Energy Technologies Area

Energy Performance Indices E_{C} and $E P_{H}$ Calculation Methodology and Implementation in Software tool

Prepared by: Jinqing Peng, D. Charlie Curcija, Robert Hart
Lawrence Berkeley National Laboratory

Date: 4/28/2017
Revised: 9/30/2021

1. INTRODUCTION \& BACKGROUND

Energy performance indices, EP_{C} and EP_{H} of window attachments are developed on the basis of ISO 18292 standard (ISO 2011), which gives methodology for calculating heating and cooling energy performance of windows. This methodology is based on the results of energy simulation of a typical residential building (house) in a typical cooling and heating climate.

2. Derivation of Energy Performance Index

For the purpose of calculating energy performance indices of window attachments, Houston climate was selected for cooling performance index, EP_{C} and Minneapolis was selected for heating energy performance index, EP_{H}. Energy simulation is done using the sub-hourly energy analysis program EnergyPlus (DOE 2016). Three different cases are simulated:
A. Typical house with windows replaced by adiabatic surfaces (i.e., zero heat flux through window surfaces)
B. Typical house with baseline windows
S. Typical house with baseline windows and window shade/attachment over them

Figure 1. Schematic of three different house models
Energy simulation is done over the typical TMY3 year for each location and results of energy for each case are expressed as:
E_{A} : annual HVAC cooling or heating energy use of the house with "adiabatic" window E_{B} : annual HVAC cooling or heating energy use of the house with baseline window only E_{S} : annual HVAC cooling or heating energy use of the house with window attachment.

Based on the results of energy simulation, the following quantities are calculated:
$E_{B-A}=E_{B}-E_{A}$, annual energy use caused by the baseline window
$E_{B-S}=E_{B}-E_{S}$, window attachment energy savings vs. the baseline window

Energy performance indices of window attachments, EP_{C}, and EP_{H} are defined as the ratio of annual cooling/heating energy saving resulting from the addition of window attachment to the annual energy use caused by the baseline window without attachment.

$$
\begin{aligned}
& E P_{C}=\frac{\left(E_{B-S}\right)_{\text {Houston }}}{\left(E_{B-A}\right)_{\text {Houston }}} \\
& E P_{H}=\frac{\left(E_{B-S}\right)_{\text {Minneapolis }}}{\left(E_{B-A}\right)_{\text {Minneapolis }}}
\end{aligned}
$$

Typical house is defined from the DOE standard residential building model, combining several building vintages into a single typical house. The listing of assumptions is detailed in Appendix A.

Energy plus runs for both Baseline and Adiabatic runs are performed once for each climate, making for four sets of results (two for heating and two for cooling EP) and saved as fixed information.

EnergyPlus model for the house with baseline windows, E_{B} is run using the Autosize option for HVAC. This is done once for cooling and once for heating climates. Such calculated HVAC size is then fixed for all subsequent runs, including adiabatic and attachment cases. Baseline windows run is detailed in section 1.1.

EnergyPlus model of a house with window attachment is run at least once per product for fixed attachments (i.e., window panels, solar screens, surface-attached films), two times for 1-D operation shades (e.g., roller shades, cellular shades, pleated shades, roman shades, etc.), where one run is for shade fully closed and second run is for shade half closed (fully retracted option is identical to baseline window); and 7 runs for 2-D operation shades (venetian blinds, vertical blinds, etc.). More details are provided in section 1.3.

3. EnergyPlus Runs

Energy analysis is done using EnergyPlus simulation tool and IDF input file for EnergyPlus simulation is created from the collection of include files (*.inc). The reason for splitting IDF files into several include files is that for different runs, only individual include files would be replaced. The list of include files in following sections are marked in green, yellow, and red, signifying how these files are set. Green colored include files are fixed and are used in each case, E_{A}, E_{B}, and E_{S}. Yellow colored include files are fixed, but are inserted based on the case being run. Red colored include files are specific to each window attachment and are prepared on the fly. More details about include files are provided in Appendix C.

Besides IDF files for each run, energy simulation also requires a weather data file (TMY3 file). The weather data file names for these two climates are listed below:

- Houston: USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3.epw
- Minneapolis: USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3.epw

3.1 Adiabatic Windows Run

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_adiabatic_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_adiabatic_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_adiabatic.inc

3.2 Baseline Windows Run

For the baseline window run, the following include files are provided.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_autosize_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_autosize_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc

3.3 Windows with Attachments

Window construction include files for windows with attachments are first defined for each window attachment in the WINDOW software tool and exported as an IDF file. While most of window attachments have single degree of freedom in operation (retraction operation only) or 0 degree of freedom (fixed window attachments) and therefore have single construction description for its deployed position, some attachments have 2 degrees of freedom (e.g., louvered shades), resulting in 4 window construction records:

1) horizontal slats, or 0 deg
2) closed slats, or 90 deg
3) -45 deg
4) 45 deg

Depending on the degree of freedom for window attachments, a different number of EnergyPlus runs will be required. Table 1 gives a summary for each window attachment class/type. Table 1a gives a summary of products that allow for automation calculations.

Table 1a. Simulation runs for different deployment situation of each shade

Shade Type	Degrees of freedom	 bottom window w/ shade)	Half Deployed (only top window w/ shade)	Total runs
Roller shades	1	1 run	1 run	2
Cellular shades	1	1 run	1 run	2
Solar Screens	0	1 run	--	1
Applied Films	0	1 run	--	1
Venetian Blinds	2	4 runs	3 runs	7
Vertical Blinds	2	4 runs	3 runs	7
Window panels	0	1 run	--	1
Pleated Shades	1	1 run	1 run	2
Roller shutters	1	1 run	1 run	2

Table 1. Shade types that allow for Automation calculations

Shade Type	Automation Simulations Enabled
Roller shades	Yes
Cellular shades	Yes
Solar Screens	No
Applied Films	No
Venetian Blinds	No
Vertical Blinds	No
Window panels	No
Pleated Shades	Yes
Roller shutters	Yes

3.3.1 Fully Deployed Window Attachments Runs

The include files needed for fully deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_user_input_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_user_input_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments - louvered blinds:
o Window_ construction_user_input0.inc
o Window_ construction_user_input90.inc
o Window_construction_user_input-45.inc
o Window_construction_user_input+45.inc

3.3.2 Half-Deployed Window Attachments Runs

The include files needed for half-deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments - louvered blinds:
o Window_ construction_user_input0.inc
o Window_ construction_user_input90.inc
o Window_construction_user_input-45.inc
o Window_construction_user_input+45.inc

3.3.3 Automation Window Attachments Runs

The include files needed for Automation window attachments run are listed below.

Houston:

- EMS_cooling.inc
- Shd_Sched_N_Cooling.csv
- Shd_Sched_E_Cooling.csv
- Shd_Sched_S_Cooling.csv
- Shd_Sched_W_Cooling.csv

Minneapolis:

- EMS_heating.inc
- Shd_Sched_N_Heating.csv
- Shd_Sched_E_Heating.csv
- Shd_Sched_S_Heating.csv
- Shd_Sched_W_Heating.csv

4. Calculation of Energy Use

Energy use for each case is calculated from HVAC system results of EnergyPlus simulation. Instructions for generating correct output results are provided in include file EP_Output_Fields.inc, shown in Appendix B. Results are stored in IDF_input_file_name.csv file. The following output fields are used in calculation of energy use:

Houston:

- "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

Minneapolis:

- "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

For brevity and subsequent use in equations, the following nomenclature will be used:
$E_{D X \text { coil }}\left(\tau_{h}\right)=$ CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)

$$
\begin{aligned}
& E_{\text {Fan }}\left(\tau_{h}\right)=\text { CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly) } \\
& E_{G a s}\left(\tau_{h}\right)=\text { CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly) }
\end{aligned}
$$

Total energy, required for the calculation of E_{A}, E_{B}, and E_{S} is calculated by summing up all hours when the cooling system is on ($\mathrm{CS}=\mathrm{ON}$) in Houston and when the heating system is on ($\mathrm{HS}=\mathrm{ON}$) in Minneapolis. "CS=ON" when "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)", is larger than 0. Correspondingly, "HS=ON" when "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)", is larger than 0. The energy totals are also corrected to source energy using following conversion factors:
$S F_{E}=$ conversion factor from electricity to source energy in $\mathrm{GJ}, 3.167 \cdot 10^{-9}$
$S F_{G}=$ conversion factor from natural gas to source energy in GJ, $1.084 \cdot 10^{-9}$

4.1 Adiabatic Windows Runs

The energy use for adiabatic window runs are calculated from output of EnergyPlus simulation for adiabatic window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$
E_{A}=\left(\sum_{C S=O N} E_{D X C o i l}\left(\tau_{h}\right)_{A}+\sum_{C S=O N} E_{\text {Fan }}\left(\tau_{h}\right)_{A}\right) \cdot S F_{E}
$$

Minneapolis:

$$
E_{A}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{A}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{F a n}\left(\tau_{h}\right)_{A}\right) \cdot S F_{E}
$$

The resulting energy use E_{A} is expressed in $G J$ of source energy. E_{A} for both locations is calculated once and saved for the calculation of EP.

4.2 Baseline Windows Runs

The energy use for baseline window runs are calculated from output of EnergyPlus simulation for baseline window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$
E_{B}=\left(\sum_{C S=O N} E_{D X C o i l}\left(\tau_{h}\right)_{B}+\sum_{C S=O N} E_{F a n}\left(\tau_{h}\right)_{B}\right) \cdot S F_{E}
$$

Minneapolis:

$$
E_{B}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{B}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{F a n}\left(\tau_{h}\right)_{B}\right) \cdot S F_{E}
$$

The resulting energy use E_{B} is expressed in $G J$ of source energy. E_{B} for both locations is calculated once and saved for the calculation of EP.

4.3 Windows with Attachments Runs

Energy uses for windows with attachments are done on demand for each attachment for which EP is calculated. Depending on the attachment type, different levels of calculation are done. Details of these calculations for different attachment types are provided below.

4.3.1 Fixed Attachments

For fixed attachments (i.e., non-operable), single and non-weighted calculation is done, similar to cases of adiabatic and baseline window energy use calculations:

Houston:

$$
E_{S}=\left(\sum_{C S=O N} E_{D X C O i l}\left(\tau_{h}\right)_{S}+\sum_{C S=O N} E_{F a n}\left(\tau_{h}\right)_{S}\right) \cdot S F_{E}
$$

Minneapolis:

$$
E_{S}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{S}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{F a n}\left(\tau_{h}\right)_{S}\right) \cdot S F_{E}
$$

The resulting energy use E_{S} is expressed in $G J$ of source energy.

4.3.2 Operable Window Attachments with 1-D operation

4.3.2.1 Manual Operation

For these window attachment types, the operation consists of attachment retraction to various degrees. The deployment schedule for operable window attachments, was developed from the results of a behavioral study (DRI 2013). Based on the results of the survey of 2,467 households in 12 markets, a deployment schedule was developed for 3 periods during the day, two periods during the week, and for two seasons. The behavioral study considered three different attachment deployments and identified the percentage of products that were in one of these three positions at different times of day, week and season.

The deployment positions of window attachments considered were:

1. O: Open (Baseline window runs)
2. H: Half-Open (Half-Deployed window attachment runs)
3. C: Closed (Fully-Deployed window attachment runs)

The periods of day considered were:

1. M: Morning, including work hours (6:00 a.m. to 12:00 p.m.)
2. A: Afternoon (12:00 p.m. to 6:00 p.m.)
3. \mathbf{N} : Evening/Night (6:00 p.m. to 6.00 a.m. of next day)

The periods of week considered were:

1. D: Weekday
2. E: Weekend and holidays

Note: Each weather data file contains standard US holidays, which are assigned the weekend schedule in the EnergyPlus input.

Time-weighting of energy use is done in addition to the consideration when the cooling or heating system is on, to calculate E_{s}. In order to describe the weighting calculation methodology, indices for hourly, daily, and weekly periods are used. Hourly energy values are labeled using τ_{h}. Different days in a week (i.e., weekday vs. weekends and holidays) are labeled using index τ_{d}, and different weeks in a season are labeled using index τ_{w}. Using this notation, the following equations are used to calculate weighted source energy use from operable window shades with 1 degree of freedom:

$$
E_{S}=E_{O}+E_{H}+E_{C}
$$

Where:

$$
\begin{aligned}
& E_{O}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D O}\left(\tau_{w}\right)+E_{S E O}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{w_{N}}\left(E_{W D O}\left(\tau_{w}\right)+E_{W E O}\left(\tau_{w}\right)\right) \\
& E_{H}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D H}\left(\tau_{w}\right)+E_{S E H}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D H}\left(\tau_{w}\right)+E_{W E H}\left(\tau_{w}\right)\right) \\
& E_{C}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D C}\left(\tau_{w}\right)+E_{S E C}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{w_{N}}\left(E_{W D C}\left(\tau_{w}\right)+E_{W E C}\left(\tau_{w}\right)\right)
\end{aligned}
$$

Where (Equations 5-16):

$$
\begin{aligned}
& E_{S D O}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{\text {SDMO }} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {SDNO }} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S E O}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M O} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N O} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{\text {WDO }}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{\text {WDMO }} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDAO }} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDNO }} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E O}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M O} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N O} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S D H}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{S D M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A H} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {SDNH }} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S E H}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A H} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N H} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{\text {WDH }}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{W D M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDAH }} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDNH }} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E H}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E A H} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N H} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S D C}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{S D M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D N C} \cdot \sum_{\tau_{h}=18}^{6(+ \text { +day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{S E C}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N C} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S W C}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{W D M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W D A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W D N C} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E C}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N C} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
\end{aligned}
$$

Where:
$\tau_{d}=$ days of the week, where $1=$ Monday, and 7=Sunday. The weekend schedule is also applicable to holidays
$\tau_{\mathrm{w}}=$ weeks of the year, where $S_{1}=$ first week of the cooling season, and $S_{N}=$ last week of the cooling season, $W_{1}=$ first week of the heating season, and $W_{N}=$ last week of the heating season. $\mathrm{S} 1, \mathrm{SN}, \mathrm{W} 1$, and WN are defined in Appendix D.
$\tau_{\mathrm{h}}=$ hours in a day, where 1=1:00 a.m., $12=12: 00$ p.m., and $24=12: 00$ a.m. For the evening/night period, the summation goes from 18 (6:00 p.m.) until 24 (12 a.m.), then the hours reset to 0 and go until 6 a.m. This is indicated in the equations as (+1 day) in the upper limit of the summation sign for the evening/night period
Table 2. Energy Use Variables

	Cooling Weekday	Cooling Weekend	Heating Weekday	Heating Weekend
Open	$E_{S D O}$	$E_{S E O}$	$E_{W D O}$	$E_{W E O}$
Half-open	$E_{S D H}$	$E_{S E H}$	$E_{W D H}$	$E_{W E H}$
Closed	$E_{S D C}$	$E_{S E C}$	$E_{W D C}$	$E_{W E C}$

Table 3. Deployment Fraction Variables

	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deploymen	M	A	N	M	A	N	M	A	N	M	A	N
Open	$\mathrm{F}_{\text {SDMO }}$	$\mathrm{F}_{\text {SDAO }}$	$\mathrm{F}_{\text {S }}$	$\mathrm{F}_{\text {SE }}$	$\mathrm{F}_{\text {SE }}$	$\mathrm{F}_{\text {SENO }}$	$\mathrm{F}_{\text {WDM }}$	$\mathrm{F}_{\text {WDAO }}$	$\mathrm{F}_{\text {WDNO }}$	$\mathrm{F}_{\text {WEMO }}$	$\mathrm{F}_{\text {WEAO }}$	WENO
Half-open	$\mathrm{F}_{\text {SDMH }}$	$\mathrm{F}_{\text {SDAH }}$	$\mathrm{F}_{\text {SDNH }}$	$\mathrm{F}_{\text {SEMH }}$	$\mathrm{F}_{\text {SEAH }}$	$\mathrm{F}_{\text {SENH }}$	$\mathrm{F}_{\text {WDMH }}$	$\mathrm{F}_{\text {WDAH }}$	$\mathrm{F}_{\text {WDNH }}$	$\mathrm{F}_{\text {WEM }}$	$\mathrm{F}_{\text {WEAH }}$	$\mathrm{F}_{\text {WENH }}$
Closed	$\mathrm{F}_{\text {SDMC }}$	$\mathrm{F}_{\text {SDAC }}$	$\mathrm{F}_{\text {SDNC }}$	$\mathrm{F}_{\text {SEMC }}$	$\mathrm{F}_{\text {SEAC }}$	$\mathrm{F}_{\text {SENC }}$	$\mathrm{F}_{\text {WDMC }}$	$\mathrm{F}_{\text {WDAC }}$	$\mathrm{F}_{\text {WDNC }}$	$\mathrm{F}_{\text {WEMC }}$	$\mathrm{F}_{\text {WEAC }}$	$\mathrm{F}_{\text {wen }}$

Deployment fraction data for North (heating) and South (cooling) climates are presented in Table 4 and Table 5.
Table 4. Deployment Schedule for North (Heating) Climate Zone

Cooling Weekday				Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N

Open	0.26	0.24	0.23	0.26	$\begin{aligned} & 0.2 \\ & 5 \\ & \hline \end{aligned}$	0.23	0.29	0.30	0.23	0.28	0.29	0.22
Half-open	0.35	0.34	0.32	0.36	$\begin{aligned} & 0.3 \\ & 6 \\ & \hline \end{aligned}$	0.33	0.32	0.33	0.28	0.32	0.33	0.29
Closed	0.39	0.41	0.45	0.38	$\begin{aligned} & 0.3 \\ & 9 \\ & \hline \end{aligned}$	0.44	0.39	0.38	0.49	0.40	0.38	0.49

Table 5. Deployment Schedule for South (Cooling) Climate Zone

Cooling Weekday				Cooling Weekend				Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N	
Open	0.17	0.15	0.13		0.1 7								
Half-open	0.26	0.25	0.23	0.18	7	0.2	0.14	0.23	0.23	0.17	0.23	0.23	0.17
Closed	0.57	0.60	0.65		0.2 5	0.24	0.25	0.26	0.22	0.27	0.27	0.23	

Cooling and heating periods are defined for each city in Appendix D.
$E\left(\tau_{w}, \tau_{d}, \tau_{h}\right)$ is calculated as follows for each city:

Houston:

$$
\begin{aligned}
& E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C \text { oii }}\left(\tau_{h}\right)_{B}+E_{\text {Fan }}\left(\tau_{h}\right)_{B}\right)_{C S=O N} \cdot S F_{E} \\
& E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{H}+E_{\text {Fan }}\left(\tau_{h}\right)_{H}\right)_{C S=O N} \cdot S F_{E} \\
& E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{C}+E_{\text {Fan }}\left(\tau_{h}\right)_{C}\right)_{C S=O N} \cdot S F_{E}
\end{aligned}
$$

Minneapolis:

$$
\begin{aligned}
& E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a S}\left(\tau_{h}\right)_{B}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{B}\right)_{H S=O N} \cdot S F_{E} \\
& E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{H}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{H}\right)_{H S=O N} \cdot S F_{E} \\
& E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{C}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{C}\right)_{H S=O N} \cdot S F_{E}
\end{aligned}
$$

4.3.2.2 Automated Operation

For these window attachment types, the operation consists of attachment either fully deployed or fully retractracted. The performance is calculated in a single EnergyPlus run utilizing the EMS system to deploy or retract the shade for each simulation timestep based on a given deployment schedule. The deployment schedules for Automated 1D window
attachments were developed by the AERC Automation working Group and are shown in Tables 6 and 7.

Table 6. Deployment Schedule for North (Heating) Climate Zone

	Window Orientation			
	North	South	East	West
June 1 - August 31	Closed All Day	Closed All Day	Closed All Day	Closed All Day
		Open	Open	Open
September 1 - May 31	Closed All Day	$08: 00-16: 00$	$08: 00-12: 00$	$12: 00-16: 00$

Table 7. Deployment Schedule for South (Cooling) Climate Zone

	Window Orientation			
	North	South	East	West
April 1 - October 31	Closed All Day	Closed All Day	Closed All Day	Closed All Day
			Open	Open
November 1 - March 31	Open 08:00-16:00	Closed All Day	12:00-16:00	$08: 00-12: 00$

For automation operation runs, the energy results for the automation run are equal to the energy use of the shade in the EP calculation:
$\mathrm{E}_{\mathrm{S}}=\mathrm{E}_{\text {AUTOMATION }}$

4.3.3 Operable Window Attachments with 2-D operation

Similar to window attachments with 1 degree freedom in operation, energy use for window attachment with 2-D operation is calculated by summing-up weighting Open, Half-Open and Closed states. Because of the increased complexity of the definition of Open, and Half-Open states for attachments with 2 degrees of freedom (retraction levels and slat angle), multiple deployment states are attached to Open and Half-Open states. Currently, louvered blinds (both horizontal louvered blinds, or Venetian blinds, and vertical louvered blinds) have simulation models available for them. Assignments of different EnergyPlus runs and deployment states for louvered blinds are shown in Table 6.

Table 8. Deployment Information for Louvered blinds

		Run No.	Top Window	Bottom Window
Open (O)	Fully-deployed	1	0° slat angle	0° slat angle
	Fully-retracted	2	No shade	No shade
	Fully-deployed	3	45° slat angle	45° slat angle
	Fully-deployed	4	-45° slat angle	-45° slat angle
	Half-deployed	5	90° slat angle	No shade
	Half-deployed	6	45° slat angle	No shade
	Half-deployed	7	-45° slat angle	No shade

Closed (C)	Fully-deployed	8	90° slat angle	90° slat angle

The energy use for louvered blinds is the result of averaging hourly results for two open deployments, five half-open and one closed deployment schedules. Averaging procedure is detailed in Equations to . Numbers in the third column in Table 6 are used in subsequent equations as an index number (1-2 for open, 3-7 for half-open, and 8 for closed).

$$
\begin{aligned}
& E_{O}=\frac{\sum_{i=1}^{2}\left(\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D O, i}\left(\tau_{w}\right)+E_{S E O, i}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D O, i}\left(\tau_{w}\right)+E_{W E O, i}\left(\tau_{w}\right)\right)\right)}{2} \\
& E_{H}=\frac{\sum_{i=3}^{7}\left(\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D H, i}\left(\tau_{w}\right)+E_{S E H, i}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D H, i}\left(\tau_{w}\right)+E_{W E H, i}\left(\tau_{w}\right)\right)\right)}{5} \\
& E_{C}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D C, 8}\left(\tau_{w}\right)+E_{S E C, 8}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D C, 8}\left(\tau_{w}\right)+E_{W E C, 8}\left(\tau_{w}\right)\right)
\end{aligned}
$$

An example of the application of formula to the calculation of $E_{S E O, 1}$ is shown below. Other quantities are calculated in the same manner.

$$
E_{S E O, 1}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M O} \cdot \sum_{\tau_{h}=5}^{17} E_{0,1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A O} \cdot \sum_{\tau_{h}=5}^{17} E_{O, 1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N O} \cdot \sum_{\tau_{h}=5}^{17} E_{0,1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
$$

$E\left(\tau_{w}, \tau_{d} \tau_{h}\right)$ is calculated as follows for each city:

Houston:

$$
\begin{aligned}
& E_{O, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{O, i}+E_{F a n}\left(\tau_{h}\right)_{0, i}\right)_{C S=O N} \cdot S_{\quad} \quad(i=1,2) \\
& E_{H, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{H, i}+E_{F a n}\left(\tau_{h}\right)_{H, i}\right)_{C S=O N} \cdot S F_{E} \quad(i=3,4,5,6,7) \\
& E_{C, 8}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{C, 8}+E_{F a n}\left(\tau_{h}\right)_{C, 8}\right)_{C S=O N} \cdot S F_{E}
\end{aligned}
$$

Minneapolis:

$$
\begin{aligned}
& E_{O, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{O, i}\right)_{H S=O N} \cdot S F_{G}+\left(E_{F a n}\left(\tau_{h}\right)_{O, i}\right)_{H S=O N} \cdot S F_{E} \quad(i=1,2) \\
& E_{H, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{H, i}\right)_{H S=O N} \cdot S F_{G}+\left(E_{F a n}\left(\tau_{h}\right)_{H, i}\right)_{H S=O N} \cdot S F_{E} \quad(i=3,4,5,6,7)
\end{aligned}
$$

$$
E_{C, 8}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{C, 8}\right)_{H \mathrm{H}=O N} \cdot S F_{G}+\left(E_{F a n}\left(\tau_{h}\right)_{C, 8}\right)_{H \mathrm{H}=O N} \cdot S F_{E}
$$

5. Calculation of Final Results

Energy simulation by EnergyPlus is output into csv files, from which E_{A}, E_{B}, and E_{S} is calculated, using formulas detailed above, and depending on the specific window attachment. The following is process outline:

- Selection which calculation is to be performed, $\mathrm{E}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}}, \mathrm{E}_{\mathrm{S}} / \mathrm{EP}$
- City; Houston or Minneapolis (alternatively could be choice between Cooling and Heating)
- Window attachment type (for E_{A} and E_{B} only, no attachment is supplied)
- Number of csv files
- Each csv file name
- Deployment state (Open, half-open or closed)
- Slat angle for louvered blinds

Output from software tool:

- E_{A}, E_{B}, and/or E_{S}, as requested
- EP (applicable when E_{S} is requested)

This interface is accomplished through an XML file. XML Schema and example files are included in Appendix E

6. References

ISO. 2011. "ISO 18292: Energy Performance of Fenestration Systems for Residential Buildings - Calculation Procedure". International Standards Organization. Geneva, Switzerland.

DOE. 2016. "EnergyPlus 8.6: Software Tool for Calculating Energy Performance of Buildings"

Appendix A: Typical US Residential Buildings Assumptions

PARAMETERS	Proposed Residential Model Values					Value inputs in E+
Floor Area ($\mathrm{ft}^{2} \& \operatorname{dim}$)	$2400 \mathrm{ft}^{2}, 34.64 \mathrm{ft}(\mathrm{W}) \times 34.64 \mathrm{ft}(\mathrm{L}) \times 8.5 \mathrm{ft}(\mathrm{H}) \times 2$ stories					$10.55858 \mathrm{~m}(\mathrm{X})^{*} 10.55858 \mathrm{~m}(\mathrm{Y})^{*} 2.59 \mathrm{~m}(\mathrm{H})^{*} 2$ stories
House Type						Core zone Area $=1.41458 \mathrm{~m}^{*} 1.41458 \mathrm{~m}$ Refer to Residential model for AERC MEETING (0415).xlsx
Bathrooms	3					
Bedrooms	3					
Typical Cities	Heating: Minneapolis, MN (Climate Zone 6A) Cooling: Houston, TX (Climate Zone 2A)					Refer to Residential model for AERC MEETING (0415).xlsx
Foundation	Unheated Basement for the north heating dominated city, viz. Minneapolis, MN; Slab-on-grade without insulation for the south cooling dominated city, viz. Houston, TX.					$\begin{aligned} & \text { Basement: } \\ & 10.55858 \mathrm{~m}(\mathrm{X})^{*} 10.55858 \mathrm{~m}(\mathrm{Y})^{*}(-2.13) \mathrm{m}(\mathrm{H}) \end{aligned}$
Insulation ${ }^{(a)}$	Envelope insulation levels vary with the locations. The following insulation requirements are referred to IECC 1998.					Minneapolis: Exterior Floor: R21 Interior Floor: R21 Exterior Wall: R21 Ceiling: R49 Exterior Roof: R49 Basement wall: R11 Houston: Exterior Floor: R11 Interior Floor: R11 Exterior Wall: R13 Ceiling: R30 Exterior Roof: R30
	Location:	Ceiling R-value	Wall R -value	Floor R-value	Slab/Basemen t R-value	
	Houston:	R-30	R-13	R-11	Slab, R-0	
Infiltration	Minneapolis: ACH50=7 Houston: ACH50=10					Minneapolis baseline window case: ELA=873; Minneapolis super insulated window case: ELA=669, air infiltration of super insulated window was 0; Houston baseline window case: ELA=1248; Houston super insulated window case: ELA $=1044$, air infiltration of super insulated window was 0 ; The converting method from ACH to ELA is described in ELACalculation.xlsx
Internal Mass Furniture ($\mathrm{lb} / \mathrm{ft}^{2}$)	$8.0 \mathrm{lb} / \mathrm{ft}^{2}$ of floor area					
Ventilation Air Requirements	$0.15 \mathrm{~L} / \mathrm{s}$ per square meter of floor space					$0.033456639274582 \mathrm{~m} 3 / \mathrm{s}$

		$=0.15 * 10.55858 * 10.55858 * 2$
Wall framing system	Wood	
External Doors	U factor: $1.14 \mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{k}\right)$	$\mathrm{R}=0.88$
Window Area (\% Floor Area)	15.1%. There are two windows (each window with dimension $2^{*} 1.4 \mathrm{~m}^{*} 0.75 \mathrm{~m}$) on each orientation each floor.	$2^{*} 1.4(\mathrm{w})^{*} 0.75(\mathrm{~h})$ Refer to Residential model for AERC MEETING (0415).xlsx
Window Type	Double clear wood frame baseline window for both climates; VT=0.639, SHGC=0.601, $\mathrm{U}=0.472 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft}^{2} . \mathrm{F}$, $\mathrm{AL}=2 \mathrm{cfm} / \mathrm{ft}^{2}$ Adiabatic window: $\mathrm{VT}=0, \mathrm{SHGC}=0, \mathrm{U}=0, \mathrm{AL}=0$	Baseline window: double clear using CLEAR_3.DAT, wood fixed frame Adiabatic window: custom created super-insulated opaque window without frame Refer to AERC 1 Baseline window B.docx
Window Distribution	8 windows per floor, distributed evenly and centered on the external walls. Each big window was split into the upper and lower small windows.	Refer to Residential model for AERC MEETING (0415).xlsx
Heating Systems	Gas Furnace for Minneapolis, MN; Heat Pump for Houston, TX.	
Heating System Fuels	Gas for Minneapolis, MN; Electricity for Houston, TX.	
Cooling Systems	A/C for Minneapolis, MN; Heat Pump for Houston, TX.	
HVAC System Sizing	For each climate, the HVAC systems were sized based on the base window option (without window attachments).	Houston (HP): Cooling capacity: 13131.31 W Heating capacity: 13131.31 W Sensible heat ratio: 0.733253 Air flow rate: $0.652 \mathrm{~m} 3 / \mathrm{s}$ Minneapolis (GAC): Cooling capacity: 10628.64 W Heating capacity: 16720.73W Sensible heat ratio: 0.753625 Air flow rate: $0.563 \mathrm{~m} 3 / \mathrm{s}$ Refer to Doubleclear_basement_Minneapolis, \& Doubleclear_slab_Houston
HVAC Efficiencies	Minneapolis (GAC): AFUE=0.78 for Gas furnace heating (annual fuel utilization efficiency) Houston (HP): HSPF=6.8 for Air-cooled heat pumps heating mode (the converted COP for heating is ~ 1.99) Both: SEER=10.0 for Air-cooled air conditioners and heat pumps cooling mode (the converted COP for cooling is ~ 2.70)	(1) $\operatorname{EER}=1.12 *$ SEER $-0.02 *$ SEER2 (2) $\mathrm{EER}=\mathrm{COP}$ * 3.41 (3) Avg COP $=$ Heat transferred / electrical energy supplied $=($ HSPF $* 1055.056 \mathrm{~J} /$ BTU $) /(3600$ $\mathrm{J} /$ watt-hour $)=0.29307111$ HSPF.
Thermostat Settings	Heating: $70^{\circ} \mathrm{F}$, Cooling: $75^{\circ} \mathrm{F}$ No setback	Heating set point: $21.11^{\circ} \mathrm{C}$ Cooling set point: $23.89^{\circ} \mathrm{C}$
Internal Loads	Number of People $=3$ Hardwire Lights = 1.22 Watts/m² Plug-in Lights $=0.478$ Watts $/ \mathrm{m}^{2}$ Refrigerator $=91.09$ Watts - Design Level Misc. Electrical Equipment $=2.46$ Watts $/ \mathrm{m}^{2}$ Clothes Washer $=29.6$ Watts - Design Level Clothes Dryer = 222.1 Watts - Design Level Dish Washer $=$ 68.3 Watts - Design Level Misc. Electrical Load $=$ 182.5 Watts - Design Level Gas Cooking range $=248.5$ Watts - Design Level Misc. Gas Load $=0.297$ Watts $/ \mathrm{m}^{2}$ Exterior Lights = 58 Watts - Design Level Garage Lights $=9.5$ Watts - Design Level	

	The operation schedules of the all equipment are referred to the PNNL model.		
Weather Data	USA_TX_Houston-Bush.Intercontinental.AP.722430_T MY3.epw USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3_2 .epw	All TMY3	
Number of Locations	2 typical US cities: Minneapolis, MN for heating; Houston, TX for cooling.		
Calculation Tool	EnergyPlus version 8.5 (LBN's custom version that addresses issue with TIR>0)		
Energy Code	Combination of vintages for each climate zone, but mostly like IECC 1998		
Results extracted from E+	Heating energy use, cooling energy use, fan energy use and total energy use of the house which includes the all energy uses, such as lighting.		
Attachment deployment operations	Refer to (Bickel, 2013)		
Ground temperature	For Minneapolis unheated basement with R11 insulation; For Houston, slab-on-grade with no slab insulation.		
Super insulated window	This window can be regarded as an adiabatic surface without heat transferring.	0.003, 0.000001, 0.999999 , 0.999999 , 0.000001, 0.999999 , 0.999999, 0.000000, 0.000001, Emissivity 0.000001, 0.00000001	!- Thickness \{m\} !- Solar Transmittance !- Front Reflectance !- Back Reflectance !- Visible Transmittance !- Front Visible Reflectance !- Back Visible Reflectance !- Infrared Transmittance !- Front Infrared !- Back Infrared Emissivity !- Conductivity \{W/m-K\}

Appendix B: Output Section in IDF File

```
!- ========== ALL OBJECTS IN CLASS:OUTPUT:VARIABLE ===========
Output:Variable,*,Site Day Type Index,hourly;
Output:Variable,*,Air System Electric Energy,hourly;
Output:Variable,* ,Air System Fan Electric Energy,hourly;
Output:Variable,* ,Air System DX Cooling Coil Electric Energy,hourly;
Output:Variable,*,Zone Lights Electric Energy,hourly;
Output:Variable,*,Facility Net Purchased Electric Energy,hourly;
Output:Variable,*,Facility Total Building Electric Demand Power,hourly;
Output:Variable,*,Facility Total HVAC Electric Demand Power,hourly;
Output:Variable, *,Facility Total Electric Demand Power,hourly;
Output:Variable,* „Air System Cooling Coil Total Cooling Energy,hourly;
Output:Variable,*,Air System Heating Coil Total Heating Energy,hourly;
Output:Variable,*,Air System Fan Air Heating Energy,hourly;
Output:Variable,*,Air System Gas Energy,hourly;
Output:Variable,*,Zone Gas Equipment Gas Energy,hourly;
Output:Variable,*,Water Heater Gas Energy,hourly;
```


Appendix C: Include Files

C. 1 Windows:

Same window configuration file is provided for both climate zones/cities. Also, same window configuration file is used for all windows, however with changes made for construction reference (glazing construction and frame) for different window attachment runs (e.g., For baseline window, construction reference is AERC_Doubleclear_Baseline). For different baseline windows, as their averaged frame width are different, the glazing coordinates should be changed as well. The following sections depict the methodologies of calculating the averaged frame width and changing the fenestration coordinates.

C.1.1 Calculating and exporting the average frame width in WINDOW

As EnergyPlus can't model the half-deployed scenario for a window shade, we used two separate small windows (one at the top and one at the bottom) to replace a single window in simulation. However, this replacement results in a larger frame area for the modelled window because the head and sill are counted twice (as shown in the rightmost drawing of the following picture). So, we will replace the original averaged frame width ($L_{f=W I N}$) from WINDOW with a new averaged frame width ($L_{f-a v e}$) to make sure the modeled two small windows have the same glazing and frame areas as the original window. The methodology for the averaged frame width calculation is detailed later in this section. The following figure illustrates the original window with original frame dimensions, L_{s}, L_{j}, and $L h$, then window with the original averaged frame dimension, $L_{f-W I N}$, as it is exported from WINDOW to IDF file, and resulting 2 windows used in simulation, with the new averaged frame width, $L_{\text {fave }}$.

$A_{\text {real } g}$ is the actual window glazing area.
$A_{\text {win_g }}$ is the window glazing area normally exported from WINDOW.
$A_{\text {model } _g}$ is the window glazing area in E+ simulation.
The first step is to calculate the original averaged frame width ($L_{f-W I N}$). WINDOW program can calculate $L_{f_{-} \text {IIN }}$ according to the below equations.

$$
\begin{align*}
& A_{\text {real_g }}=W \cdot H-\left(L_{h} \cdot W+L_{s} \cdot W+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s)}\right)\right. \tag{C.1}\\
& A_{\text {WIN_g }}=W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W I N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right) \tag{C.2}
\end{align*}
$$

Considering that $A_{\text {real } g=}=A_{\text {win } _ \text {, }}$, and substituting (1) and (2) into this equality, then:

$$
\begin{equation*}
W \cdot H-\left(L_{h} \cdot W+L_{s} \cdot W+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s)}\right)=W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W I N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right)\right. \tag{C.3}
\end{equation*}
$$

Or expressed as quadratic equation that can be solved for $L_{f=W I N}$.

$$
\begin{align*}
& 4 \cdot L_{f_{-} W I N}{ }^{2}+2 \cdot(H+W) \cdot L_{f_{-} W I N}-\left(W \cdot\left(L_{h}+L_{s}\right)+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s}\right)\right)=0 \tag{C.4}\\
& L_{f_{-} W I N}=\frac{-2 \cdot(H+W) \pm \sqrt{4 \cdot(H+W)^{2}+16 \cdot\left(W \cdot\left(L_{h}+L_{s}\right)+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s}\right)\right)}}{8} \tag{C.5}
\end{align*}
$$

WINDOW program can also export the original averaged frame width ($L_{f-W I N}$) to a normal IDF file (which is different from the specialized IDF file for EPCalc only, called "AERC EnergyPlus IDF"). An example of L_{f} WIN exportation for AERC Baseline Window B is shown in the following figure.

Window Frames and Dividers Data	L
WindowProperty:FrameAndDivider,	normal IDF by WINDOW
AERC 0.057150 ,-r ${ }^{\text {ame, }}$	normal IDF by WINDOW
,	
2. 918756 ,	
1.075423,	
0.300000,	
0.300000, 0.9,	
,	- Divider Type
, \|	- Divider width \{m\}
, I	- Number of Horizontal Dividers
,	- Number of Vertical Dividers
,	- Divider Insider Projection $\{\mathrm{mm}$
,	- Divider conductance $\{\mathrm{w} / \mathrm{m} 2-\mathrm{K}\}$
,	- Ratio of Divider-Edge Glass Conducta
,	- Divider Solar Absorptance
,	- Divider Visible Absorptance
,	- Outside Reveal solar Absorptance
,	- Inside sill depth (m)
,	- Inside sill Solar Absorptance
	- Inside Reveal Depth (m)
;	- Inside Reveal solar Absorptance

The next step is to calculate the new averaged frame width ($L_{f a v e}$) for the configuration consisting of two windows (top and bottom) with the original averaged frame width ($L_{f_{-} \text {WIN }}$). This calculation was conducted in WINDOW program according to the below equations.

$$
\begin{equation*}
A_{\text {Model } _g}=W \cdot H-\left(4 \cdot W \cdot L_{f_{-} \text {Ave }}+4 \cdot L_{f_{-} \text {Ave }} \cdot\left(\frac{H}{2}-2 \cdot L_{f_{-} \text {Ave }}\right)\right) \tag{C.6}
\end{equation*}
$$

Considering that $A_{\text {Model }_{-g}}=A_{\text {win } _ \text {g }}$, and substituting (2) and (6) into this equality, then:

$$
W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W I N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right)=W \cdot H-\left(4 \cdot W \cdot L_{f_{-} A v e}+4 \cdot L_{f_{-} A v e} \cdot\left(\frac{H}{2}-2 \cdot L_{f_{-} A v e}\right)\right)
$$

(C.7)

Or expressed as quadratic equation that can be solved for $L_{f_{-A v}}$.

$$
\begin{align*}
& -4 \cdot L_{f_{-} A v e}{ }^{2}+(H+2 \cdot W) \cdot L_{f_{-} A v e}+2 \cdot L_{f_{-} W I N}{ }^{2}-(W+H) \cdot L_{f_{-} W I N}=0 \tag{C.8}\\
& L_{f_{-} A v e}=\frac{-(H+2 \cdot W) \pm \sqrt{(H+2 \cdot W)^{2}+16 \cdot\left(2 \cdot L_{f_{-} W I N}{ }^{2}-(W+H) \cdot L_{f_{-} W I N}\right)}}{-8} \tag{C.9}
\end{align*}
$$

There are two roots to the quadratic equation (9), $L_{f_{-A v e} 1}$ and $L_{f_{-} A v e_{-} 2}$, of which one is solution that we are seeking.

$$
\begin{equation*}
L_{f_{-} A v e}=\min \left(L_{f_{-} A v e_{-} 1}, L_{f_{-} A v e_{-}}\right) \tag{C10}
\end{equation*}
$$

Take the current AERC baseline window B as an example:

$$
\begin{aligned}
& \mathrm{W}=1.4 \mathrm{~m} \\
& \mathrm{H}=1.5 \mathrm{~m} \\
& \text { Lf_win }=0.057150 \mathrm{~m}
\end{aligned}
$$

So Equations (8) and (9) can be written as:

$$
\begin{aligned}
& -4 \cdot L_{f_{-} \text {Ave }}{ }^{2}+4.3 \cdot L_{f_{-} \text {Ave }}-0.1592027=0 \\
& L_{f_{-} \text {Ave }}=\frac{-4.3 \pm \sqrt{18.49-2.54724}}{-8} \\
& L_{f_{-} \text {Ave }}=\min (0.038395,1.036605) \\
& L_{f_{-} \text {Ave }}=0.038395
\end{aligned}
$$

This calculation is built into Berkeley Lab WINDOW software tool, which is exported to AERCalc in a new specialized IDF file, called "AERC Energy Plus IDF", where the original frame width, $L_{f_{\text {WIN }}}$, new averaged frame width $L_{f_{-} \text {ave }}$, and window width and height (W and H , include the frame width), are included in the commented section. New averaged frame width is also inserted in the appropriate IDF field where it is used by EnergyPlus. The following figure illustrates this new AERC EnergyPlus IDF .

For other baseline windows which may have different frame widths, WINDOW program will calculate $L_{f-A v e}$ using equations (9) and (10) and export $L_{f_{-A v e}}$ as shown in the above figure.

C.1.2 Changing the fenestration coordinates in window configuration file

The whole window area, consisting of the glass area and the frame area, is given by specifying the window width (W, includes the frame width) and the height (H , includes the frame width). However, in Energyplus, window coordinates describe vision portion of glazing system only, so full window area is obtained by adding frame width to glazing area. The fenestration coordinates can be calculated by using the window width (W), the window height (H) and the new averaged frame width ($L_{f-A v e}$). The methodology is detailed in this section.

For each window in a typical building, the coordinates of the vertices for the vision area of glazing are calculated starting with lower left corner. The remaining three vertices are then calculated based on the fixed coordinates of the lower-left corner point, the window width
(W), height (H) and the new averaged frame width $\left(L_{f-A v e}\right)$. However, it is worth noting that the coordinate calculation method is different for different oriented windows. The calculation methods for different orientations are illustrated in sections below.

C.1.2.1 Template for IDF snippet for windows

An IDF snippet for the definition of each window is required. There are 8 windows on each orientation. Template for the IDF snippet is illustrated as follows:

Where OriF_N_Pos stand for:

- Ori = Orientation (ldf- front side (South), ldb - back side (North), sdr - right side (East), sdl - left side (West))
- F = Floor number (1 - first floor, 2 - second floor)
- $\quad \mathrm{N}=$ Window number on each floor and orientation (1 - left side window, 2 - right side window)
- Pos = Window position(Bot - bottom window, Top - top window)
- $\quad W=$ Wall number of each perimeter zone on each floor (1- external wall on which the windows were installed)
For example, Window_ldf1_2_Bot.unit1 means the right bottom window on the first floor on the south orientation; Wall_sdr1_2.unit1 means the external wall on the second floor of east orientation

C.1.2.2 South facing windows:

There are eight south facing windows (named as Window_ldff_N_Pos.unit1). where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:
$\mathrm{X} 1=$ values for each of south facing windows are listed in table below
$Y 1=Y 2=Y 3=Y 4=0.00$,

Z1 values for each of south facing windows are listed in table below
The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f-A v e}$) using the below formulas:

$$
\begin{aligned}
& \mathrm{X} 2=\mathrm{X} 1+\left(\mathrm{W}-2^{*} L_{f_{-} \text {Ave }}\right) \\
& \mathrm{Z} 2=\mathrm{Z} 1 \\
& \mathrm{X} 3=\mathrm{X}+\left(\mathrm{W}-2^{*} L_{f-A v v}\right) \\
& \mathrm{Z} 3=\mathrm{Z}+\left(\mathrm{H} / 2-2^{*} L_{f_{-A v e}}\right) \\
& \mathrm{X} 4=\mathrm{X} 1 \\
& \mathrm{Z} 4=\mathrm{Z}+\left(\mathrm{H} / 2-2^{*} L_{f_{-A v e}}\right)
\end{aligned}
$$

For baseline window B, the coordinates of the lower-left corner vertices of the eight south facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_Idf1_1_Bot.unit1	Wall_Idf1_1.unit1	2.50	0.00	0.60
Window_Idf1_1_Top.unit1	Wall_ldf1_1.unit1	2.50		1.35
Window_Idf1_2_Bot.unit1	Wall_ldf1_1.unit1	6.60		0.60
Window_Idf1_2_Top.unit1	Wall_Idf1_1.unit1	6.60		1.35
Window_Idf2_1_Bot.unit1	Wall_ldf1_2.unit1	2.50		3.20
Window_Idf2_1_Top.unit1	Wall_ldf1_2.unit1	2.50		3.95
Window_Idf2_2_Bot.unit1	Wall_ldf1_2.unit1	6.60		3.20
Window_Idf2_2_Top.unit1	Wall_ldf1_2.unit1	6.60		3.95

The coordinates of the lower-left corner vertices of the eight south facing windows are fixed in the E+ model and will be used for different baseline windows. With the coordinates of the lower-left corner vertices, the coordinates of the remaining vertices of each south facing window can be calculated using Equations above.

Take the current AERC baseline window B as an example:

$$
\begin{aligned}
& \mathrm{W}=1.4 \mathrm{~m} \\
& \mathrm{H}=1.5 \mathrm{~m} \\
& L_{f_{-A v e}}=0.038395 \mathrm{~m}
\end{aligned}
$$

the coordinates of the eight south facing windows are calculated and the values are listed in the below table.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_Idf1_1_Bot.unit1	Wall_Idf1_1.unit1	1	2.50000	0.00000	0.60000
		2	3.82321	0.00000	0.60000
		3	3.82321	0.00000	1.27321
		4	2.50000	0.00000	1.27321
Window_Idf1_1_Top.unit1	Wall_Idf1_1.unit1	1	2.50000	0.00000	1.35000
		2	3.82321	0.00000	1.35000
		3	3.82321	0.00000	2.02321

		4	2.50000	0.00000	2.02321
Window_Idf1_2_Bot.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	0.60000
		2	7.92321	0.00000	0.60000
		3	7.92321	0.00000	1.27321
		4	6.60000	0.00000	1.27321
Window_Idf1_2_Top.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	1.35000
		2	7.92321	0.00000	1.35000
		3	7.92321	0.00000	2.02321
		4	6.60000	0.00000	2.02321
Window_Idf2_1_Bot.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.20000
		2	3.82321	0.00000	3.20000
		3	3.82321	0.00000	3.87321
		4	2.50000	0.00000	3.87321
Window_Idf2_1_Top.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.95000
		2	3.82321	0.00000	3.95000
		3	3.82321	0.00000	4.62321
		4	2.50000	0.00000	4.62321
Window_Idf2_2_Bot.unit1	Wall_ldf1_2.unit1	1	6.60000	0.00000	3.20000
		2	7.92321	0.00000	3.20000
		3	7.92321	0.00000	3.87321
		4	6.60000	0.00000	3.87321
Window_Idf2_2_Top.unit1	Wall_ldf1_2.unit1	1	6.60000	0.00000	3.95000
		2	7.92321	0.00000	3.95000
		3	7.92321	0.00000	4.62321
		4	6.60000	0.00000	4.62321

C.1.2.3 North facing windows:

There are also eight north facing windows (named as Window_ldbF_N_Pos.unit1).
Coordinates of the lower-left corner vertice ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$) are fixed as follows:
$\mathrm{X} 1=$ values for each of north facing windows are listed in table below
$Y 1=Y 2=Y 3=Y 4=10.55858$,
$\mathrm{Z} 1=$ values for each of north facing windows are listed in table below
The coordinates of the remaining three vertices can be calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f-A v e}$) using the formulas below:

```
\(\mathrm{X} 2=\mathrm{X} 1-\left(\mathrm{W}-2^{*} L_{f_{-A v e}}\right)\)
\(\mathrm{Z} 2=\mathrm{Z} 1\)
\(\mathrm{X} 3=\mathrm{X} 1-\left(\mathrm{W}-2^{*} L_{f-A v e}\right)\)
\(\mathrm{Z} 3=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-}}{ }\right)\)
X4=X1
\(\mathrm{Z} 4=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-A v e}}\right)\)
```

The coordinates of the lower-left corner vertices of the eight north facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_Idb1_1_Bot.unit1	Wall_Idb1_1.unit1	8.00	10.55858	0.60
Window_Idb1_1_Top.unit1	Wall_Idb1_1.unit1	8.00		1.35
Window_Idb1_2_Bot.unit1	Wall_Idb1_1.unit1	3.90		0.60
Window_Idb1_2_Top.unit1	Wall_Idb1_1.unit1	3.90		1.35
Window_Idb2_1_Bot.unit1	Wall_Idb1_2.unit1	8.00		3.20
Window_Idb2_1_Top.unit1	Wall_Idb1_2.unit1	8.00		3.95
Window_Idb2_2_Bot.unit1	Wall_Idb1_2.unit1	3.90		3.20
Window_Idb2_2_Top.unit1	Wall_Idb1_2.unit1	3.90		3.95

The coordinates of the remaining vertices of each north facing window are calculated using above equation.

For AERC baseline window B, the coordinates of the eight north facing windows are as follows

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_Idb1_1_Bot.unit1	Wall_Idb1_1.unit1	1	8.00000	10.55858	0.60000
		2	6.67679	10.55858	0.60000
		3	6.67679	10.55858	1.27321
		4	8.00000	10.55858	1.27321
Window_Idb1_1_Top.unit1	Wall_Idb1_1.unit1	1	8.00000	10.55858	1.35000
		2	6.67679	10.55858	1.35000
		3	6.67679	10.55858	2.02321
		4	8.00000	10.55858	2.02321
Window_Idb1_2_Bot.unit1	Wall_Idb1_1.unit1	1	3.90000	10.55858	0.60000
		2	2.57679	10.55858	0.60000
		3	2.57679	10.55858	1.27321
		4	3.90000	10.55858	1.27321
Window_Idb1_2_Top.unit1	Wall_Idb1_1.unit1	1	3.90000	10.55858	1.35000
		2	2.57679	10.55858	1.35000
		3	2.57679	10.55858	2.02321
		4	3.90000	10.55858	2.02321
Window_Idb2_1_Bot.unit1	Wall_Idb1_2.unit1	1	8.00000	10.55858	3.20000
		2	6.67679	10.55858	3.20000
		3	6.67679	10.55858	3.87321
		4	8.00000	10.55858	3.87321
Window_Idb2_1_Top.unit1	Wall_Idb1_2.unit1	1	8.00000	10.55858	3.95000
		2	6.67679	10.55858	3.95000
		3	6.67679	10.55858	4.62321
		4	8.00000	10.55858	4.62321
Window_ldb2_2_Bot.unit1	Wall_Idb1_2.unit1	1	3.90000	10.55858	3.20000

		2	2.57679	10.55858	3.20000
		3	2.57679	10.55858	3.87321
		4	3.90000	10.55858	3.87321
Window_Idb2_2_Top.unit1	Wall_Idb1_2.unit1	1	3.90000	10.55858	3.95000
		2	2.57679	10.55858	3.95000
		3	2.57679	10.55858	4.62321
		4	3.90000	10.55858	4.62321

C.1.2.4 East facing windows:

There are also eight east facing windows (named as Window_sdrF_N_Pos.unit1).
Coordinates of the lower-left corner vertice ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$) are fixed as follows:
$X 1=X 2=X 3=X 4=10.55858$,
$\mathrm{Y} 1=$ values for each of east facing windows are listed in table below
$\mathrm{Z} 1=$ values for each of east facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f-A v e}$) using the below formulas:

$$
\begin{aligned}
& \mathrm{Y} 2=\mathrm{Y} 1+\left(\mathrm{W}-2^{*} L_{f-A v e}\right) \\
& \mathrm{Z} 2=\mathrm{Z} 1 \\
& \mathrm{Y} 3=\mathrm{Y} 1+\left(\mathrm{W}-2^{*} L_{f-A v e}\right) \\
& \mathrm{Z} 3=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f-A v e}\right) \\
& \mathrm{Y} 4=\mathrm{Y} 1 \\
& \mathrm{Z} 4=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f-A v e}\right)
\end{aligned}
$$

The coordinates of the lower-left corner vertices of the eight east facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1	10.55858	2.50	0.60
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1		2.50	1.35
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1		6.60	0.60
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1		6.60	1.35
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1		2.50	3.20
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1		2.50	3.95
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1		6.60	3.20
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1		6.60	3.95

The coordinates of the remaining vertices of each east facing window are calculated using above equations.

For AERC baseline window B, the full set of coordinates for the eight east facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	0.60000
		2	10.55858	3.82321	0.60000
		3	10.55858	3.82321	1.27321
		4	10.55858	2.50000	1.27321
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	1.35000
		2	10.55858	3.82321	1.35000
		3	10.55858	3.82321	2.02321
		4	10.55858	2.50000	2.02321
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	0.60000
		2	10.55858	7.92321	0.60000
		3	10.55858	7.92321	1.27321
		4	10.55858	6.60000	1.27321
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	1.35000
		2	10.55858	7.92321	1.35000
		3	10.55858	7.92321	2.02321
		4	10.55858	6.60000	2.02321
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.20000
		2	10.55858	3.82321	3.20000
		3	10.55858	3.82321	3.87321
		4	10.55858	2.50000	3.87321
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.95000
		2	10.55858	3.82321	3.95000
		3	10.55858	3.82321	4.62321
		4	10.55858	2.50000	4.62321
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.20000
		2	10.55858	7.92321	3.20000
		3	10.55858	7.92321	3.87321
		4	10.55858	6.60000	3.87321
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.95000
		2	10.55858	7.92321	3.95000
		3	10.55858	7.92321	4.62321
		4	10.55858	6.60000	4.62321

C.1.2.5 West facing windows:

There are also eight west facing windows (named as Window_sdlF_N_Pos.unit1). where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:
$\mathrm{X} 1=\mathrm{X} 2=\mathrm{X} 3=\mathrm{X} 4=0.00$,
$\mathrm{Y} 1=$ values for each of west facing windows are listed in table below
Z1 = values for each of west facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f-A v e}$) using the below formulas:

$$
\begin{aligned}
& \mathrm{Y} 2=\mathrm{Y} 1-\left(\mathrm{W}-2^{*} L_{f-A v e}\right) \\
& \mathrm{Z} 2=\mathrm{Z} 1 \\
& \mathrm{Y} 3=\mathrm{Y} 1-\left(\mathrm{W}-2^{*} L_{f_{-A v e}}\right) \\
& \mathrm{Z} 3=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f-A v e}\right) \\
& \mathrm{Y} 4=\mathrm{Y} 1 \\
& \mathrm{Z} 4=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f-A v e}\right)
\end{aligned}
$$

The coordinates of the lower-left corner vertices of the eight west facing windows are listed as follows:

Fenestration Name	Building Surface Name	X	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1	0.00	8.00	0.60
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1		8.00	1.35
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1		3.90	0.60
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1		3.90	1.35
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1		8.00	3.20
Window_sd12_1_Top.unit1	Wall_sdl1_2.unit1		8.00	3.95
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1		3.90	3.20
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1		3.90	3.95

The coordinates of the remaining vertices of each west facing window are calculated using above equations.

For AERC baseline window B, the coordinates of the eight west facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	0.60000
		2	0.00000	6.67679	0.60000
		3	0.00000	6.67679	1.27321
		4	0.00000	8.00000	1.27321
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	1.35000
		2	0.00000	6.67679	1.35000
		3	0.00000	6.67679	2.02321
		4	0.00000	8.00000	2.02321

Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	0.60000
		2	0.00000	2.57679	0.60000
		3	0.00000	2.57679	1.27321
		4	0.00000	3.90000	1.27321
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	1.35000
		2	0.00000	2.57679	1.35000
		3	0.00000	2.57679	2.02321
		4	0.00000	3.90000	2.02321
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.20000
		2	0.00000	6.67679	3.20000
		3	0.00000	6.67679	3.87321
		4	0.00000	8.00000	3.87321
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.95000
		2	0.00000	6.67679	3.95000
		3	0.00000	6.67679	4.62321
		4	0.00000	8.00000	4.62321
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.20000
		2	0.00000	2.57679	3.20000
		3	0.00000	2.57679	3.87321
		4	0.00000	3.90000	3.87321
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.95000
		2	0.00000	2.57679	3.95000
		3	0.00000	2.57679	4.62321
		4	0.00000	3.90000	4.62321

A complete EnergyPlus window configuration inc file for the current AERC baseline window B was attached at the end of this document as Appendix F.

Baseline Window Configuration Include File:

FenestrationSurface:Detailed,	
Window_Idf1_1 Bot_unit1, !- Name Window, !-Surface Type	B: Baseline window run: Glazing construction name is
AERC_Doubleclear_Baseline, 1-Construction Name	
Wall_Idf1_1.unit1, !- Building Surface Name	AERC_Doubleclear_Baseline. Frame construction name is
!- Outside Boundary Condition Object	
!- View Factor to Ground	AERC_Wood_Frame for both
!-Shading Control Name	top and bottom "half" of the
AERC_Wood_Frame, !- Frame and Divider Nam	baseline window.
1, !-Multiplier	
4, !- Number of Vertices	
$2.500000000000,0.000000000000,0.600000000000$,	$X, Y, Z==>$ Vertex 1 \{m\}
$3.823210000000,0.000000000000,0.600000000000$,	$X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 1.273210000000,	$X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.500000000000,0.000000000000,1.273210000000$;	$X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,	
Window_Idf1_1 Top.unit1, !- Nam	
Window, !-Surface Type	
AERC_Doubleclear_Baseline, !- Construction Nam	
wail_Idif_I.uniti, !- Buliding Surface Name	
!- Outside Bøundary Condition Object	
!- View Factor to Ground	
!-Shading Control Name	
AERC_Wood_Frame, !- Frame and Divider Name	
1, !- Multiplier	
4, !- Number of Vertices	
$2.500000000000,0.000000000000,1.350000000000$, !	$X, Y, Z==>$ Vertex 1 \{m\}
3.823210000000, 0.000000000000, 1.350000000000, !	$X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 2.023210000000, !	$X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
2.500000000000, 0.000000000000, 2.023210000000; !	$X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$

1 Window Material/Construction file vith spectral data in IDF format	
Construction:ComplexFenestrationState,	
AERC_Doubleclear_Baseline,	!- name
LBNLW indow,	!- basis type
None,	!- basis symmetry type
ThermParam_Glz_10001,	!- window thermal model
CFS_Glz_10001_Basis,	!- basis matrix name
CFS_Glz_10001_TfSol,	!- Tfsol
CFS_Glz_10001_RbSol,	!- Rbsol
CFS_Glz_10001_Tfvis,	!- Tfvis
CFS Glz 10001 Bbvis,	!- Rbvis
Glass_102_Layer,	!- layer 1 name
CFS_Glz_10001_Layer_1_fAbs,	!-fabs
CFS_Glz_10001_Layer_1_bAbs,	!-bAbs
Gap_1_Glz_10001_Layer_1,	!- gap 1 name
Glass_102_Layer,	!- layer 2 name
CFS_Glz_10001_Layer_2_fAbs,	!-fabs
CFS_Glz_10001_Layer_2_bAbs;	!-bAbs

Adiabatic Window Configuration Include File:

FenestrationSurface:Detailed,		
Window_Idf1_1 Bot.unit1, !- Name Window, !-Surface Type	A: Adiabatic window run: Glazing construction name is	
Adiabatic_Window, \quad Kl-Construction Name		
	Adiabatic_window. Frame and	
!- Outside Boundary Condition Obje	divider construction name is blank (keep a comma) for both top and bottom "half" of the baseline window.	
!- View Factor to Ground		
!- Shading Control Name		
4-Frame and Divider Name		
1, !- Multiplier		
4, !- Number of Vertices		
$2.500000000000,0.000000000000,0.600000000000,1-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$		
$3.823210000000,0.000000000000,0.600000000000,1-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$		
$3.823210000000,0.000000000000,1.273210000000$, !- $X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$		
$2.50000000000,0.000000000000,1.273210000000 ;$!- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$		
FenestrationSurface:Detailed, Window_Idf1_1 Top,unit1, !. Name Window,		
Adiabatic_Window, !-Construction Name		
Wvail_lufi_1.until, i- Buliuing Surface Name		
, !- Outside Boundary Condition Object		
!- Yiew Factor to Ground		
1-Shading Control Name		
!- Frame and Divider Name		
1, !- Multiplier		
4, !- Number of Vertices		
$2.50000000000,0.000000000000,1.350000000000,1-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$		
$3.823210000000,0.000000000000,1.350000000000$, - X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$		
$3.823210000000,0.000000000000,2.023210000000,1-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$		
2.500000000000, 0.000000000000, 2.023210000000; !-	$X, Y, Z==>$ Vertex 4 \{m\}	

Adiabatic Window Construction Include File (Window_construction_adiabatic.inc):

```
!-----------------------------------------------
! Window Glass Layers
!------------------------------------------------
WindowMaterial:Glazing,
    Super_Insulated_Glass, !- Name
    SpectralAverage, !- Optical Data Type
    , !-Window Glass Spectral Data Set Name
    0.003, !- Thickness {m}
    0.000001, !- Solar Transmittance at Normal Incidence
    0.999999, !- Front Side Solar Reflectance at Normal Incidence
    0.999999, !- Back Side Solar Reflectance at Normal Incidence
    0.000001, !- Visible Transmittance at Normal Incidence
    0.999999, !- Front Side Visible Reflectance at Normal Incidence
    0.999999, !- Back Side Visible Reflectance at Normal Incidence
    0.000000, !- Infrared Transmittance at Normal Incidence
    0.000001, !- Front Side Infrared Hemispherical Emissivity
    0.000001, !- Back Side Infrared Hemispherical Emissivity
    0.00000001 !-Conductivity {W/m-K}
!------------------------------------------------
! Window Construction
!-----------------------------------------------
    fonstruction,
    Adiahatic_window! !-Name
    Super_Insulated_Glass; !- Outside Layer
```


Half-Deployed Window Configuration Include File:

Fully-Deployed Window Configuration Include File:

C. 2 Zone Infiltration:

The method of calculating air infiltration for the house with baseline windows, adiabatic windows and baseline windows with attachments consists of the following steps:
(1) Calculate the ELA of the whole house with baseline windows, ELA $_{H}$
(2) Calculate the ELA of all baseline windows, ELA ${ }_{W}$
(3) Calculate the ELA of the whole house with adiabatic windows (no window infiltration), $E L A_{\text {но }}$
(4) Calculate the ELA of all windows with attachment, ELA ${ }_{\text {WA }}$
(5) Calculate the ELA of the whole house with windows and attachments, ELA HwA

C.2.1 Calculating the ELA of the whole house with baseline windows, ELA $_{H}$

$$
\begin{gather*}
E L A_{H}=\frac{Q_{50}\left[\frac{\Delta P_{4}}{\Delta P_{50}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \times 10000 \tag{I.1}\\
Q_{50}=\frac{V_{H} \cdot A C H_{50}}{3600} \tag{I.2}
\end{gather*}
$$

Where:

$$
\begin{aligned}
E L A_{H} & =\text { Effective leakage area of the whole house with baseline windows, } \\
\left.\mathrm{cm}_{50}\right) & =\text { Total house infiltration at } 50 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right) \\
\Delta P_{50} & =50 \text { Pa test pressure for windows, }(\mathrm{Pa}) \\
\Delta P_{4} & =4 \text { Pa used as baseline for comparison, }(\mathrm{Pa}) \\
n & =0.65 ; \text { Flow exponent }[-] \\
\rho & =1.29 ; \text { Air density at standard temp. \& press., }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
V_{H} & =\text { The volume of the house, }\left(\mathrm{m}^{3}\right) \\
A C H_{50} & =\text { Air changes per hour at } 50 \mathrm{~Pa}
\end{aligned}
$$

C.2.2 Calculating the ELA of all baseline windows, ELA $_{w}$

$$
\begin{gather*}
E L A_{W}=\frac{Q_{W 75}\left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \times 10000 \tag{I.3}\\
Q_{W 75}=q_{W 75} \cdot A_{W} \tag{I.4}
\end{gather*}
$$

Where:

$$
\begin{aligned}
& E L A_{W}=\text { Effective leakage area of all baseline windows, }\left(\mathrm{cm}^{2}\right) \\
& Q_{W 75} \quad=\text { Total baseline window infiltration at } 75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right) \\
& \Delta P_{75} \quad=75 \mathrm{~Pa} \text { test pressure for windows, (Pa) } \\
& \begin{aligned}
& q_{W 75}=0.01016 \mathrm{~m}^{3} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right)\left(2.0 \mathrm{cfm} / \mathrm{ft}^{2}\right) \text {; The infiltration per unit area of } \\
& \text { baseline window at } 75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s} \cdot \mathrm{~m}^{2}\right)
\end{aligned} \\
& A_{w} \quad=\text { Total window area, }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

C.2.3 Calculating the ELA of the whole house without windows, ELA но

$$
\begin{equation*}
E L A_{H O}=E L A_{H}-E L A_{W} \tag{I.5}
\end{equation*}
$$

C.2.4 Calculating the ELA of windows with attachments, ELA ${ }_{\text {wA }}$

$$
\begin{gather*}
E L A_{W A}=\frac{Q_{W A 75}\left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \cdot 10000 \tag{I.6}\\
Q_{W A 75}=q_{W A 75} \cdot A_{W} \tag{I.7}
\end{gather*}
$$

Where:
$E L A_{W A}=$ Effective leakage area of all windows with attachment, $\left(\mathrm{cm}^{2}\right)$
$Q_{75 W A}=$ Total infiltration of the windows with attachment at $75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
$q_{\text {WA75 }}=$ The measured air infiltration per unit area of the window with attachment at 75 Pa , also known as air leakage measurement; $\left[\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\right]$

Conversion of measured air leakage from IP units ($\mathrm{cfm} / \mathrm{sf}^{2}$) to SI units $\left(\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\right.$) is given by. This quantity is specified as input data in AERCalc for infiltration of window attachment product (baseline window plus window attachment):

$$
q_{W A 75}(S I)=0.00508 \cdot q_{W A 75}(I P)
$$

Where the conversion factor 0.00508 is the result of the following conversion action: (ft to $\mathrm{m}) /(\mathrm{min}$ to sec$)$, or $0.3048 / 60$.

C.2.5 Calculating the ELA of the whole house with window and attachment, ELA $A_{\text {HwA }}$

$$
\begin{equation*}
E L A_{H W A}=E L A_{H O}+E L A_{W A} \tag{I.8}
\end{equation*}
$$

Numerical values for the typical house and baseline window in AERCalc air:

$$
\begin{gather*}
\mathrm{V}_{\mathrm{H}}=577.6288 \mathrm{~m}^{3} \tag{I.9}\\
\mathrm{ACH}_{50 _} \text {cooling }=101 / \mathrm{hr} \tag{I.10}\\
\mathrm{ACH}_{50-} \text { heating }=71 / \mathrm{hr} \tag{I.11}\\
\mathrm{q}_{\mathrm{w} 75}=0.01016 \mathrm{~m}^{3} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right) \tag{I.12}\\
\mathrm{A}_{\mathrm{w}}=33.6 \mathrm{~m}^{2} \tag{I.13}
\end{gather*}
$$

For cooling climate:

$$
\begin{align*}
& E L A_{H O}=1,044 \mathrm{~cm}^{2} \\
& E L A_{H W A}=1,044+E L A_{W A} \mathrm{~cm}^{2} \tag{I.14}
\end{align*}
$$

For example, if the measured air infiltration of the window with attachment is $1 \mathrm{cfm} / \mathrm{sf}^{2}$, then:
$E L A_{H W A}$ equals to $1146 \mathrm{~cm}^{2}$, this value should be inputted in the ELA filed of EnergyPlus IDF files for cooling simulation.

$$
E L A_{W A}=\frac{1 \cdot 0.00508 \cdot 33.6 \cdot\left[\frac{4}{75}\right]^{0.65}}{\left[\frac{8}{1.29}\right]^{0.5}} \cdot 10000=101.977 \mathrm{~cm}^{2}
$$

Therefore,

$$
E L A_{H W A}=1,044+101.977=1,145.997 \mathrm{~cm}^{2}
$$

For heating climate calculation:

$$
\begin{align*}
E L A_{H 0} & =669 \mathrm{~cm}^{2} \\
E L A_{H W A} & =669+E L A_{W A}\left(\mathrm{~cm}^{2}\right) \tag{I.15}
\end{align*}
$$

For the same example the infiltration for the house with window attachments will be:

$$
E L A_{H W A}=669+101.977=770.997 \mathrm{~cm}^{2}
$$

Baseline window and half-deployed window infiltration include file for Houston (Air infiltration baseline Houston.inc):

ZoneInfiltration:EffectiveLeakageArea,
Living_ShermanGrimsrud_unit1, !-Name
living_unit1,
always_avail,

1248,	- Zone Name

0.00029,	- Effedule Name
$0.000231 ;$!-Stack Coefficient
!- Wind Coefficient	

B and H : Baseline window run and half-deployed window run: the effective air leakage area (ELA) is 1044+ELAw in Houston. ELAw is 204.

Baseline window and half-deployed window infiltration include file for Minneapolis (Air infiltration baseline Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !-Zone Name always_avail, !- Schedule Name 873, !-Effective Air Leakage Area 0.00029, !- Stack Coefficient 0.000231; !-Wind Coefficient
B and H: Baseline window run and half-deployed window run: the effective air leakage area (ELA) is 669+ELAw in Minneapolis. ELAw is 204.

Adiabatic window infiltration include file for Houston
(Air infiltration adiabatic Houston.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !- Zone Name

1044,
0.00029,
0.000231; !- Wind Coefficient

Adiabatic window infiltration include file for Minneapolis (Air infiltration adiabatic Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !-Zone Name always_avail, !-schedule Name 669, !- Effective Air Leakage Area \{cm2\}
0.00029, !-Stack Coefficient
0.000231; !- Wind Coefficient

Fully-deployed window infiltration include file for Houston
(Air infiltration user input Houston.inc):
ZoneInfiltration:EffectiveLeakageArea,
living_unit1, !- Zone Name always_avail, !- Schedule Name $1044+$ ELA $_{s}$!-Effective Air Leaka 0.00029, !- Stack Coefficient 0.000231; !-Wind Coefficient

Living_ShermanGrimsrud_unit1, !- Name

A: Adiabatic window run: the effective air leakage area (ELA) is 669 in Minneapolis.

F: Attachments fully deployed: the effective air leakage area (ELA) is $1044+$ ELA $_{s}$ in Houston. ELA A_{S} is attachment dependent and is specified as input data.

Fully-deployed window infiltration include file for Minneapolis (Air infiltration user input Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !-Name	
living_unit1, !- Zone Name always_avail,	!- Schedule Name
$669+$ ELA $_{s,}$!-Effective Air Leakage	
0.00029, !- Stack Coefficient $0.000231 ;$ $!-$ Wind Coefficient	

F: Attachments fully deployed: the effective air leakage area (ELA) is $669+$ ELA $_{s}$ in Houston. ELA $_{s}$ is attachment dependent and is specified as input data.

Note 1: $E L A_{S}$ in annotations above was replaced with $E L A_{W A}$ notation in equations preeding these annotations.

Note 2: In AERCalc, users are required to input the measured air leakage (AL) of the window with attachment, but in EnergyPlus the infiltration is calculated based on the effective leakage area of the whole house including the windows with attachments. Thus, it is necessary to convert the user-input air leakage to the effective leakage area of the whole house ($E L A_{H W A}$)at the back-end before starting simulation. In addition to this conversion, unit conversion will often be required, since most common way of reporting $A L$ is in IP units of cfm $/ s f^{2}$. The methodology of converting $A L$ into $E L A_{H W A}$ was illustrated in above.

C. 3 HVAC:

HVAC System for Houston

- Red highlight: System_autosize_Houston.inc
- Yellow highlight: System_sizing_Houston.inc

AirLoopHUAC:UnitaryHeatPump:AirToAir, Heat Punp_unit1, !- Nane always_avail, !- Auailability Schedule Name Air Loop Inlet node_unit1, :- Air Inlet Node Name Air Loop Outlet Node_unit1, ? - Air Outlet Node Nane	13, for baseline window run, this field keeps autosize, for other
autosize, ?-Supply Air Flow Rate During Cooling Ope	runs, this field replaces with
0.652, \leftarrow ? - Supply Air Flou Rate During Cooling Operat:	
autosize,	0.652
0.652, ?- Supply Air Flow Rate During Heating Operat:	
6. 0, - Supply Air Flow Rate When No Cooling or Heat living_unit1, - Controlling Zone or Thermostat Location Fan:0noff, - Supply Air Fan Object Type	
Supply Fan_unit1, :- Supply Air Fan Name	
Coil:Heating:DX:SingleSpeed, \quad - Heating Coil 0bject Type Main DX Heating Coil_unit1, !- Heating Coil Name Coil:Cooling:DX:SingleSpeed, :- Cooling Coil object Type	14, for baseline window run, this
DX Cooling Coil_unit1, Coil:Heating:Electric, Cooling Coil Nane :- Supplemental Heating Coil object Type	field keeps autosize, for other
Supp Heating Coil_unit1, :- Supplenental Heating Coil Nane 50, :- Maximun Supply Air Temperature from Supplent	runs, this field replaces with
10, !- Maximun Outdoor Dry-Bulb Temperature for Sul	
Blowfhrough, fan_cycle; - - Sapply Air Fan Operating Mode Schedule Nane	
Branch, Air Loop Main Branch unit1, !- Name	
autosize, :- Maximun Flow Rate \{m3/s\}	15, for baseline window run, this
0.652, ¢ - Maximum Flow Rate \{m3/s\}	
:- Pressure Drop Curve Name AirLoopHUAC: UnitaryHeatPump:AirtoAir, !- Component 1 object Type	field keeps autosize, for other
Heat Pump_unit1, \quad - - Component 1 Name	runs, this field replaces with
Air Loop Inlet Node_unit1, :- Component 1 Inlet Node Name	
Air Loop Outlet Node_unit1, :- Component 1 Outlet Node Name	0.652
ACTIUE; :- Component 1 Branch Control Type	

Pump:UariableSpeed,
Mains Pressure_unit1, :- Name
Mains Inlet Node_unit1, :- Inlet Node Name
Mains Pressure Outlet Node_unit1, !- Outlet Node Name

autosize,	?- Design Maximum Flow Rate \{m3/s\}	16, for baseline window run, this
6.030399, \leftarrow	?- Design Maximun Flow Rate \{m3/s\}	
179352,	:- Design Pump Head $\{$ Pa $\}$	field keeps autosize, for other
autosize,	:- Design Power Consumption \{V\}	runs, this field replaces with
0.9 ,	?- Motor Efficiency	runs, this field replaces with
B,	?- Coefficient 1 of the Part Load P	0.000009
1,	? - Coefficient 2 of the Part Load P	
©,	? - Coefficient 3 of the Part Load P	
0 ,	? - Coefficient 4 of the Part Load P	
0 ,	:- Design Minimun Flow Rate \{m3/s\}	
Intermittent;	?- Pump Control Type	

WaterHeater:Mixed,		
Water Heater_unit1,	!- Name	
0.196841372,	!- Tank Uolume \{ m3\}	
dhw_setpt,	!- Setpoint Temperature Schedule Name	
2 ,	:- Deadband Temperature Difference \{deltac\}	
Cucle	!- Maximum Temperature Limit 17 , for baseline window run, this	
autosize,	?- Heater Maximum Capacity ${ }^{\text {\% }}$	
5500, <	?- Heater Maximun Capacity \{ W	
B,	:- Heater Minimum Capacity \{ W runs, this field replaces with	
©,	!- Heater Ignition Minimum fr	
	:- Heater Ignition Delay \{s\} 5500	
electricity,	?- Heater Fuel Type	
1,	?- Heater Thermal Efficiency	
	!- Part Load Factor Curue Name	
,	!- Off Cycle Parasitic Fuel Consumption Rate \{ ${ }^{\text {c }}$ \}	
,	!- Off Cycle Parasitic Fuel Type	
	!- Off Cycle Parasitic Heat Fraction to Tank	
,	:- On Cycle Parasitic Fuel Consumption Rate \{ W\}	
,	:- On Cycle Parasitic Fuel Type	
	:- On Cycle Parasitic Heat Fraction to Tank	
Zone,	!- Ambient Temperature Indicator	
	!- Ambient Temperature Schedule Name	
living_unit1,	!- Ambient Temperature Zone Name	
	!- Ambient Temperature Outdoor Air Node Name	
1.3306616,	:- Off Cycle Loss Coefficient to Ambient Temperature \{W/K\}	
1,	:- Off Cycle Loss Fraction to Zone	
1.3306616,	:- On Cycle Loss Coefficient to Ambient Temperature \{ W / K \}	
1 ,	!- On Cycle Loss Fraction to Zone	
0,	!- Peak Use Flow Rate $\{\mathrm{m} 3 / \mathrm{s}$ \}	
,	!- Use Flow Rate Fraction sch 18, for baseline window run, this	
	Water Heater use inlet node_unit1, :- Use side Inlet field keeps autosize, for other	
Water Heater use outlet node_unit1, !- Use side outle runs, this field replaces with		
1,	?- Source Side Inlet Node Nam $\bigcirc \bigcirc 0000$	
,	!-Source Side Outlet Node Na	
1,	!- Source Side Effectiveness	
autosize,	?- Use Side Design Flow Rate \{m3/s\}	
0.080069,	!- Use Side Design Flow Rate \{m3/s\}	
0,	?- Source Side Design Flow Rate \{m3/s\}	
1.5;	!- Indirect Water Heating Recovery Time \{hr\}	

HVAC System for Minneapolis

- Red highlight: System_autosize_Minneapolis.inc
- Yellow highlight: System_sizing_Minneapolis.inc

Sizing:System, Central System_unit1, Sensible,	!- AirLoop Name :- Type of Load to Size On	1, for baseline window run, this field keeps autosize, for other
autosize,	?- Design Outdoor Air Flow Rate \{m3/s\}	
0.563,	!- Design Outdoor Air Flow Rate \{m3/s\}	runs, viz. adiabatic window run,
1,	:- Central Heating Maximum System Air Flow	
7,	:- Preheat Design Temperature $\{\mathrm{C}\}$	shade fully-deployed run and shade half-deployed run, this
0.008,	:- Preheat Design Hunidity Ratio \{kgWater	
0. 008 ,	?- Precool Design Hunidity Ratio \{kgWa	
12,	:- Central Cooling Design Supply Air Temp	field replaces with 0.563
50,	:- Central Heating Design Supply Air Temp	
NonCoincident,	:- Type of Zone Sun to Use	-
No,	!- 100\% Outdoor Air in Cooling	
No,	!- 106\% Outdoor Air in Heating	
0.008,	!- Central Cooling Design Supply Air Humid:	
0.008,	!- Central Heating Design Supply Air Humid:	
designday,	!- Cooling Supply Air flow Rate Method	
,	:- Cooling Supply Air Flow Rate \{m3/s\}	
,	:- Cooling Supply Air Flow Rate Per Floor :- Cooling Fraction of Autosized Cooling	2, for baseline window run, this
	?- Cooling Supply Air Flow Rate Per Unit	
designday,	!- Heating Supply Air flow Rate Method	field keeps autosize, for other
,	:- Heating Supply Air Flow Rate \{m3/s\}	runs, this field replaces with
,	!- Heating Supply Air Flow Rate Per Floor	
,	!- Heating Fraction of Autosized Heating Si	7979.19
,	?- Heating Fraction of Autosized Cooling	
	!- Heating Supply Air Flow Rate Per Unit Hr	
ZoneSun,	:- Systen Outdoor Air Method	
0.5,	:- Zone Maximun Outdoor Air Fraction \{dimeı	
CoolingDesignCapacity, !-Cooling Design Capacity Method		
autosize,	?- Cooling Design Capacity \{ W\}	
7979.19, <	!- Cooling Design Capacity \{ W\}	
HeatingDesignCapacity,	:- Cooling Design Capacity Per Floor Area :- Fraction of Autosized Cooling Design Caן :- Heating Design Capacity Method	3, for baseline window run, this
autosize,	:- Heating Design Capacity \{U\}	field keeps autosize, for other
15123.09,	!- Heating Design Capacity $\langle W\}$	runs, this field replaces with
,	:- Heating Design Capacity Per Floor area	
;	:- Fraction of Autosized Heating Design Cal	15123.09
;	!- Central Cooling Capacity Control Method	1.5123.09

AirTerminal:SingleDuct:Uncontrolled,	
ZoneDirectAir_unit1,	!- Name
always_avail,	!- Auailability Schedule Name
Zone Inlet Node_unit1,	!- Zone Supply Air Node Name
autosize;	!- Maximum Air Flow Rate $\{\mathrm{m} 3 / \mathrm{s}\}$

4, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563

Appendix D: Cooling and Heating Season Definition

Table D1. Cooling and Heating Season Definition for Heating and Cooling EP

Minneapolis			Houston		
	Start	End		Start	End
Winter	November 1	January 31	Winter	December 1	February 28
Spring	February 1	April 30	Spring	March 1	May 31
Summer	May 1	July 31	Summer	June 1	August 31
Autumn	August 1	October 31	Autumn	September 1	November 30
Heating	September 15	March 16	Heating	October 16	April 14
Cooling	March 17	September 14	Cooling	April 15	October 15

Appendix E: ESCalc XML Schema

ESCalc XML schema describes interface between AERCalc and calculation module ESCalc.
<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmIns:vc="http://www.w3.org/2007/XMLSchema-versioning"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.1" vc:minVersion="1.1">
<xs:element name="ESCalc">
xs:complexType
xs:sequence
<xs:element name="Input" minOccurs="0">
xs:annotation
xs:documentationESCalc Inputs</xs:documentation>
</xs:annotation>
xs:complexType
xs:sequence
<xs:element name="Selection" maxOccurs="3">
xs:annotation
xs:documentationSelection of calculation type. EA: Adiabatic Windows Run; EB: Baseline WIndows Runb;
ES: Window Attachment Run</xs:documentation>
</xs:annotation>
xs:simpleType
<xs:restriction base="xs:string">
<xs:minLength value="2"/>
<xs:maxLength value="2"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Climate">
xs:annotation
xs:documentationSelection of climate. Cooling: Houston climate data and assumptions; Heating:
Minneapolis climate data and assumptions</xs:documentation>
</xs:annotation>
xs:simpleType
<xs:restriction base="xs:string">
<xs:minLength value="7"/>
<xs:maxLength value="7"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="AttachmentType" minOccurs="0">
xs:annotation
xs:documentationSelection of Attachment type. RollerShades; CellularShades; SolarScreens;
AppliedFilms; VenetianBlinds; VerticalBlinds; WindowPanels; and PleatedShades</xs:documentation>
</xs:annotation>
xs:simpleType
<xs:restriction base="xs:string">
<xs:minLength value="12"/>
<xs:maxLength value="14"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NoCSVFiles" type="xs:integer">
xs:annotation
xs:documentationNumber of supplied CSV IDF files. 1 file for EA, EB, or ES for fixed attachments; 2 files
for 1D shades; and 7 files for 2D shades</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CSVFile" maxOccurs="7">
xs:complexType
xs:sequence
<xs:element name="CSVFileName" type="xs:string">
xs:annotation
xs:documentationArbitrary CSV File name for each E+ run</xs:documentation>
</xs:annotation>

```
            </xs:element>
            <xs:element name="DeploymentState" minOccurs="0">
                        <xs:annotation>
                <xs:documentation>Deployment State: Open (only for 1-D and 2-D shades), Half (only for 1-D and
2-D shades), or Full (for all shades)</xs:documentation>
                </xs:annotation>
                <xs:simpleType>
                        <xs:restriction base="xs:string">
                        <xs:minLength value="4"/>
                            <xs:maxLength value="4"/>
                            </xs:restriction>
                            </xs:simpleType>
                            </xs:element>
                    <xs:element name="SlatAngle" type="xs:integer" minOccurs="0">
                        <xs:annotation>
                            <xs:documentation>Slat Angle for Louvered Blinds: 0, -45, 45, 90</xs:documentation>
                            </xs:annotation>
                    </xs:element>
                    </xs:sequence>
                    </xs:complexType>
                    </xs:element>
            </xs:sequence>
            </xs:complexType>
            </xs:element>
            <xs:element name="Output" minOccurs="0">
            <xs:annotation>
                    <xs:documentation>ESCalc Outputs</xs:documentation>
            </xs:annotation>
            <xs:complexType>
                    <xs:sequence>
                    <xs:element name="E_HVAC" type="xs:float"/>
                    <xs:element name="EP" type="xs:float" minOccurs="0"/>
                    </xs:sequence>
            </xs:complexType>
            </xs:element>
        </xs:sequence>
        </xs:complexType>
    </xs:element>
</xs:schema>
```

The following Figure shows schematic presentation of the Schema.

Figure E1. Schematic Presentation of the ESCalc Schema

Examples of the schema for fixed window attachment and venetian blinds products are shown next, respectively:

Example of a fixed window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
    <Input>
        <Selection>ES</Selection>
        <Climate>Houston</Climate>
        <AttachmentType>SolarScreens</AttachmentType>
        <NoCSVFiles>1</NoCSVFiles>
        <CSVFile>
            <CSVFileName>Test-File-Name-1_SS</CSVFileName>
        </CSVFile>
    </Input>
    <Output>
        <E_HVAC>115.92</E_HVAC>
        <EP>53.2</EP>
    </Output>
```

```
</ESCalc>
```


Example of venetian blind window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
    <Input>
        <Selection>ES</Selection>
        <City>Minneapolis</City>
        <AttachmentType>VenetianBlinds</AttachmentType>
        <NoCSVFiles>7</NoCSVFiles>
        <CSVFile>
            <CSVFileName>Test-File-Name-2 VB Open 0</CSVFileName>
            <DeploymentState>Full</DeploymentState>
            <SlatAngle>0</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2_VB_Full_-45</CSVFileName>
            <DeploymentState>Full</DeploymentState>
            <SlatAngle>-45</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2_VB_Full_45</CSVFileName>
            <DeploymentState>Full</DeploymentState>
            <SlatAngle>45</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2 VB Full 90</CSVFileName>
            <DeploymentState>Full</DeploymentState>
            <SlatAngle>90</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2_VB_Half_-45</CSVFileName>
            <DeploymentState>Half</DeploymentState>
            <SlatAngle>-45</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2_VB_Half_45</CSVFileName>
            <DeploymentState>Half</DeploymentState>
            <SlatAngle>45</SlatAngle>
        </CSVFile>
        <CSVFile>
            <CSVFileName>Test-File-Name-2_VB_Half_90</CSVFileName>
            <DeploymentState>Half</DeploymentState>
            <SlatAngle>90</SlatAngle>
        </CSVFile>
    </Input>
    <Output>
        <E_HVAC>127.32</E_HVAC>
        <EP>34.6</EP>
    </Output>
</ESCalc>
```


Appendix F: EnergyPlus Window configuration file for baseline window

B

!- Window_configuration_baseline.inc
!- There are 4 seperated windows on each floor each orientation

FenestrationSurface:Detailed,
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_1.unit1, - !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$2.500000000000,0.000000000000,0.600000000000$, !- X,Y,Z ==> Vertex 1 \{m\}
$3.823210000000,0.000000000000,0.600000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,1.273210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.500000000000,0.000000000000,1.273210000000 ;$!- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,

Window_Idf1_1_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$2.500000000000,0.000000000000,1.350000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,1.350000000000$, !- X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,2.023210000000$, !- X,Y,Z ==> Vertex 3 \{m\}
$2.500000000000,0.000000000000,2.023210000000 ;$!- X,Y,Z ==> Vertex 4 \{m\}

FenestrationSurface:Detailed,

Window_Idf1_2_Bot.unit1, !- Name
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$6.600000000000,0.000000000000,0.600000000000$, !- X,Y,Z ==> Vertex 1 \{m\}
$7.923210000000,0.000000000000,0.600000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,1.273210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$6.600000000000,0.000000000000,1.273210000000 ;$!- X,Y,Z ==> Vertex 4

FenestrationSurface:Detailed,
Window_Idf1_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_ldf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices

```
6.600000000000,0.000000000000,1.350000000000, !-X,Y,Z ==> Vertex 1{m}
7.923210000000,0.000000000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
7.923210000000,0.000000000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
6.600000000000,0.000000000000,2.023210000000; !- X,Y,Z ==> Vertex 4{m}
FenestrationSurface:Detailed,
    Window Idb1 1 Bot.unit1, !- Name
    Window, - !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_ldb1_1.unit1, !- Building Surface Name
        !- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
8.000000000000,10.558580000000,0.600000000000, !- X,Y,Z ==> Vertex 1{m}
6.676790000000,10.558580000000,0.600000000000, !- X,Y,Z ==> Vertex 2 {m}
6.676790000000,10.558580000000,1.273210000000, !- X,Y,Z ==> Vertex 3{m}
8.000000000000,10.558580000000,1.273210000000; !- X,Y,Z ==> Vertex 4{m}
FenestrationSurface:Detailed,
    Window_Idb1_1_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_ldb1_1.unit1, !- Building Surface Name
        !- Outside Boundary Condition Object
    ,, !- View Factor to Ground
    , !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
8.000000000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 1{m}
6.676790000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
6.676790000000,10.558580000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
8.000000000000,10.558580000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m}
FenestrationSurface:Detailed,
Window_Idb1_2_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idb1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
\(3.900000000000,10.558580000000,0.600000000000\), !- \(X, Y, Z==>\) Vertex \(1\{m\}\)
\(2.576790000000,10.558580000000,0.600000000000,!-X, Y, Z==>\) Vertex \(2\{\mathrm{~m}\}\)
\(2.576790000000,10.558580000000,1.273210000000,!-X, Y, Z==>\) Vertex \(3\{\mathrm{~m}\}\)
\(3.900000000000,10.558580000000,1.273210000000 ;\) !- \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>\) Vertex \(4\{\mathrm{~m}\}\)
```

```
FenestrationSurface:Detailed,
```

FenestrationSurface:Detailed,
Window_Idb1_2_Top.unit1, !- Name
Window_Idb1_2_Top.unit1, !- Name
Window, !- Surface Type
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idb1_1.unit1, !- Building Surface Name
Wall_Idb1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- Outside Boundary Condition Object
!- View Factor to Ground
!- View Factor to Ground
, !- Shading Control Name
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
1, !- Multiplier
4, !- Number of Vertices
4, !- Number of Vertices
3.900000000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m}
3.900000000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m}
2.576790000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
2.576790000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
2.576790000000,10.558580000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}

```
2.576790000000,10.558580000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
```

$3.900000000000,10.558580000000,2.023210000000 ;$!- $X, Y, Z==>$ Vertex $4\{m\}$

```
FenestrationSurface:Detailed,
    Window_sdr1_1_Bot.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdr1_1.unit1, !- Building Surface Name
        !- Outside Boundary Condition Object
    !- View Factor to Ground
    !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
10.558580000000,2.500000000000,0.600000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,3.823210000000,0.600000000000, !- X,Y,Z ==> Vertex 2{m}
10.558580000000,3.823210000000,1.273210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,2.500000000000,1.273210000000; !- X,Y,Z ==> Vertex 4{m}
FenestrationSurface:Detailed,
    Window_sdr1_1_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
    !- Outside Boundary Condition Object
,, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
10.558580000000,2.500000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,3.823210000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
10.558580000000,3.823210000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,2.500000000000,2.023210000000; !- X,Y,Z ==> Vertex 4{m}
```

FenestrationSurface:Detailed,
Window_sdr1_2_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, - !- Multiplier
4, !- Number of Vertices
$10.558580000000,6.600000000000,0.600000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
$10.558580000000,7.923210000000,0.600000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
10.558580000000,7.923210000000,1.273210000000, !- X,Y,Z ==> Vertex $3\{\mathrm{~m}\}$
10.558580000000,6.600000000000,1.273210000000; !- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,
Window_sdr1_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
10.558580000000,6.600000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 \{m\}
10.558580000000,7.923210000000,1.350000000000, !- X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$
$10.558580000000,7.923210000000,2.023210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
10.558580000000,6.600000000000,2.023210000000; !- X,Y,Z ==> Vertex $4\{m\}$

FenestrationSurface:Detailed,

AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
0.000000000000,8.000000000000,0.600000000000, !- X,Y,Z ==> Vertex 1 \{m\}
$0.000000000000,6.676790000000,0.600000000000,1-\mathrm{X,Y,Z}==>$ Vertex $2\{\mathrm{~m}\}$
0.000000000000,6.676790000000,1.273210000000, !- X,Y,Z ==> Vertex 3 \{m\}
$0.000000000000,8.000000000000,1.273210000000 ;$!- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

```
FenestrationSurface:Detailed,
    Window_sdl1_1_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdl1_1.unit1, !- Building Surface Name
        !- Outside Boundary Condition Object
        !- View Factor to Ground
        !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1,
0.000000000000,8.000000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m}
0.000000000000,6.676790000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m}
0.000000000000,6.676790000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
0.000000000000,8.000000000000,2.023210000000; !- X,Y,Z ==> Vertex 4{m}
```


FenestrationSurface:Detailed,

Window_sdl1_2_Bot.unit1, !- Name

Window, !- Surface Type

AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
4, \quad !- Multiplier
$0.000000000000,3.900000000000,0.600000000000$, !- X,Y,Z ==> Vertex $1\{\mathrm{~m}\}$
$0.000000000000,2.576790000000,0.600000000000$, !- $X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$0.000000000000,2.576790000000,1.273210000000$, !- X,Y,Z ==> Vertex $3\{\mathrm{~m}\}$
$0.000000000000,3.900000000000,1.273210000000 ;$!- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$

```
FenestrationSurface:Detailed,
    Window_sdl1_2_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdl1_1.unit1, !- Building Surface Name
        !- Outside Boundary Condition Object
        !- View Factor to Ground
        !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
0.000000000000,3.900000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m}
0.000000000000,2.576790000000,1.350000000000, !- X,Y,Z ==> Vertex 2{m}
0.000000000000,2.576790000000,2.023210000000, !- X,Y,Z ==> Vertex 3{m}
0.000000000000,3.900000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m}
```


FenestrationSurface:Detailed,

Window_ldf2_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name


```
FenestrationSurface:Detailed,
    Window_Idf2_1_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_Idf1_2.unit1, - !- Building Surface Name
        !- Outside Boundary Condition Object
,, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
2.500000000000,0.000000000000,3.950000000000, !- X,Y,Z ==> Vertex 1{m}
3.823210000000,0.000000000000,3.950000000000, !- X,Y,Z ==> Vertex 2{m}
3.823210000000,0.000000000000,4.623210000000, !- X,Y,Z ==> Vertex 3{m}
2.500000000000,0.000000000000,4.623210000000; !- X,Y,Z ==> Vertex 4{m}
```


FenestrationSurface:Detailed,

Window_Idf2_2_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$6.600000000000,0.000000000000,3.200000000000,!-X, Y, Z==>$ Vertex $1\{m\}$
$7.923210000000,0.000000000000,3.200000000000,!-\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $2\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,3.873210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$6.600000000000,0.000000000000,3.873210000000 ;$!- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,

Window_Idf2_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$6.600000000000,0.000000000000,3.950000000000$, !- $X, Y, Z==>$ Vertex $1\{m\}$
$7.923210000000,0.000000000000,3.950000000000,!-\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $2\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,4.623210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$6.600000000000,0.000000000000,4.623210000000 ;$!- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,
Window_Idb2_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name Wall_Idb1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground


```
4, !- Number of Vertices
10.558580000000,2.500000000000,3.200000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,3.823210000000,3.200000000000, !- X,Y,Z ==> Vertex 2 {m}
10.558580000000,3.823210000000,3.873210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,2.500000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m}
```

```
FenestrationSurface:Detailed,
    Window_sdr2_1_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdr1_2.unit1, !- Building Surface Name
    !- Outside Boundary Condition Object
    !- View Factor to Ground
    !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
10.558580000000,2.500000000000,3.950000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,3.823210000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m}
10.558580000000,3.823210000000,4.623210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,2.500000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m}
```

```
FenestrationSurface:Detailed,
    Window_sdr2_2_Bot.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdr1_2.unit1, !- Building Surface Name
                        !- Outside Boundary Condition Object
                        - View Factor to Ground
                            - Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
10.558580000000,6.600000000000,3.200000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,7.923210000000,3.200000000000, !- X,Y,Z ==> Vertex 2 {m}
10.558580000000,7.923210000000,3.873210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,6.600000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m}
```

```
FenestrationSurface:Detailed,
    Window_sdr2_2_Top.unit1, !- Name
    Window, !- Surface Type
    AERC_Doubleclear_Baseline, !- Construction Name
    Wall_sdr1_2.unit1, !- Building Surface Name
                        -- Outside Boundary Condition Object
                        !- View Factor to Ground
                            !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
10.558580000000,6.600000000000,3.950000000000, !- X,Y,Z ==> Vertex 1 {m}
10.558580000000,7.923210000000,3.950000000000, !- X,Y,Z ==> Vertex 2{m}
10.558580000000,7.923210000000,4.623210000000, !- X,Y,Z ==> Vertex 3{m}
10.558580000000,6.600000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m}
```

FenestrationSurface:Detailed,
Window_sdl2_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
0.000000000000,8.000000000000,3.200000000000, !- X,Y,Z ==> Vertex 1 \{m\}
$0.000000000000,6.676790000000,3.200000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$

```
0.000000000000,6.676790000000,3.873210000000, !- X,Y,Z ==> Vertex 3{m}
0.000000000000,8.000000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m}
```

FenestrationSurface:Detailed,

Window_sdl2_1_Top.unit1, !- Name

Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
, !- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$0.000000000000,8.000000000000,3.950000000000$, !- X,Y,Z ==> Vertex $1\{\mathrm{~m}\}$
$0.000000000000,6.676790000000,3.950000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$0.000000000000,6.676790000000,4.623210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
0.000000000000,8.000000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 \{m\}

FenestrationSurface:Detailed,
Window_sdl2_2_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$0.000000000000,3.900000000000,3.200000000000$, !- $X, Y, Z==>$ Vertex 1 \{m\}
0.000000000000,2.576790000000,3.200000000000, !- X,Y,Z ==> Vertex 2 \{m\}
$0.000000000000,2.576790000000,3.873210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$0.000000000000,3.900000000000,3.873210000000 ;$!- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,
Window_sdl2_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$0.000000000000,3.900000000000,3.950000000000$, !- $X, Y, Z==>$ Vertex 1 \{m\}
$0.000000000000,2.576790000000,3.950000000000$, !- X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$
$0.000000000000,2.576790000000,4.623210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$0.000000000000,3.900000000000,4.623210000000 ;$!- X,Y,Z ==> Vertex 4 \{m\}

