2K)) 

2.1.7.2.2 Source – Rain Load 

For rain, the amount of water sitting on a vertical surface can be estimated using ASHRAE 160 
(Standard), Section 4.6. In this standard, the rain deposit is referred to as: 

cosbv E D L hr F F F U r        (2.99) 

where 

 bvr  = Rain deposition on vertical wall [kg/(m2s)] 

 EF  = Rain exposure factor [-] 
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 DF  = Rain deposition factor [-] 

 LF  = Empirical constant, 0.2 kg·s/(m3·mm) 

U  = Hourly average wind speed at 10 m (33 ft) height [m/s] 

  = Angle between wind direction and normal to the wall [-] 

hr  = Rainfall intensity, horizontal surface [mm/h] 

The rain deposition, bvr , will be accounted for through capillary suction of water liquid at the 

material surface. The presence of water liquid typically increases the material liquid uptake 

significantly, which results in an altered liquid transfer coefficient, D . Whether D  changes or not 
depends on the amount of deposited water at the surface. This “coating” of water can be defined 

through a water film thickness, fd , and if the thickness is less than critical, ,f critd (value tbd), 

significant capillary suction will not occur; thus the liquid transfer coefficient will remain 
indifferent. Other tools (Künzel 1995) alter the liquid transfer coefficient of all the materials in the 
simulation model, once the critical thickness criterium is met.  

The maximum amount of water that can deposit at a material surface, before rolling off or 
evaporating, depends of many factors. The surface inclination, contact angle (hydrophobic 
tendency) and contact area, droplet size and weight, and surface smoothness ( (Yilbas et al. 2017) 

and (Künzel 2007) ) all have an impact on maximum fd . Subsequently, since surface materials can 

only be coated with a certain amount of water, the rainwater uptake is cut off when maximum fd  is 

obtained.  

At present, no good models exist to include the remaining water on surfaces. A promising approach 
seems to be to add a layer of an artificial material on the surface that can store and release the 
water according to a model that considers the surface properties, e.g. surface roughness 
andinclination, among others. 

2.1.7.3 Interior surface – heat transfer 

For the total heat flux on an internal surface, Equation (2.83) applies as well. The radiant parts swq  

and lwq cannot be calculated for a building component simulation. The location of the 2D element in 

a real building is not known and therefore the potential impacts of solar radiation from nearby 
windows or long-wave radiation exchange with other interior components, occupants and 
equipment need to be approximated. 

As the vapor transfer coefficient depends on the convective part of the heat transfer coefficient, the 
latter needs to be calculated in more detail. The heat transfer coefficient due to natural convection 
is calculated with the TARP algorithm the same way the natural convection proportion is calculated 
for the exterior surface. However, there is no forced air flow on the inside, so the interior convective 
heat transfer coefficient due to natural convection is the total heat transfer coefficient.  

The convective heat transfer coefficient due to natural ventilation for a vertical surface computes 
to: 

1

3
, , , ,1.31 ( )conv in n surf in air inT T     (2.100) 
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With 

,surf inT  = Temperature of the interior surface (C) 

,air inT  = Temperature of the interior air (C) 

For an inclined surface, upward facing and lower air temperature than surface temperature, or 
downward facing and higher air temperature than surface temperature: 

1

3
, ,

, ,

9.482 ( )

7.283 cos

surf in air in

conv i n

T T




 



   (2.101) 

With 

  = tilt angle of the surface (-) 

And for an inclined surface, upward facing and higher air temperature than surface temperature, or 
downward facing and lower air temperature than surface temperature: 

1

3
, ,

, ,

1.810 ( )

1.382 cos

surf in air in

conv i n

T T




 



   (2.102) 

 

2.1.7.4 Interior surface – Moisture transfer 

2.1.7.4.1 Convective moisture flux 

The interior convective moisture flux is calculated with equation (2.103): 

, , , ,( )conv in conv in air in surf ing        (2.103) 

With 

,conv ing  = water vapor flux density, interior (kg/(m2s)) 

,conv inb  = water vapor transfer coefficient, interior (kg/(m2sPa)) 

,surf in  = water vapor content on the interior surface (Pa) 

,air in  = water vapor content of the interior air (Pa) 

Utilizing (2.48) and (2.49) the equation can be rewritten to 

, ,in
, ,in

7235 7235
77.345 0.0057 77.345 0.0057

,int ,int int9.2 9.2

, ,in

( )
461.4 461.4

surf in air
surf in air

T T
T T

conv conv

surf in air

e e
g

T T
  

   
        
   
   

    
 

 

  (2.104) 
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The exterior vapor transfer coefficient ,conv e  is calculated according to (2.87) with: 

, ,

co v,

,

conv in n

n in

a air inC


 


   (2.105) 

With 

,conv in  = water vapor transfer coefficient, interior(kg/(m2sPa)) 

, ,conv in n  = convective heat transfer coefficient, interior, natural (W/(m2K)) 

2.1.7.4.2 Interior surface – Moisture sources 

Rain does not apply to interior surfaces. Currently no other moisture sources are available for the 
interior surface.  
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3 Numerical Model: 

3.1 Nomenclature 

Variable Description Units 
u General state variable that finite element model is 

set up for. 
Units depend on state variable 
used.  

k Thermal conductivity coefficient W/(m∙K) or J/(m∙K∙s) 

   Shape function in master coordinate system - 

   Horizontal axis in master coordinate system 
(corresponds to x-axis) 

- 

  Vertical axis in master coordinate system 
(corresponds to y-axis) 

- 

[A] Matrix - 
{B} Vector - 

ijJ  Element of Jacobian matrix (at i-th row and j-th 
column) 

- 

*

ijJ   Element of inverse Jacobian matrix (at i-th row 
and j-th column) 

- 

det[A] Determinant of matrix [A] - 
E Diffusion coefficient for stagnant air m2/s 
  Water vapor transfer resistance factor - 
D Liquid transport coefficient m2/s for liquid and kg/(m2∙s) 

for humidity 
  Material mass over given domain kg/m3 
T Temperature K 

 

Subscripts and superscripts 

Subscript/Superscript Description 
[i] Timestep number 
(a) Iteration number 
x Value in x-axis direction 
y Value in y-axis direction 
i Index of node 
j Index of node 
w Water total 

 

3.2 Discretization of Governing Equations 

This chapter provides concrete discretization of heat and mass transfer equations. 

3.2.1 Notation 

Some common notation will be used in this document: 

 V  - vector of variables or constants 

 M  - matrix 
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 ,x y   - shape function in global coordinate system 

 ,     - shape function in local coordinate system 

( )aV  - variable from iteration “a”. 

[ ]iV  - variable from timestep “i”. 

 
ij

M  - matrix element at position (i, j) 

 
i

V  - vector element at position i 

3.2.2 Pressure 

The pressure equation is given in following form: 

air air air air air air air air

air air air

P k P k P

P t x x y y

  

 

         
      

        

 (3.1) 

When discretizing (3.1) it will be considered that air air

air

k 




 and air

airP




 are constant. Because that is 

not true, it is important to note that equation (3.1) will be considered non-linear where solution 

will be found through iterations. Meaning that program will solve (3.1) for set of airP  and then will 

recalculate air air

air

k 




 and air

airP




 for new solution. Iterations will be repeated till tolerance is 

achieved. 

3.2.2.1 Domain Equation 

Discretization of the entire equation will follow the procedure described in Chapter 7.2.4. The 

pressure equation will always have non-linear form because of air  and air

airP




 being dependent on 

airP .  

The final matrix equation will have the following form: 

       ,[ ] ,[ ] ,[ 1] ,[ ] ,[ ]

P P

air airP P

air i air air i air i air i air air i

M M
P K P P P K P

t t


                  
 

where the coefficients of the matrices are calculated as: 
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1
,

3

1
,

3

det[ ]P air
air i jij

air

M J
P

 

 








 
       



  

* * * *1
, 11 12 11 12

3

1
* * * *,

3 21 22 21 22

det[ ]

j ji i

P air air
air ij

air j ji i

J J J J
k

K J

J J J J

 

 

  

   

   

   





        
     

                                  

   

COMPLETE DOMAIN EQUATION 

     ( ) ( 1)

,[ ] ,[ 1] ,[ ]

P P P

air air airP a P a

air air i air i air air i

M M M
K P P K P

t t t





                               
   

 (3.2) 

3.2.3 Mass Transfer 

3.2.3.1 Domain Equation 

The mass transfer equation is given in following form: 

   

, ,

, ,

sat sat

sat sat

v vw

x y

air x v air y vair air

air air

x y l v

E E

t x x y y

k kP P

x x y y

D D S S
x x y y

 

  

  

 

 

 

       
     
        
   

      
      

      

        
      

        

 (3.3) 

3.2.3.1.1 Diffusion Equation 

The first term on the right side of (3.3) represents the diffusion equation: 

   
0

sat satv v

x y

E E

x x y y

 

 

     
    
      
   

  

It can be written as 

   
0 ; ;

sat satv v

x y x y

x y

E E

x x y y

 
   

 

     
      
      
   

 

The saturation vapor content, 
satv  is a function of humidity that will be calculated from the 

sorption curve. To obtain the correct humidity solution from the diffusion equation, successive 
iterations need to be applied. Before discretization is applied, the diffusion part of the mass transfer 
equation needs to be written in the form of a partial derivative of separate terms: 
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0 sat sat

sat sat

v v

x v y v x y
x x y y x x y y

  
       

           
        
              

 (3.4) 

Applying discretization to this equation will give: 

                                 

 where 

* * * *1
, 11 12 11 12

3

1
* * * *,

3 21 22 21 22

det[ ]
sat

j ji i

vij
j ji i

J J J J

J

J J J J

 



 

  

   
 

  

   





        
     

                                 

   

* * * *

11 12 , 11 12

1

* * * *,

21 22 , 21 22

1

det[ ]

sat

sat

n
j j k k

i v k

k

ij n
j j k k

i v k

k

J J J J

J

J J J J



 

   
 

   
 

   
 

   







          
       

        
       

                           





1
,

3

1

3

 

  

Note that for equation (3.4) the state variable is humidity and because of that, discretization of the 

first and second part are different, and thus coefficients for 
  and 

 .  

3.2.3.1.2 Water Liquid Transportation 

Liquid Transportation is given as: 

0 D D
x x y y

 

         
      
        

  

which will lead to the following matrix form after discretization: 

   D D            

 where 

* * * *1
, 11 12 11 12

3

1
* * * *,

3 21 22 21 22

det[ ]

j ji i

ij
j ji i

J J J J

D D J

J J J J

 

 

 

  

   

  

   





        
     

                                 

  

3.2.3.1.3 Pressure Transport 

Pressure transportation is given as: 

, ,
0 sat satair x v air y vair air

air air

k kP P

x x y y

 

 

      
      
      

  

which will lead to the following matrix equation: 
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     P P     

where: 

 

* * * *

11 12 , 11 12

1

* * * *

21 22 , 21 22

1

det[ ]sat

n
j j k k

i air k

kair v

ij n
air j j k k

i air k

k

J J P J J
k

P J

J J P J J

   


   

    


   





          
       

        
   

                           





1
,

3

1
,

3

 

 





  

3.2.3.1.4 Internal Mass Generation 

Internal mass generation is defined by a simple equation: 

0 l vS S   

which converts to a simple vector equation: 

   0 l vQ Q   

where, 

   

1
,

3

,
1

,
3

det[ ]l i l ii
Q S J

 

 







     

   

1
,

3

,
1

,
3

det[ ]v i v ii
Q S J

 

 







    

3.2.3.1.5 Mass Transfer Capacitance 

Mass transfer capacitance is defined by: 

0w

t

 



 


 
 

Which then transfers to the following matrix equation: 

       1

[ ] [ 1] [ ]

w w wa a

i i i
t t t

    
  





            
  

 

where, 

1
,

3

1
,

3

det[ ]w
w i jij

J

 



 


  







  
         

  
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COMPLETE DOMAIN EQUATION 

      

        

[ ] [ 1]

1

[ ]

w wa

i i

w a

i l v

D P
t t

D P Q Q
t

 

 





 



 
   


  





                        
 

                    
 

 (3.5) 

3.2.3.2 Boundary Conditions 

There are two different boundary conditions that can be used together with domain equation (3.5): 

 Boundary Conditions with fixed convective film coefficient 

 Boundary Condition with variable film coefficient 

Regardless of whether the film coefficient is fixed or calculated, the same boundary condition 
equation will be applied. And because the mass transfer calculations are already solved through 
iterations, the same solution approach will be used in both cases. The moisture boundary condition 
is defined by equation: 

7235 7235
77.345 0.0057 77.345 0.0057

, 9.2 9.2461.4 461.4

surf air
surf air

surf

T T
T T

conv ex conv ext

air

e e
g

T T
  

   
         
   

 
 

     
  

 
 

 

which will give discretization: 

   
      

    1a a

airi i
G G Q 


   

 

Where, 

 

7235
77.345 0.0057

9.2
det[ ]

461.4

surf
surf

surf

T
T

conv i jij

e
G J

T

  

 
    
 
 

 
 

     
 

 
 



 

 

7235
77.345 0.0057

9.2
det[ ]

461.4

air
air

T
T

air ext ii
air

e
Q J

T

 

 
   

 

 
 

    
 

 



 

3.2.4 Heat Transfer Equation 

3.2.4.1 Domain Equation 

Heat transfer equation defined in the following form: 
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, , , , , , ,

eq eq il il

v v
lg

l l x l y v v x v y air d air x air y

T
C S h I

t

g gT T
k k h

x x y y x y

T T T T T T
C g g C g g C g g Q

x y x y x y




    


        
         
          

          
                 

          

 

This equation needs to be developed before discretization is applied: 

eq eq il il

v v air air air
lg x y lg air

air

v v
l v

T
C Sh I

t

T T
k k

x x y y

k P P
h h x

x x y y x x y y

T T E T T
C D C

x x y y x x y y




 
  



  




 



     
    
      

               
            

                

        
    

        

,

,

air xair air air air air
v air air d

air air

kk P P P PT T T T
C x C Q

x x y y x x y y


 

 
 
 

         
       

          

 

3.2.4.1.1 Conduction Equation 

The conduction equation is given in the following form: 

0 x y

T T
k k

x x y y

     
    
      

 (3.6) 

The discretization of this equation is simple: 

     K T K T    

where the elements of matrix  K  can be calculated as: 

 

* * * *

11 12 11 12

, * * * *

21 22 21 22

det[ ]

j ji i

ij

j ji i

J J J J

K k J

J J J J
 

  

   

  

   

        
     

       
                       

  

3.2.4.1.2 Conversion from Liquid to Gas (Vapor Part) 

Conduction in the domain from liquid to gas is defined with the following equation: 

0 v v
lg x yh

x x y y

 
 
     

    
       
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which is defined in matrix form (Note that this equation is given in linear form because vector  v  

is considered to be constant in the heat balance equation.): 

 lg0 v

vH      

where, 

* * * *

11 12 11 12

lg lg

, * * * *

21 22 21 22

det[ ]

j ji i

v

ij
j ji i

J J J J

H h J

J J J J
 

  

   


  

   

        
     

                                 

   

3.2.4.1.3 Conversion from Liquid to Gas (Air Part) 

The conduction equation from air is: 

0 air air air
lg air

air

k P P
h x

x x y y




     
    

       
  

and in matrix form: 

 lg0 air

airH P     

where 

* * * *

11 12 11 12

lg

, * * * *

21 22 21 22

det[ ]

j ji i

air air
lg airij

air j ji i

J J J J
k

H h x J

J J J J
 

  

   


   

   

        
     

                                 

  

3.2.4.1.4 Conduction from Liquid 

Conduction from liquid is given in the form of: 

0 l

T T
C D

x x y y


     
  

    
  

which needs to contain a non-linear part, because equation is solved by temperature: 

     l lK T K T     

where, 

 

* * * *

11 12 11 12

1

, * * * *

21 22 21 22

1

det[ ]

n
j j k k

i k

k

l lij n
j j k k

i k

k

J J J J

K C D J

J J J J


 

   
 

   

   
 

   





          
       

        
   

                           





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3.2.4.1.5 Conduction from Vapor 

Conduction from vapor is given as: 

0 v v
v

E T T
C

x x y y

 



   
  

    
  

which in matrix form is equal to: 

     v vK T K T    

where, 

 

* * * *

11 12 , 11 12

1

, * * * *

21 22 , 21 22

1

det[ ]

n
j j k k

i v k

k

v vij n
j j k k

i v k

k

J J J J
E

K C J

J J J J
 

   
 

   

    
 

   





          
       

        
   

                           






 

3.2.4.1.6 Conduction from Airflow 

Conduction from airflow is combined from two equations: 

 ,0 air air air
v air air d

air

k P PT T
C x C

x x y y




    
      

     
  

which in matrix form is: 

     air airK T K T    

where 

   

* * * *

11 12 , 11 12

1

,

* * * *

21 22 , 21 22

1

de

n
j j k k

i air k

k
air

air v air air dij n
air j j k k

i air k

k

J J P J J
k

K C x C

J J P J J

   


   


    


   





         
      

          
   

                         




,

t[ ]J
 

 
 
 
 
 
 
 

  

3.2.4.1.7 Internal Heat Generation 

Internal heat generation is defined with a simple equation: 

0 Q   

which in matrix form is a simple vector: 

 0 Q  

Where, 

   
,

det[ ]i ii
Q Q J

 

    

3.2.4.1.8 Thermal Capacitance 

Thermal capacitance is given by following equation: 
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0eq eq

T
C

t






 

Discretization of this equation is: 

       1

[ ] [ 1] [ ]

p p pa a

i i i

RC RC RC
T T T

t t t





            
  

  

where 

 
,

det[ ]p p i jij
RC C J

 

             

3.2.4.1.9 Ice to Liquid Energy Conversion 

Ice to liquid conversion is given with: 

0il ilSh I    

or in vector form: 

  0ilhI   

where 

   
,

det[ ]l i il ili
hI h I J

 

     

COMPLETE DOMAIN EQUATION 

            

                  

[ ]

1

[ 1] [ ] lg lg

p a

l v air i il

p p a v air

i l v air i v air

RC
K K K K T hI

t

RC RC
T K K K K T H H P Q

t t






          
 
 

                        
 

 

3.2.4.2 Boundary Conditions 

The following boundary condition types are considered: 

 Convection with moisture transfer (with fixed and variable film coefficient), 

 Temperature and 

 Black body radiation 

3.2.4.3 Convection 

The convection boundary condition is defined with following equation: 

   lg , , , ,c air conv v sat surf air v sat airq h T T h            
  (3.7) 

which will give discretization: 

   
      

        1

, , ,

a a

c c c air v surf v airi i
H T H T Q Q Q


     

 

Where, 
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   det[ ]c c i jij
H h J



    
 

   , det[ ]c air c air ii
Q h T J



   
 

   , lg , , det[ ]v surf conv v sat surf ii
Q h J



         
 

   , lg , , det[ ]v air conv v sat air air ii
Q h J



        
 

3.2.4.4 Temperature 

Temperature boundary condition is a special case of the convection boundary condition where the 
heat transfer coefficient is infinitely large. It will come down to equation (3.7) where the film 
convection coefficient will be set to a large number and the moisture component can be taken away 
since air temperature is equal to surface temperature. 

 c airq h T T  
 

Discretization is performed as shown in chapter 3.2.4.3. 
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5 Appendix A: Mathematics and Thermodynamic Preliminaries 

5.1 Nabla symbol ( ) 

The differential operator given in Cartesian coordinates (x, y) on a two-dimensional Euclidean 
space is defined by: 

i j
x y

 
  

 
  

where i and j  are unit vectors in x and y axes respectively.  

5.2 Material derivative or Eulerian derivative operator 

The material derivative describes the time rate of change of some physical quantity for a material 
element subjected to a space-and-time-dependent macroscopic velocity field. 

The material derivative is defined for any tensor field   that is macroscopic, with the sense that is 

depends only on position and time coordinates, ( , , )x y t  : 

x y

D
v v v

Dt t t x y

    


   
       
   

 (5.1) 

Where ( , , )v x y t   is the fluid velocity. 

5.3 Enthalpy 

Enthalpy is a measurement of energy in a thermodynamic system. It is the thermodynamic quantity 
equivalent to the total heat content of a system. It is equal to the internal energy of the system plus 
the product of pressure and volume. 

H U pV    

 H = Enthalpy of the system [Energy] 

 U = Internal energy of the system [Energy] 

 p = pressure of the system [Force/Area] 

 V = volume of the system [Volume] 

5.3.1 Specific Enthalpy 

The specific enthalpy of a uniform system is defined as: 

H
h

m


  

 m = mass of the system [mass] 

It can be expressed in other specific quantities by: 

h u pv   

 u  = Specific internal energy [Energy/Mass] 



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │60 

 p  = pressure of the system [Force/Area] 

 v  = specific volume [Volume/Mass] 

Specific volume is equal to: 

1
v




  

  = is the density [Mass/Volume] 

Enthalpy can also be expressed per unit volume, H [Energy/Volume].  

H
H

V  

5.3.2 Specific Heat at Constant Pressure ( pC ) 

Specific heat at constant pressure is the change of specific enthalpy with respect to temperature 
changes when the pressure is held constant (isobaric process). 

p

P

h
C

T

 
  

    

For constant pressure process: 

 
2

1

T

pP

T

h C dT  
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6 Appendix B: Theoretical Background 

6.1 Conservation of Momentum 

While we don’t expect to model fluid flow, which is governed by the conservation of momentum 
equations, we will briefly describe them here for completeness. The principle of conservation of 
linear momentum (or Newton’s second law of motion) states that the time rate of change of linear 
momentum of a given set of particles is equal to the vector sum of all the external forces acting on 
the particles of the set, provided Newton’s Third Law of action and reaction governs the internal 
forces. Newton’s second law can be written as: 

 
( )

u
u u f

t


  


   


  (6.1) 

where 

  = Tensor product of two vectors  

   = Cauchy stress tensor [N/m2] 

f  = The body force vector, measured per unit mass and normally taken to be the gravity 

vector 

Equation (6.1) is actually set of 3 equations (in 3-D) and they describe the motion of a continuous 
medium, and in fluid mechanics they are also known as the Navier-Stokes equations. 

The form of the momentum equations shown in (6.1) is the conservation (divergence) form that is 
most often utilized for compressible flows. This equation may be simplified to a form more 
commonly used with incompressible flows. Expanding the first two derivatives and collecting 
terms: 

u
u u u u f

t t


   

    
          

    
  (6.2) 

The second term in parentheses in the continuity equation (6.19) and neglecting this term allows 
(6.2) to reduce to the non-conservation (advective) form: 

Du
f

Dt
    

  

where the material derivative has been employed. 

6.2 Conservation of Energy 

The law of conservation of energy (or the First Law of Thermodynamics) states that the time rate of 
change of the total energy is equal to the sum of the rate of work done by applied forces and the 
change of heat content per unit time. In general case, the First Law of Thermodynamics cab be 
expressed in conservation form as: 

 
   

t

t
e

ve q v Q f v
t


  


      


  (6.3) 
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1

2

te e v v    = The total energy [Energy/Volume] 

   = The Cauchy stress tensor [N/m2]  

f  = The body force vector, measured per unit mass and normally taken to be the gravity 

vector  

 e  = The internal energy [Energy/Volume] 

 q  = The heat flux vector [Energy/(Time∙Area)]  

 Q  = The internal heat generation [Energy/(Time∙Volume)]  

6.2.1 Incompressible Fluids 

For incompressible flows, an internal energy equation is more appropriate. Taking the dot product 
of the velocity vector with the momentum equation produces an equation for the kinetic energy. 
This equation is subtracted from the internal energy equation: 

 
 

e
ve q Q

t


 


      


  (6.4) 

   = Dissipation function  

 μ = Dynamic viscosity [Mass/(Length*Time)]  

The thermal energy equation (6.4) can be simplified further by expanding the derivatives on the 
left-hand side of the equation and using the continuity equation. The resulting equation is the non-
conservative (advective) form of the energy equation 

De
q Q

Dt
         (6.5) 

Which is the standard form used for incompressible flows. 

6.2.2 Equation of State 

In addition to the conservation laws described above, two thermodynamic relations or equations of 
state are required. A caloric equation of state relates the internal energy of the materials to two 
(intensive) thermodynamic variables. Of many possible forms for this equation, one of the most 
common for fluid dynamics is the functional relation: 

 ,e e T v   

 
1

v


  = The specific volume [Volume/Mass] 

The change in internal energy is then: 

v T

v

v

e e
de dT dv

T v

P
de C dT T P dv

T

 
 
 

 
   

 

  



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │63 

where standard Maxwell relations from thermodynamics have been used. When converted to 
material derivative the change in internal energy becomes: 

v p

De DT DT DT
C C C

Dt Dt Dt Dt
        (6.6) 

 C  = Specific heat [Energy/(Mass∙Temperature)] 

The specific heat at constant volume Cv is the same as the specific heat at constant pressure Cp for 
constant density processes. 

The equation of state provides a relation among three (intensive) thermodynamic variables. The 
perfect gas law: 

P RT   

is one common equation of state with R being the universal gas constant. For most of the applications 
considered here, the incompressible flow assumption leads to the equation of state: 

0    

which implies that the pressure is no longer a thermodynamic variable. 

6.2.3 Continuity Equation and Equation of State 

Combining equations (6.5) and (6.6), continuity equation can be expressed in terms of the primitive 
variables (u, P, T): 

p s

p x y s

DT
C q Q

Dt

T T T q q
C v v Q

t x y x y





   

       
         

       

 (6.7) 

T = Temperature [Temperature] 

Cp = Specific heat at constant pressure [Energy/(Mass∙Temperature)] 

For flow velocities and velocity gradients that are sufficiently small (applicable to building science), 

viscous dissipation term,  , can be ignored. Conservation of energy equation then becomes: 

p x y s

T T T q q
C v v Q

t x y x y


       
        

       
 (6.8) 

6.2.3.1 Fourier Heat Conduction 

The Fourier heat conduction law states that: 

c x y

T T
q k T k k

x y

  
      

  
  (6.9) 

Replacing equation (6.9) into (6.8) we finally get: 

p x y x y s

T T T T T
C v v k k Q

t x y x x y y


          
          

          
 (6.10) 
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For isotropic materials, conservation of energy equation becomes: 

2 2

2 2p x y s

T T T T T
C v v k Q

t x y x y


      
      

       
 

6.2.3.2 Steady-State 

For steady-state problems, time derivative is equal to zero 

p x y x y s

T T T T
C v v k k Q

x y x x y y


         
         

         
 

For isotropic materials, steady-state conservation of energy equation is: 

2 2

2 2p x y s

T T T T
C v v k Q

x y x y


     
     

      
 

6.2.3.3 Solid stationary region 

In the solid region s  where velocities are equal to zero, (the advective transport of energy), the 

energy equation reduces to: 

p x y s

T T T
C k k Q

t x x y y


      
    

       
 (6.11) 

Or for isotropic materials: 

2 2

2 2


   
   

   
p s

T T T
C k Q

t x y
 

6.2.3.4 Steady-State in Stationary Region 

For steady-state problems, conservation of energy equation for solid regions becomes: 

0
     

    
      

x y s

T T
k k Q

x x y y
 (6.12) 

Or for isotropic materials: 

2 2

2 2
0

  
   

  
s

T T
k Q

x y
 

6.3 Conservation of Energy in Porous Media 

Energy transfer through solid non-deformable material is described with equation (6.11). 

6.3.1 Conservation of Energy in Dry Porous Media 

Introducing porosity ( ) to such material (see chapter 6.4 for more details), energy equation 

through such material becomes: 
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   1 1d p x y

T T T
C k k

t x x y y
  

     
       

        

 (6.13) 

where: 

,p dC  = Specific heat of dry material [Energy/(Mass∙Temperature)] 

d  = Dry material density [Mass/Volume] 

dk  = Dry material conductivity [Energy/(Time∙Length∙Temperature)] 

Equation (6.13) considers energy only through porous dry material where all coefficients were 
scaled down for material porosity. This means that energy contained in solid dry small domain of 

volume “V“ is scaled down by  1   because that is amount of material contained within that 

domain. Equation (6.13) describes part of energy flow through porous material. Second part must 
include gas or fluid flow that happens in pores. 

6.3.2 Conservation of Energy in Moist Media 

Energy conservation of moving media given by (6.10) can be simplified. If the heat transfer through 
radiation and convection within porous structure can be neglected, equation becomes: 

, , , ,k k p k k x k y k k ph k

T T T
C k k I h Q

t x x y y
  

       
        

        

 (6.14) 

where:  

,p kC  = Specific heat of fluid/liquid/vapor [Energy/(Mass∙Temperature)] 

k  = fraction of the domain filled with fluid/liquid/vapor [-] 

k  = Fluid/liquid/vapor density [Mass/Volume] 

kk  = Fluid/liquid/vapor conductivity [Energy/(Time∙Length∙Temperature)] 

, ,x yv and v   = Speed of fluid/liquid/vapor through porous media [Length/Time] 

kI = Mass of fluid/liquid/vapor from phase change [Mass/(Volume∙Time)] 

,ph kh = Specific enthalpy of fluid/liquid/vapor (phase change from state to state) 

[Energy/(Mass∙Temperature)] 

Term ,k ph kI h  has been added to account from phase change between different media states. 

Considering that medium (water) can have different states. Equation (6.14) should be written to 
include all mediums: 

 , , , ,

1 1 1

k numOfMediums k numOfMediums k numOfMediums

k k p k k x k y k k ph k

k k k

T T T
C k k I h Q

t x x y y
  

  

  

          
           

           
    
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6.3.3 Combined 

By interposing equations (6.13) and (6.14) we finally get energy equation for porous media: 

  

     

,

, , , ,

1

1 1

d p k p k

x x k y y k ph k ph k

T
C C

t

T T
k k k k m h

x x y y

  

   


  



   
       

      

 (6.15) 

by introducing equivalent coefficients: 

 , ,

1

1
numOfMeduims

e p e d p k p k

k

C C C   


   
  

 , ,

1

1
numOfMeduims

x e x x k

k

k k k 


   
  

 , ,

1

1
numOfMediums

y e y y k

k

k k k 


   
  

equation (6.15) can be written as: 

, , , ,

1

numOfMediums

e p e x e y e k ph k

k

T T T
C k k I h

t x x y y




      
    

       
  (6.16) 

6.4 Definition of Material Porosity 

Porosity or void fraction is a measure of the void spaces in a material and is a fraction of the volume 
of voids over the total volume, between 0 and 1, or as percentage between 0 and 100%. It is defined 
by the ratio: 

p

t

V

V
 

 (6.17)  

Where, 

 pV  = is the volume of void-space 

 tV  = is the total bulk volume of material, including the solid and void components.  

6.5 Pores Filled with Air and Water 

Volume of entire domain contains of solid material, humid air, liquid water and ice: 

d air l iV V V V V      

Defining that as partial volumes: 
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1

1 (1 )

d air l i

air l i

V V V V

V V V V

   

   

    

 

Which then finally leads to: 

air l i       (6.18)  

Relations between material content and partial porosities can be established as: 

air air air
air air air

m V

V V


  


   

  

and same for liquid and ice. 

6.6 Conservation of Mass 

The law of conservation of mass states that the total time rate of change of a matter in a fixed region 
is equal to the net rate of flow of matter across the surface or effectively, no matter can be created 
or destroyed. The mathematical statement of the principle results in the following equation, known 
as the conservation of mass, or also as continuity equation: 

 

0

0

D
v

Dt

v
t







  


 



 (6.19) 

  = density of the fluid [Mass/Volume] 

v  = velocity vector [Length/Time] 

Or, in its developed form for 2-D geometry: 

0
yx

x y

vv
v v

t x y x y

  


   
     

     
 (6.20) 

Assuming that material density is constant over the region, equation (6.19) becomes: 

0
yx

vv

t x y




 
   

   
 

For incompressible fluids, or fluids where compressibility is negligible, material derivative of the 
density is zero: 

0
t





 

The continuity equation (6.19) then becomes: 

0
yx

vv
v

x y


   

 
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For solids, this equation is satisfied automatically, since 0x yv v  . 

Mass conservation equation (6.19) can also be written in terms of mass flow rate: 

0g
t


  


 (6.21) 

where, 

 g  = Flux of the material [Mass/(Area∙Time)] 

6.7 Mass Transport 

Mass transfer is net movement of mass from one location to another. The phrase is commonly used 
in engineering for physical processes that involve diffusive and convective transport within 
physical systems. 

6.7.1 Diffusion 

Diffusion is the net movement of molecules or atoms from a region of high concentration to a region 
of low concentration. This is also referred to as movement of a substance down a concentration 
gradient. Diffusion is described by Fick’s Laws of diffusion. 

6.7.1.1 Fick’s First Law 

Fick’s first law relates the diffusive flux to the concentration under the assumption of steady state. 
It postulates that the flux goes from regions of high concentration to regions of low concentration. 

, ,
k k

k f k k f kg D D i j
x y

 


  
      

  
  (6.22) 

 
kg  = Diffusion flux vector [Mass/(Area∙Time)] 

 Df,k = Diffusion coefficient or diffusivity [Area/Time] 

 k  = Specific Mass of substance [Mass/Volume]  

6.7.1.2 Fick’s Second Law 

Fick’s second law predicts how diffusion causes the concentration to change with time. 

2 2
2

, , 2 2

k k k
f k k f kD D

t x y

  


   
    

   
  (6.23) 

6.7.1.3 Temperature Dependence of the Diffusion Coefficient in Solids 

The diffusion coefficient in solids at different temperatures is generally found to be well predicted 
by the Arrhenius equation. 

/( )

0
AE T

fD D e


    

 D0 = maximal diffusion coefficient (at infinite temperature) [Area/Time] 

 EA = Activation energy for diffusion [Energy/atom] 

 T = Absolute temperature [Temperature] 

    = Boltzmann constant [Units?] 
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6.7.2 Capillary Transport (Darcy’s Law) 

Equation that describes the flow of fluid through a porous medium is called Darcy’s law. Darcy’s law 
is a simple proportional relationship between the instantaneous discharge rate through a porous 
medium, the viscosity of the fluid and the pressure drop over a given distance. Equation for single 
phase (fluid) flow in vertical pipe is: 

 
 b aA P P A

GL
L L


 


  
k k

G
  

 G = Total liquid discharge [Volume/Time] 

 k  = Intrinsic permeability of the medium [Area] 

 A  = Cross-sectional area to flow [Area] 

 b aP P  = Total pressure drop [Pressure] 

  = Dynamic viscosity of the fluid [Pressure∙Time, or Mass/(Length∙Time)] 

 L  = Length over which pressure drop is taking place [Length] 

 G  = Gravity acceleration (9.81 m/s2) [Length/Time2] 

The negative sign is because fluid flows from high to low pressure. 

Dividing both sides of equation by the area: 

b aP P
v G

L


 


  
k k

  (6.24) 

and applying it to infinitesimal distance ( L dy  ): 

y y y

y

y y

P
v G

y


 


  



k k
 

and finally, equation in general (vector) form: 

 v P G


   
k

 (6.25) 

 v  = Darcy’s velocity [Length/Time] 

 P  = Pressure gradient vector [Pressure] 

y y yx x

x y y

PP
v i j Gj

x y


  

 
       

k kk
 (6.26) 

Multiplying both sides of equation (6.26) with density of the fluid: 

2y y yx x

x y y

PP
g v i j Gj

x y
  

  

 
        

k kk
 (6.27) 
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6.7.3 Fluid/Liquid Flow Through Porous Media 

As commonly observed, some fluid/liquid flows through the media while some mass of the fluid is 
stored in the pores present in the media. Mass conservation of fluid across the porous medium can 

be derived with (6.19). Furthermore, we have that pm V , where pV  is the pore volume of the 

medium in the domain volume V. This can be expressed as: 

m V   

where 

    = is the porosity of the material ( /pV V ) [-]  

Mass conservation equation in this case will be: 

 
 

 

0

0
k

k

v
t

g
t




 


 




 



 (6.28) 

where 

 kg  = fluid mass flow rate [Mass/(Area∙Time)]  

 k  = density of the fluid [Mass/Volume]. 

 k = subscript used to designate liquid, vapor or solid 

Introducing k  as fluid content in the medium ( k k  ), we can write continuity equation for 

fluid in porous media: 

0k
kg

t


  


  (6.29) 

Mass flow rate of a fluid, k , through porous media can be calculated by applying Darcy’s law (6.24): 

, ,k b k ak k
k k

k k

P P
v G

L


 


  
k k

 (6.30) 

where pressure of the fluid from the gravity field is reduced by porosity of the material. This will 

lead to slightly modified equation (6.27) that will be valid for fluid in porous materials: 

,, k yk xk k
k k

PP
g i G j

x y






    
     

   

k
 (6.31) 

Applying (6.31) into mass continuity equation for porous media in (6.29): 

, ,, , k y k k yk x k k xk k k
k

k k k

PP
G

t x x y y y

 


  

          
       

          

kk k
 (6.32) 
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6.8 Summary of Equations for Heat and Mass Transfer 

Basic equations for heat and moisture transport are given in separate document and will be 
inserted here just for reference purpose. 

6.8.1 Air flow through porous media 

Governing Equation 

1
1 1 1 1

air air air air air air air
air air air air air

air air air

P P P K P
K P K P K K P G

t x x y y y
 

  

           
           

         

k k k

 

 

  
1

1

287.042 273.15 1 1.607858

air

air air

P x
P K

T x



  

 
 

0.621945 v

atm v

P
x

P P
 


 

satv vP P   

7235
77.345 0.0057

8.2sat

T
T

v

e
P

T

 
   

 

  

6.8.2 Water mass transfer 

Governing Equation 

   

, , ,

sat sat

sat sat sat

v vw
x y

air x v air y v air y vair air
air

air air air

l l
l

l

t x x y y

P P
G

x x y y y

k
D D

x x y y D
 



  
 



  


  

 




       
     
        
   

          
         

         

      
   

     

k k k

l vG S S
  

      
  

 

Boundary Conditions 

 

,

n a

c

air p air

g

h

C

  




 


  

6.8.3 Heat transfer 

Governing Equation 

, , ,e p e x e y e il il lg lg s

T T T
C k k I h I h Q

t x x y y


       
            

        
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 , , , ,1e p e d d air air p air l l p l ice ice p iceC C C C C                       

 , , , , ,1x e x d air x air l x l ice x icek k k k k             

 , , , , ,1y e y d air y air l y l ice y icek k k k k              

Boundary Conditions 

With defined temperature: 

( , , ) T

const T

T f x y t on

T T on

 

 
  

With defined flux: 

( , , )f Q

f const Q

q f x y t on

q q on

 

 
 

Convection boundary condition: 

 c c cq h T T    

Radiation boundary condition: 

 

    2 2

, , , ( )

, , ,

r r r

r r r

q h x y t T T T

h x y t T T T T T

 

  
  

6.8.4 Combining Equations 

In general, heat and mass transfer are divided in three separate models that will be solved through 
iterations. Pressure distribution will be solved first followed by mass transfer and finally 
temperature distribution. After solving each of these systems, results with previous state need to be 
examined. This is necessary because while solving for one unknown, it is considered that other two 
variables are constant. However, new solution will require that other two variables are recalculated 
again. All this needs to be repeated until all variables are within given tolerance. 
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6.9 Boundary Conditions 

To complete the description of the general problem described in the previous section, suitable 
boundary and initial conditions are required. Boundary conditions are most easily understood and 
described by considering the fluid mechanics separate from other transport processes. In the 
following sections, boundary conditions associated with the viscous flow, porous flow, and thermal 
transport are discussed, followed by a discussion of the initial conditions. 

 

Figure 14. Schematic for boundary condition definitions 

6.10 Porous Flow Boundary Conditions 

The flow conditions that can be applied to the boundary of a fluid-saturated porous medium 
depend on the specific model used to describe the problem. A Forchheimer or simple Darcy model 
allows the following type of boundary conditions: 

Dirichlet or essential boundary conditions 

( , )u

i i vv n f s t on    

Neumann or natural boundary conditions 

ˆ ˆ( , ) ( ) ( , ) ( , )i i ij j in P s t n s n P s t f s t on

         

Where, 

 s = coordinate along the boundary [] 

 t = time [Time] 

 in  = the outward unit normal to the boundary [-] 

 iv  = velocity vector [Length/Time] 

The specified functions 
uf  and f 

 are generally simple expressions for standard situations where 

the fluid is contained by fixed boundaries ( 0uf  ) or planes/lines of symmetry ( f 
= 0), or 
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enters/leaves the domain ( f 
= constant) f . In essence these conditions state that the fluid 

velocity normal to the boundary may be specified (outflow/inflow) or the normal force (pressure) 
on the boundary may be imposed. Also, note that only one type of boundary condition can be 
specified at any point on the boundary. 

For many applications a saturated porous layer will adjoin a clear fluid region and certain 
continuity conditions will be required at the open interface. The applicable conditions vary with the 
type of porous media model and in cases have not been rigorously verified. The major difficulty 
stems from the heterogeneous nature of the porous medium and the fact that a continuum 

description is derived by and averaging process. Clearly, averaging within a distance k  of a 

boundary or interface is not valid and some loss of information will occur. The standard 
assumptions are that the pressure is continuous and the shear stress in the bulk fluid is related to 
the tangential velocity in the porous layer. 

 f

f p

v
v v

n k


 


  

Where, 

 fv  = clear fluid velocity [Length/Time] 

 pv  = velocity in porous media [Length/Time] 

   = material parameter [-]  

6.11 Thermal and Transport Boundary Conditions  

The thermal part of the boundary value problem for the fluid or solid requires the temperature 
(Dirichlet or essential condition) or the heat flux (Neumann or natural condition) to be specified on 
all parts of the boundary enclosing the heat transfer region: 

ˆ( , ) TT T s t on   

( , )x x y y f c r q

T T
k n k n q q q q s t on

x y

 
     

 
  

Where hT T q     is the total boundary enclosing the heat transfer region. Also, fq , cq  and rq  

refer to the flux, convective and radiative components given by: 

 

 

( , , )

( , , )

f

c c c

r r r

q cons

q h s T t T T

q h s T t T T



 

 

  (6.33) 

Where, 

 ch  = the convective heat transfer coefficient 

  cT  = the reference (or sink) temperature for convective transfer 
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  rh  = the effective radiation heat transfer coefficient 

  rT  = the reference temperature for radiative transfer 

Effective radiation heat transfer coefficient can be calculated as: 

  2 2

r r rh F T T T T     

Where, 

 F = form factor 

    = the Stefan-Boltzmann constant  

The form factor given in the previous equation is dependant on geometry and is called view factor. 
View factor is the proportion of the radiation which leaves surface one that strikes surface two. 

6.11.1 View Factors 

The view factor is defined as the fraction of energy leaving a surface that arrives at a second 
surface. For surfaces with finite areas, the view factors are defined by: 

2

cos cos1

k j

k j

k j k j

k A A

F dA dA
A S

 


      (6.34) 

Where S is the distance from a point on surface Aj to a point on surface Ak.  

The angles j  and k  are measured between the line S and the normal to the surface (see Figure 

15). 

 

Figure 15. Nomenclature for Enclosure Radiation 

From equation (6.34) it is clear that: 

k k j j j kA F A F    

There are several ways to calculate view factors and one of them is “cross-string” rule illustrated in 
Figure 16. 
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Figure 16. Cross-string rule 

and given by following equation: 

 12 21 11 22

2
ij

i

r r r r
F

L

  
   

In the case when partial or third surface shadowing exist, the two radiating surfaces are subdivided 
into n finite sub-surfaces. Each subsurface will have its view factor calculated and finally, 
summation will give the view factor between two surfaces that do not fully see each other: 

1 1

n n

ij kl

k l

F F
 

   

  



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │77 

7 Appendix D: Finite Element Method Background 

7.1 Preliminaries 

7.1.1 Weighted Residual Method 

In applied mathematics, the method of mean weighted residuals are methods for solving 
differential equations. The solutions of these differential equations are assumed to be well 

approximated by a finite sum of test functions i . 

7.1.1.1 Exact solution 

Boundary value problem: differential equation + boundary conditions. Displacement in a uniaxial 
bar subject to a distributed force p(x). 

2

2
( ) 0, 0 1

d u
p x x

dx
      (7.1) 

and boundary conditions 

(0) 0

(1) 1

u

du

dx




  (7.2) 

The exact solution is a twice differential function. In general, it is difficult to find the exact solution 
when the domain and/or boundary conditions are complicated. Sometimes the solution might not 
exist even if the problem is well defined. 

7.1.1.2 Approximate Solution 

The solution above satisfies the essential boundary conditions, but not natural boundary conditions 
(essential boundary conditions are conditions that are imposed explicitly on the solution and 
natural boundary conditions are those that automatically will be satisfied after solution of the 
problem). 

The residual form of differential equation (7.1): 

2

2
( ) ( )

d u
p x R x

dx
   

Minimize the residual by multiplying with a weight W and integrate over the domain: 

1

0

( ) ( ) 0R x W x dx    

If it satisfies for any ( )W x , then ( )R x  will approach zero and the approximate solution will 

approach the exact solution. 

The approximate solution is a linear combination of trial functions. 

1

( ) ( )
N

i i

i

u x c x


   (7.3) 

Accuracy depends on the choice of trial functions. The approximate solution must satisfy the 
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essential BC. 

7.1.1.2.1 Galerkin Method 

Use N trial functions for weighting functions. 

1

0

( ) ( ) 0, 1,...,iR x x dx i N    

1 2

2

0

( ( )) ( ) 0, 1,...,i

d u
p x x dx i N

dx
     

1 12

2

0 0

( ) ( ) ( ) , 1,...,i i

d u
x dx p x x dx i N

dx
       

Integration by parts reduces the order of differentiation in u(x). 

1 1 1

0 0 0

( ) ( ) , 1,...,i
i i

ddu du
dx p x x dx i N

dx dx dx


        

applying natural boundary conditions and rearranging: 

1 1

0 0

( ) ( ) (1) (1) (0) (0), 1,...,i
i i i

d du du du
dx p x x dx i N

dx dx dx dx


         

Substituting the approximate solution (7.3): 

1 1

10 0

( ) ( ) (1) (1) (0) (0), 1,...,
N

ji
j i i i

j

dd du du
c dx p x x dx i N

dx dx dx dx


  



      (7.4) 

Equation (7.4) can be rewritten in matrix form: 

1

, 1,...,
N

ij j i

j

K c F i N


    

or 

( ) ( 1) ( 1)

{ } { }[ ]
N N N N

c FK
  

   

where 

1

0

ji
ij

dd
K dx

dx dx


    

1

0

( ) ( ) (1) (1) (0) (0)i i i i

du du
F p x x dx

dx dx
       

The coefficient matrix is symmetric; ij jiK K  and we get N equations with N unknown coefficients. 



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │79 

7.1.1.2.2 Example 1 

We will consider the differential equation  

2

2
1 0, 0 1

d u
x

dx
     

 with the following boundary conditions: 

(0) 0

(1) 1

u

du

dx




 

Using the following trial functions: 

'

1 1

2 '

2 1

( ) ( ) 1

( ) ( ) 2

x x x

x x x x

 

 

 

 
  

The approximate solution (which satisfies essential boundary conditions): 

2
2

1 2

1

( ) ( )i i

i

u x c x c x c x


    

The coefficient matrix and right-hand side vector: 

1

' 2

11 1

0

1

' '

12 21 1 2

0

1

' 2

22 2

0

1

1 1 1

0

( ( )) 1

( ) 1

4
( ( ))

3

( ) (1) (0)

K x dx

K K dx

K x dx

du
F x dx

dx



 



 

 

  

 

  







 1

1

2 2 2

0

3
(0)

2

( ) (1) (0)
du

F x dx
dx



 



   2

4
(0)

3
 

  

The matrix equation: 

1

2
3 3 91 1

[ ] ; ; { } [ ] { } 1
3 4 83 6

2

K F c K F

 
     

       
     
 

  

Therefore, the approximate solution is: 

2

( ) 2
2

x
u x x    

The approximate solution is also the exact solution because the linear combination of the trial 
functions can represent the exact solution. 
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7.1.1.2.3 Example 2 

In this example, the differential equation is slightly changed: 

2

2
0, 0 1

d u
x x

dx
     

and the boundary conditions are: 

(0) 0

(1) 1

u

du

dx




 

Using the same trial functions as in example 1: 

'

1 1

2 '

2 1

( ) ( ) 1

( ) ( ) 2

x x x

x x x x

 

 

 

 
 

Because the trial functions are identical as in example 1, the coefficient matrix is the same. 
However, the force vector is different this time: 

1

19

3 3 161 1 12
[ ] ; ; { } [ ] { }

3 4 15 13 12

4

K F c K F

 
      

       
     

  

 

which would lead to following approximate solution: 

219
( )

12 4

x
u x x    

In this case, trial functions could not express the exact solution. Thus, the approximate solution is 
different from the exact one. The exact solution is: 

33
( )

2 6

x
u x x    
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7.2 Description of Method 

The finite element method is a numerical method for determining approximate solutions to a large 
class of engineering problems. Regardless of the physical nature of the problem, a standard finite-
element method primarily involves the following steps: 

1. Definition of the problem and its domain 

2. Discretization of the domain 

3. Identification of state variables 

4. Formulation of the problem 

5. Establishing coordinate systems 

6. Constructing approximate functions for the elements 

7. Obtain element matrices and equations 

8. Numerical integration 

9. Assembly of element equations 

10. Introduction of boundary conditions 

11. Solution of the final set of simultaneous equations 

12. Interpretation of the results 

7.2.1 Definition of the Problem and its Domain 

In finite element methods, there are primarily three sources of approximation. The first one is the 
definition of the domain (physically and geometrically); the other two are the discretization and 
solution algorithms. The approximation used in defining the physical characteristics of different 
regions. 

7.2.2 Discretization of the Domain 

Since the problem is usually defined over a continuous domain, the governing equations, with the 
exception of essential boundary conditions, are valid for the entirety of, as well as for any portion 
of, that domain. This allows idealization of the domain in the form of interconnected finite-sized 
domains (elements) of different sizes and shapes. 

In finite-element idealization of the domain, we shall, in general, make reference to the following 

elements: finite element e  and master element 
m . 

Finite elements are those which, when put together, result in a discrete version of the actual 
continuous domain. Their geometric approximations are controlled by the number of nodes utilized 
at the exterior of the elements to define their shape. The physical approximations are controlled by 
the total number of nodes utilized in defining the trial functions (shape functions) for state variable. 

For a moment, let us assume that it is possible to systematically generate the approximation field 

function for the element e : 

 
1

( , , ) ( , , ) ( , )
n

e e e

j j

j

u x y t u x y t u t x y


   (7.5) 

where, ( , , )eu x y t  represents an approximation of ( , , )u x y t  over the element e , 
e

ju  denote the 

values of function ( , , )eu x y t  at selected number of points, called element nodes, in the element e  

and ( , , )e

j x y t  are the approximation functions associated with the element. The n parameters (or 
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nodal values) 
e

ju  in equation (7.5) must be determined such that the approximate solution 

( , , )eu x y t  satisfies the boundary conditions of the problem. This process leads to n algebraic 

equations among the nodal values (
1 2, ,...,e e e

nu u u ). The set of algebraic equations is termed a finite 

element model of the original equation. 

Master elements are those which are used in place of finite elements in order to facilitate 

computations in the element domain. Figure 17 illustrates and actual finite element e  and 

corresponding master element 
m . 

 

Figure 17. Demonstration of Coordinate Transformation for a Rectangular Element 

In general, the master elements are straight lines, right triangle or prisms, squares, and cubes. They 
are defined in reference to normalized coordinate axes (ξ, η, ς). The actual elements can be any 
shape and size. 

7.2.3 Identification of State Variables 

Until this step, no reference has been made to the physical nature of the problem. Whether it is a 
heat-transfer problem, fluid or solid-mechanics problem, etc., comes into the picture at this stage. 
The mathematical description of steady-state physical phenomena, for instance, leads to an elliptic 
boundary-value problem in which the formula contains the state variable and the flux. These 
variables are related to each other by a constitutive equation representing a mathematical 
expression of a physical law. 

In our case, where we are trying to solve heat and mass transfer, there are three different equations 
and therefore, three different state variables. 

According to given equations, the three state variables are air pressure, relative humidity (water 
content) and temperature. Therefore, approximation functions for our state variables are: 

 
1

( , , ) ( , , ) ( , )
n

e e e

j j

j

T x y t T x y t T t x y


   

 
1

( , , ) ( , , ) ( , )
n

e e e

j j

j

x y t x y t t x y   


   
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 ,

1

( , , ) ( , , ) ( , )
n

e e e

air air air j j

j

P x y t P x y t P t x y


   

7.2.4 Formulation of the Problem 

Very often a physical problem is formulated via set of differential equations: 

Lu f   

with boundary conditions or by an integral equation: 

( , , , ) ( , , , )G x y z u d g x y z u d
 

     

where “u” represents the state variable(s). 

7.2.4.1 The Model Equation 

Consider the problem of finding the solution u of the second-order partial differential equation: 

11 12 21 22 00 0
u u u u u

a a a a b a u f
x x y y x y t

         
          
         

  (7.6) 

for given data aij (i, j = 1, 2), b, 00a  and f, and specified boundary conditions. 

7.2.4.2 Weak Form 

The weak form of a differential equation is a weighted-integral statement that is equivalent to both 
the governing differential equation as well as the associated natural boundary conditions. We shall 

develop the weak form of equation (7.6) over the typical element e . 

11 12 21 22 000

e

u u u u u
a a a a b a u f dxdy

x x y y x y t




          
           

          
   (7.7) 

In the second step, we distribute the differentiation among u and ω equally, so that both u and ω are 
required to be differentiable only once with respect to x and y. To achieve this we use integration-
by-parts on the first two terms in equation (7.7). First we note the following identities for any 
differentiable functions ω(x,y), F1(x,y) and F2(x,y): 

 

 

1 1
1 1 1 1

2 2
2 2 2 2

( )

( )

F F
F F or F F

x x x x x x

F F
F F or F F

y y y y y y

 
   

 
   

    
    

     

    
    

     

  (7.8) 

Next, we recall the component form of the gradient (or divergence) theorem: 

   

   

1 1

2 2

e e

e e

x

y

F dxdy F n ds
x

F dxdy F n ds
y

 

 

 

 











 

 

  (7.9) 
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where xn  and 
yn are the components of the unit normal vector: 

cos sinx yn n i n j i j         

on the boundary 
e , and ds is the arclength of an infinitesimal line element along the boundary (see 

Figure 18). 

 

Figure 18. Typical triangular element 

Using (7.8) and (7.9) in (7.7), we obtain: 

11 12 21 22

11 12 21 22

0

e

e

x y

u u u u u
a a a a b dxdy

x x y y x y t

u u u u
n a a n a a ds

x y x y

 








          
        

          

       
       

       





 (7.10) 

From an inspection of the boundary term in this equation, we note that the specification of u 
constitutes the essential boundary condition, and hence u is the primary variable. The specification 
of the coefficient of the weight function in the boundary expression: 

11 12 21 22n x y

u u u u
q n a a n a a

x y x y

      
      

      
  (7.11) 

constitutes the natural boundary condition; thus nq  is the secondary variable of the formulation. 

The function ( )n nq q s  denotes the projection of the vector u  along the unit normal n . By 

definition, nq  is positive outward from the surface as we move counter-clockwise along the 

boundary 
e . 

The last step is to use definition (7.11) in (7.10) and write the weak form of equation (7.6): 
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11 12 21 22 000

e

e

n

u u u u u
a a a a b a u f dxdy

x x y y x y t

q ds

 
  







         
         

         






  (7.12) 

7.2.5 Establishing a Coordinate System 

There are primarily two reasons for choosing special coordinate axes for elements in addition to 

the global axes for the entire system. The first case is construction of the trial functions for the 

elements, and the second is ease of integration over the elements. 

Once the coordinate axes are established, the element equations are ordinarily computed first in 

master element 
m . Then are they transformed into e  and finally into the global system for 

assembly. 

7.2.6 Constructing Approximate Functions for the Elements 

The finite element method involves the discretization of both the domain and the governing 
equations. By dividing the solution into a number of small regions, called finite elements, and 
approximating the solution over these regions by a suitable known function, a relation between the 
differential equations and the elements is established. The functions employed to represent the 
nature of the solution within each element are called shape functions, or interpolating functions, or 
basis functions. They are called interpolating functions as they are used to determine the value of 
the field variable within an element by interpolating the nodal values. Polynomial type functions 
have been most widely used as they can be integrated or differentiated easily and the accuracy of 
the results can be improved by increasing the order of the polynomial. 

7.2.7 Obtain Element Matrices and Equations 

The weak form described in above in the Weak Form section (see equation (7.12)) requires that the 
approximation chosen for u should be at least linear in both x and y so that there are no terms in 
(7.12) that are identically zero. Suppose that variable u is approximated over a typical finite 

element e  as given by (7.5). Substituting the finite element approximation given by (7.5) for u into 

weak form (7.12), we obtain: 

11 12

1 1

21 22

1 1

00

1 1

0

e e

n n
j j

j j

j j

n n
j j

j j n

j j

n n
j

j j j

j j

a u a u
x x y

a u a u dxdy q ds
y x y

u
b a u f

t

 

 


    

 

  

 

   
  

    
 

       
    
 

 
   
 

 

  

 

  (7.13) 

This equation must hold for any weight function ω. Since we need n independent algebraic 
equations to solve for n unknowns u1, u2, …, un, we choose n independent functions for ω = Ψ1, Ψ2, 
…, Ψn. This choice is a natural one when the weight function is viewed as a virtual variation of the 
dependent unknown. For each choice of ω, we obtain an algebraic relation among (u1, u2, …, un). We 
label the algebraic equation result from substitution of Ψ1 for ω into (7.13) as the first algebraic 
equation. The ith algebraic equation is obtained by substituting ω=Ψi into (7.13): 
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11 12 21 22 00

1

0

( 1,2,..., )

e

e e e

j j j ji i
i j j

n

j j

i j i i n

a a a a a dxdy u
x x y y x y

u
b f dxdy q ds i n

t

    


  





  

           
        

           


   





  

  

or in matrix form: 

1 1 1

en n n
j e e e e e

ij ij j ij j i i

j j j

u
M K u A u f Q

t  


   


     (7.14) 

where: 

11 12 21 22

00

,

e

e

e

e e

e

ij i j

j j j je i i
ij

e

ij i j

e e e e

i i i n i

M b dxdy

K a a a a dxdy
x x y y x y

A a dxdy

f f dxdy Q q ds



    



 







 



       
      

        



 







 

  (7.15) 

In matrix notation, equation (7.14) takes the form: 

         e e e e e e e eM u K u A u f Q                (7.16) 

For given timestep value, the previous equation can be written as: 

         1

e

e e e e e e e e

i i i i

M
u u K u A u f Q

t


             
  (7.17) 

where 
1

e

iu 
 is a state variable from the previous timestep or the initial state in case i=1, and e

iu  is the 

unknown value of the state variable for the current timestep. This equation finally can be solved as: 

      
1

1

e e

e e e e e e

i i

M M
u K A u f Q

t t





                           
   

 (7.18) 

7.2.8 Numerical Integration 

Since the interpolation functions are easily derivable for a rectangular element and it is easier to 
evaluate integrals over rectangular geometries, we transform the finite element integral statement 
defined over quadrilaterals to a rectangle (see Figure 17). The transformation results in 
complicated expressions in terms of the coordinates used for the rectangular element. Therefore, 
numerical integration is used to evaluate such expressions. Numerical integration schemes, such as 
the Gauss-Legendre scheme, require that the integral be evaluated on a specific domain or with 
respect to a specific coordinate system. Gauss quadrature, for example, require that the integral be 
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expressed over a square region 
m  of dimensions 2 by 2 and that the coordinate system (ξ, η) be 

such that -1 ≤ (ξ, η) ≤ 1. The transformation of a given integral expression, defined over the element 

e  , to the domain 
m  must be such as to facilitate numerical integration. Each element of the 

finite element mesh is transformed to 
m , only for the purpose of numerically evaluating the 

integrals. 

7.2.8.1 Coordinate Transformation 

Coordinate transformations of physical entities such as vectors and matrices follow well-defined 
rules. They are often done in the form of a Jacobian matrix. 

7.2.8.1.1 Rectangular Element 

For instance, let us assume that there are two different coordinate systems, for example x, y located 
in the element domain, and ξ, η, located in the master element: 

( , )
:

( , )

x x
T

y y

 

 




  

The transformation between actual element e  and the master element 
m  [or equivalently 

between (x,y) and (ξ,η)] is accomplished by a coordinate transformation of the form: 

1

1

( , )

( , )

m
e e

j j

j

m
e e

j j

j

x x

y y

  

  












  (7.19) 

where 
e

j  denotes the finite element interpolation functions of the master element 
m . 

An infinitesimal line segment (or area and volume) in one coordinate system can be transformed 
into another by following the usual rules of differentiation: 

e e
i i

ee
ii

x y

x

x y

y

 

  



 

      
            
      
           

  (7.20) 

The matrix on right-hand side of this equation is known as Jacobian. The inverse 

transformationwhich defines mapping of element e  back into the master element 
m  follows a 

similar rule. This is referred to as the inverse transformation: 

1

ee
ii

e e
i i

x
J

y





 





  
        
   
  

    

 (7.21) 

where 1J   is the inverse matrix of the Jacobian: 



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │88 

* *

1 11 12

* *

21 22

1

det[ ]

y y

J J
J

x xJJ J

 

 



  
    

    
       

  

This implies that the condition of 0J   must be satisfied for every point in both domains.  

The elemental area dA dxdy  in the element e  is transformed to: 

det[ ]dA dxdy J d d     

When a typical element of the finite element mesh is transformed to its master element for the 
purpose of numerically evaluating integrals, the integrand must also be expressed in terms of the 
coordinates (ξ, η) of the master element. For example, consider the element coefficients: 

       
11 22

, ,, ,
( , ) ( , )

e

e ee e

j ji ie

ij

x y x yx y x y
K k x y k x y dxdy

x x y y

  



   
       


  

   ( , ) , ,

e

e e e

ij i jC c x y x y x y dxdy 


 
  

The integrand (i.e., expression in square brackets under the integral) is a function of global 
coordinates x and y. We must rewrite it in terms of ξ and η using the transformation (7.21): 

 
       

 
       

* * * *

11 11 12 11 12

* * * *

22 21 22 21 22

, ,, ,ˆ ,

det[ ]
, ,, ,

,m

j ji i

e

ij

j ji i

k J J J J

K J d d

k J J J J

          
 

   
 

          
 

   



     
    

      
  

                

  

ˆ( , ) ( , ) ( , ) det[ ]

e

e e e

ij i jC c J d d         


      

Note that conversion of k11, k22 and c coefficients can be simply achieved by applying coordinate 
transformation shown in (7.19). 

7.2.8.1.2 Line Element 

For line element coordinate transformation is: 

1

: ( , ) ( )
m

e e

j j

j

T s s x y s 


 
 

An infinitesimal line segment in one coordinate system can be transformed into another by 

following the usual rules of differentiation: 

detds d    
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7.2.8.1.2.1 Linear Line Element 

The determinant for the linear line element can simply be calculated as the distance between two 

points: 

     
2 2

2 1 2 1 2 1

1 1
det

2 2

ds
s s x x y y

d
         (7.22) 

7.2.9 Numerical Integration Over Master Element 

Integrals defined over a rectangular master element 
m  can be numerically evaluated using the 

Gauss-Legendre quadrature formulas: 

     
1 1

1 11 1

, , ,

m

M N

I J I J

I J

F d d F d d F W W         
  

      

where M and N denote the number of Gauss quadrature points,  ,I J   denote the Gauss point 

coordinates, and WI and WJ denote the corresponding Gauss weights. 

Similarly, integration over line elements can be done in the same way: 

     
1

11m

M

I I

I

F d F d F W    
 

     

Quadrature weights and points for different number of integration points are given in Table 4. 

Table 4. Quadrature weights and points 

Points ξI r Weights WI 

0.0000000 One-point formula 2.0000000 

1

3
   

Two-point formula 1.0000000 

0.0000000 

3

5
   

Three-point formula 0.8888889 

0.5555556 

7.2.10 Assembly of Element Equations 

The assembly of element matrix equations ( e e ep k u ) is done according to the topological 

configuration of the elements after this equation is transformed into the global system. The 
assembly is done through the nodes as the interfaces which are common to the adjacent elements. 
At these nodes, the continuities are established with respect to the state variable and possibly with 
respect to its derivatives. Sometimes this assembly is done through certain nodes only, referred to 
as the primary nodes (e.g. corner nodes), instead of to all the nodes at the interfaces. This reduces 
the overall size of the assembled matrix. The nodes that are not used in the assembly, the so-called 
secondary nodes, are used together with the primary nodes to increase the degree of approximation 
at the element level. Assume that the complete element matrix is partitioned as follows: 
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, ,

, ,

I I I III I

II I II IIII II

K KP U

K KP U

    
     

    
  

in which subscripts I and II identify the portions of the equations corresponding to primary and 
secondary nodes, respectively. The equation can be brought to the following form: 

1 1

, , , , , ,I I II II II II I I I II II II II I IP K K P K K K K U        

which, in short, can be written as: 

e e eP K U   

this is the final equation assembled. It contains the unknown value of the function at the primary 
nodes only. To illustrate the assembly, let assume that domain Ω in 2D space consist of three 
elements (rectangular, triangular and line), as shown in Figure 19. 

 

Figure 19. Assembly of Three Elements 

The element submatrices are identified as the dyadic product of element designations using 

primary nodes (i, j, q and r are the numbers assigned to nodes). 

 

i ii ij iq ir

j ji jj jq jr
i j q r

q qi qj qq qr

r ri rj rq rr

   
   
   
   
   
      

Which, for the example shown in Figure 19, leads to the following element submatrices: 

1 1

5 5

4 4

3 3

I I I I

ii ij iq ir

I I I I

ji jj jq jr

I I I I

qi qj qq qr

I I I I

ri rj rq rr

P UK K K K

P UK K K K

P UK K K K

P UK K K K

    
    
     
    
    
        
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3 3

2 2

3 1

II II II

ii ij iq

II II II

ji jj jq

II II II

qi qj qq

P K K K U

P K K K U

P K K K U

    
    

     
           

2 2

4 4

III III

ii ij

III III

ji jj

K KP U

K KP U

    
     
        

With this designation, the assembled version of the complete matrix of the configuration shown in 
Figure 19 will be: 

1 1

2 2

3 3

4 4

5 5

0

.

I II II I II I I

ii qq qj ir qi iq ij

II III II III

jj ii ji ij

I II I I

rr ii rq rj

I III I

qq jj qj

I

jj

P UK K K K K K K

P UK K K K

P UK K K K

P UK K K

P USymm K

     
    

    
     
    

    
        

  

The final results of assembling all these elements is the system of linear equations which is solved 
by unknown nodal values (state variable). 

   K U P    

7.2.11 Introduction of Boundary Conditions 

In most problems of interest, one encounters situations where the portion of the boundary on 
which natural boundary conditions are specified has points in common with the portion of the 
boundary on which the essential boundary conditions are specified. In other words, at a few nodal 
points of the mesh, both the primary and secondary degrees of freedom may be specified. Such 
points are called singular points. Obviously, one cannot impose boundary conditions on both the 
primary and secondary variables at the same point. 

At this stage, the essential boundary conditions are introduced. The most common forms of 
boundary conditions are: 

( ) 0

h q

h f qh u u d q d

 

        

where h is a given “film” coefficient, qf is the flux through the boundary, u
is the value of the state 

variable at the boundary condition. 

Using the weak form: 

( ) 0

h q

h f qh u u d q d 

 

       

Creating ith algebraic equation ( e

i  ) from above: 

1

( ) ( ) ( ) 0

h q

n
e e e e

i j j h i f q

j

s h u s u d s q d  

 

 
        

 
    
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and transforming it to local coordinate system: 

1 1 1 1

( ) ( ) det ( ) det ( ) det 0
n n n n

e e e e e

i j j i f i

i j i i

h u h u q       

   

                

Where det is calculated by using equation (7.22) and 
e

j  are local shape functions. Finally, this will 

lead to matrix equations: 

     ij j i fiH u HU Q       

where: 

( ) ( ) dete e

ij i jH h          

( ) dete

i iHU h u        

 ( ) dete

fi f iQ q       

7.2.12 Solution of the Final Set of Simultaneous Equations 

Until this step, there was no reference to whether the problem is linear or nonlinear. Regardless of 
the nature of the problem, the finite element method will eventually yield to the solution of a set of 
simultaneous differential equations. The solution procedure for simultaneous equations in general 
is categorized into the three parts: (1) direct, (2) iterative and (3) stochastic. 

In the case of thermal and mass transfer, the solution will be achieved in a direct way or in cases 
when a direct solution is impossible, an iterative approach will be applied. 

7.2.13 Interpretation of Results 

The previous step resulted in the approximate values of the state variable at discrete points (nodes) 
of the domain. Normally these values are interpreted and used for calculations of other physical 
entities, such as flux, either throughout the domain or in certain regions of it. 

This is the decision-making step and is probably the most important step in the entire process. Two 
important questions must be answered at this point: How good are the results? and What should be 
done with them? The first requires the estimation of error bounds, and the second involves the 
physical nature of the problem. 
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7.2.14 Nonlinear Problem 

A nonlinear problem will be introduced in certain cases of heat and mass transfer. A good example 
is a radiation boundary condition in heat transfer where the radiation heat transfer coefficient is 
dependent on an unknown temperature. While the governing equation for heat transfer is linear 
and can be solved directly, that is not the case with pressure and water transfer, and therefore a 
non-linear approach must be applied. The problem also becomes non-linear if any of the 
coefficients are dependent on the state variable (see chapter 7.2.15).  

Considering that the nonlinear equation   0f u   cannot be directly solved by variable u , one 

approach that can be applied is to replace u  with u u  , so that equation   0f u u    will be 

solved by u . Finally, the solution of the state variable u will be achieved through the following 
equation: 

     1a a a
u u u


     (7.23) 

where   is the relaxation parameter ( 0 1  ), “(a)” denotes the current iteration step,  a
u  is 

the evaluated value of the state variable at current iteration “(a)”,  1a
u


 is the evaluated value at the 

previous iteration and  a
u  is the evaluated change of state variable in the current iteration. Note 

that setting the relaxation parameter to zero will not converge since the next solution is going to be 
estimated to be equal to the previous. 

To achieve convergence of the state variable ( u ), the following equation has been used: 

2 2 2 2

1 2 3 ... nenorm u u u u       

Convergence Criteria 

If 1aenorm   is from the previous iteration, then the solution is achieved when: 

1a a

a

enorm enorm
dif tolerance

enorm


    

Where dif  is the achieved tolerance. 

7.2.15 Coefficients Dependence on State Variables 

It is often the case that coefficients are expressed as a function of a state variable when they need to 
be evaluated when solving a system of nonlinear equations. Even if the coefficient dependence of 
the state variable is linear, the solution method that needs to be applied in this case must be for the 
nonlinear case. 

A coefficient that is dependent on the value of the state variable  c u  will have a different value 

when a small change in the state variable happens  c u u  .  Since the value of u  will be 

unknown at the moment, it is important to provide an approximation of  c u u  : 

( ) ( )
( ) ( )

c c u u c u c
c u u c u u

t u t

    
     

  
 (7.24) 

The above equation can be used in the iterative process since the value of  c u  will be able to be 

calculated by applying the state value from the previous iteration, while u  is a vector of 
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unknowns by which the matrix equations will be solved. 

This approach can be used to estimate conduction coefficients over the entire domain as well as on 
coefficients at boundary conditions. The state variable and change of state variable can be 
approximated as: 

           
1 1

, , , , , ,
n n

e e e e e e

j j j j

j j

u x y u x y u x y u x y u x y u x y 
 

         (7.25) 

Further on, we will consider more general cases of element equations along with boundary 

conditions when coefficients are some function of state variable. 

7.2.16 Equations and Matrices for Common Structures 

In this section, we will consider common equation structures that can be found in the governing 

equations. By common structure we consider a type of differential equation. For example, we can 

consider capacitance part of the governing equations: 

1
air

air

P
K

t




 ,  w

t

 



 

 
 and  

,e p e

T
C

t



 

   

It is important to notice that all three differential equations have the same structure related to the 

state variable (pressure, relative humidity and temperature), which will make the conversion to 

finite element matrices identical. 

7.2.16.1 Capacitance Coefficients and Matrix 

The capacitance part of the differential equation is written as: 

u
r

t





  

Where r is any coefficient that can be constant or state dependent, and u  is a state variable. Related 
to timesteps, this equation can be written as: 

[ ] [ 1]t tu uu
r r

t t




 
  

Converting it to the weak form: 

   [ ] [ 1]

1 1

, , 0

m

n n
e e e e

j t j t

j j

r
x y u x y u

t
   

 


 

  
    

Where [ 1]

e

tu   is the state solution from the previous timestep or the initial state, [ ]

e

tu  is an unknown 

value of state at timestep t by which the matrix needs to be solved. 

Further discretization will lead to: 

      [ ] [ 1]

1 1 1

, , , 0

m

n n n
e e e

i j t j t

i j j

r
x y x y u x y u

t
   

  


 

  
    

Which finally in matrix form is: 
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[ ] [ 1] 0e e

ij t ij tM u M u     

Where, 

   , , det[ ]e e e

ij i j

r
M J

t
     


  (7.26) 

7.2.16.2 Conduction Coefficient and Matrix 

The conduction equation is given in the following form: 

0x y

u u
k k

x x y y

     
   

      
 

Where conductivity k  represents either thermal conductivity, a suction curve or a diffusion 
coefficient. Introducing the weak form over the master element: 

   

1 1

, ,
0

m

e e e en n
j j j j

x y

j j

x y u x y u
k k dxdy

x x y y

  

 

      
                

    

Where the system of equations will look like: 

       

1 1 1

, ,, ,
0

m

e e e ej jn n n
j j j ji i

x y

i j j

x y u x y ux y x y
k k dxdy

x x y y

  

  

      
                

    

Which will finally give following matrix equation: 

  0e e

ij jK u      

Where: 

11 22

( , ) ( , )( , ) ( , )
( , ) ( , )

m

e ee e
j je i i

ij

x y x yx y x y
K k x y k x y dxdy

x x y y

  



   
           

   

Or in the local coordinate system: 

 
       

 
       

* * * *

11 11 12 11 12

* * * *

22 21 22 21 22

, ,, ,ˆ ,

det[ ]
, ,, ,

,m

j ji i

e

ij

j ji i

k J J J J

K J d d

k J J J J

          
 

   
 

          
 

   



     
    

      
     

                

  

7.2.16.3 Conduction Coefficient with Derivative and Matrix 

Sometimes the conduction coefficient will have a derivative over a known variable, which is the 
case in the moisture equation. In general terms, the equation can be written as: 

0
u u

x x y y

    
 

   
 

Introducing the weak form over the master element: 
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   

   

1 1

1 1

, ,

0
, ,

m

e en n
j ke e

j k

j k

e en n
j ke e

j k

j k

x y x y
u

x x
dxdy

x y x y
u

y y

 
 

 
 

 



 

   
     

   
 

          

 


 

 

Then forming a system of equations: 

 
   

 
   

1 1

1

1 1

, ,
,

0
, ,

,
m

e en n
j ke e e

i j k
n j k

e en ni
j ke e e

i j k

j k

x y x y
x y u

x x
dxdy

x y x y
x y u

y y

 
 

 
 

 



 

     
            

 
     

           

 


 

 

This will then lead to the matrix equation: 

  0e e

ij ju     

Where: 

 
   

 
   

1

1

, ,
,

, ,
,m

e en
j ke e

i k

k
e

ij e en
j ke e

i k

k

x y x y
x y

x x
dxdy

x y x y
x y

y y

 
 


 

 







   
     

   
     

          






  

And then in the local coordinate system: 

 
       

 
       

* * * *

11 12 11 12

1

* * * *

21 22 21 22

1

, , , ,
,

, , , ,
,

n
j j k ke e

i k

k
e

ij
n

j j k ke e

i k

k

J J J J

J J J J

           
   

   


           
   

   





       
                   

    
      

                 





det[ ]

m

J d d 









  

7.2.16.3.1 Boundary Conditions 

When considering boundary conditions, there are two forms of interest: Natural and Neumann. 

Natural Boundary Condition 

Boundary conditions with a state variable dependent “film” coefficient “ h ” can be written as: 

 ( )

h

hh u u u u u d 



             (7.27) 

Equation (7.27) has to be discretized and solved by state variable difference. Combining (7.24) into 
(7.27): 

    0

h

h

h
h u u u u u d

t
 



 
              

  (7.28) 
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Using a state function approximation (7.25) will end up creating a system of “n” equations: 

     

   

1 1

1 1

, ,

, , 0

c

n n
e e e

i j j

i j

n n
e e e e

j j j j c

j j

h
x y h u u x y

t

u x y u x y u d

 

 

 



 

 
    

 

  
      

   

 

 

  (7.29) 

Which leads to: 

           

   

 

1 1 1

1 1

1

, , ,

, ,

, 0

c c c

c c

c

n n n
e e e

i i i

i i i

n n
e e

i i

i i

n
e

i

i

x y h u u x y h u u x y h u u

h h
x y u u x y u u

t t

h
x y u u

t

  

 





    

  





        

 
       

 


   



    

  



  

The above equation will be solved through iterations by calculating the change in state variable 
e

ju  and simply using it to calculate the state variable by applying the iterative equation (7.23). If 

we consider that the current iteration is “(a)”, then the values of the state variables from previous 

iterations are 
( 1)a

ju 
 and its change  1a

ju


 . The above equation can be written in matrix form: 

         1a ae e e e e e

ij ij ij ij j i ij jA C D E u B A u


                          

Where matrices are calculated as: 

    dete e e

ij i jA h           

    dete e

i iB h u       

      ( 1)

1

det
n

e e e e a

ij i j k k

k

h
C u

t
      



  
            

  

      ( 1)

1

det
n

e e e e a

ij i j k k

k

h
D u

t
      



  
            

  

    dete e e

ij i j

h
E u

t
    


        

 

Note that equation (7.29) is linearized for some matrix coefficients, because the equation is 
nonlinear by itself. Instead of applying the state variable from the current iteration, the equation 
will simply take the solution from the previous iteration (a-1). The iterative process will eventually 
lead to a solution within the given tolerance. Also, since the solution for u is converging towards 

zero, the matrix e

ijD    can be removed from the above equation. 

Neumann 
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A boundary condition with a state variable dependent flux can be written as: 

  0

q

f qq u u d


      (7.30) 

As already explained in a previous section, the variable  fq u u   can be written as: 

    f

f f

q
q u u q u u

u


   


  

Applying this to (7.30): 

 
1

( ) , 0

q

n
f e e

f j j q

j

q
q u u x y d

u
 



 
      

 
   

Which then in developed form and the local coordinate system leads to: 

   
1

, ( ) , 0

q

n
fe e e

i f j j q

j

q
x y q u u x y d

t
 



 
       

 
  

And finally, in matrix form: 

     0
ae

ij j iF u Q        

Where: 

    det

q

fe e e

ij i j q

q
F d

t
   




     

   

  det

q

e

i i f qQ q d 


       
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7.3 Shape Functions 

7.3.1 One-dimensional linear elements 

Let us consider a typical linear element with end nodes “i” and “j” with the corresponding 

temperature being denoted by iT  and jT  respectively. 

 

Figure 20. One-dimensional finite linear element 

The linear temperature variation in the element is represented by: 

1 2( )T x x     (7.31) 

Where T is the temperature at any location x, and the parameters 1  and 2  are constants. Since 

there are two arbitrary constants in the linear representation, it requires only two nodes to 

determine the values 1  and 2  namely. 

1 2

1 2

i i

j j

T x

T x

 

 

 

 
 

From the above set we get: 

1

2

i j j i

j i

j i

j i

T x T x

x x

T T

x x















 

Substituting the values of 1  and 2  into equation (7.31) we get: 

j i
i j

j i j i

x x x x
T T T

x x x x

    
    

       
 

or 

i
i i j j i j

j

T
T N T N T N N

T

  
      

  
 (7.32) 

Where iN  and jN  are called Shape functions or Interpolation functions or Basis functions. 
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j

i

j i

i
j

j i

x x
N

x x

x x
N

x x

 
  

  

 
  

  

 (7.33) 

The derivatives of the shape functions are constant within an element. From equation (7.32), the 
temperature gradient is calculated as: 

1 1ji
i j i j

j i j i

dNdNdT
T T T T

dx dx dx x x x x
    

 
  

or 

1 1 i

j

TdT

Tdx l l

  
    
   

 

Where l  is the length of an element equal to ( )j ix x . 

 

Figure 21. Non-dimensional coordinates of one-dimensional linear element 

Transforming one-dimensional linear element coordinates to a system where 1ix    and 1jx   

(non-dimensional coordinates), the shape functions will become (from equations (7.33)): 

1

2

1
(1 )

2

1
(1 )

2

e

e

 

 

 

 

  (7.34) 

7.3.2 Two-dimensional quadrilateral linear elements 

The quadrilateral element has four nodes located at the vertices as shown in Figure 22. 
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Figure 22. Two-dimensional quadrilateral element 

The temperature within the quadrilateral is represented by: 

1 2 3 4T x y xy        (7.35) 

thus, the temperature gradients may be written as: 

2 4

3 4

T
y

x

T
x

y

 

 


 




 



  

Therefore, the gradient varies within the element in a linear way. On substituting the values for T1, 

T2, T3 and T4 into equation (7.35) for the nodes 1, 2, 3 and 4 and solving, we obtain the values of 1 , 

2 , 3  and 4 . Substituting these relationships back into equation (7.35) and collating the 

coefficients of T1, T2, T3 and T4 we get: 

1 1 2 2 3 3 4 4T N T N T N T N T     

In the simplest form, the quadrilateral element becomes a rectangular element with the boundaries 
of the element parallel to a coordinate system. 
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Figure 23. A simple rectangular element 

For the rectangular element shown in Figure 23, the shape functions are: 

1

2

3

4

1
( )( )

4

1
( )( )

4

1
( )( )

4

1
( )( )

4

N b x a y
ab

N b x a y
ab

N b x a y
ab

N b x a y
ab

  

  

  

  

  



   

THERM 8 Technical Documentation – New Hygrothermal Modeling Functionality │103 

 

Figure 24. Non-dimensional coordinates of a rectangular system 

We can express these shape functions in terms of length ratios x/b and y/a as: 

1

1 1 1
( )( ) (1 )(1 ) (1 )(1 )

4 4 4

x y
N b x a y

ab b a
           

All shape functions for rectangular element shown in Figure 24 are: 

1

2

3

4

1
(1 )(1 )

4

1
(1 )(1 )

4

1
(1 )(1 )

4

1
(1 )(1 )

4

e

e

e

e

  

  

  

  

  

  

  

  

 (7.36) 
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7.4 Nonlinear Method Solution 

Section 7.2.14 describes the approach in the case of nonlinear problems. This appendix gives simple 
example of iterations and how the entire process works. 

Example 1 

In this first example, the idea is to present the iterative process on a simple equation: 

23 5 8u u   

If we linearize this equation around u u  : 

3 ( ) 5( ) 8u u u u u       

Solving this by u  will give: 

28 5 3

3 5

u u
u

u

 
 


  

Applying starting condition to be 0u   and relaxation parameter to be equal to one: 

u △u 

0  

1.6 1.6 

0.81632653 -0.7836735 

1.0739726 0.25764607 

0.973009 -0.1009636 

1.01022512 0.03721612 

0.99618023 -0.0140449 

1.00143447 0.00525424 

0.99946236 -0.0019721 

1.00020165 0.00073929 

0.99992439 -0.0002773 

1.00002836 0.00010397 

0.99998937 -3.899E-05 

1.00000399 1.4621E-05 

0.9999985 -5.483E-06 

1.00000056 2.0561E-06 

 

A solution within a tolerance of 1e-5 is obtained in 14 iterations. However, applying the same 
starting value ( 0u  ) and a relaxation parameter of 0.75 will give following iterations: 

x △x 

0  

1.2 1.6 

0.99767442 -0.2697674 

1.00007325 0.00319844 
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0.99999771 -0.0001007 

1.00000007 3.1465E-06 

 

Now we can see that solution is achieved with just five iterations. 

 


