

Energy Technologies Area

Energy Performance Indices EP_c and EP_H Calculation Methodology and Implementation in Software tool

Prepared by: Jinqing Peng, D. Charlie Curcija, Robert Hart Lawrence Berkeley National Laboratory

Date: 4/28/2017

Revised: 9/30/2021

Lawrence Berkeley National Laboratory

One Cyclotron Road / Berkeley, California 94720 / phone 510-486-4435 / fax 510-486-5454

1. INTRODUCTION & BACKGROUND

Energy performance indices, EP_c and EP_H of window attachments are developed on the basis of ISO 18292 standard (ISO 2011), which gives methodology for calculating heating and cooling energy performance of windows. This methodology is based on the results of energy simulation of a typical residential building (house) in a typical cooling and heating climate.

2. Derivation of Energy Performance Index

For the purpose of calculating energy performance indices of window attachments, Houston climate was selected for cooling performance index, EP_c and Minneapolis was selected for heating energy performance index, EP_H . Energy simulation is done using the sub-hourly energy analysis program EnergyPlus (DOE 2016). Three different cases are simulated:

- A. Typical house with windows replaced by adiabatic surfaces (i.e., zero heat flux through window surfaces)
- B. Typical house with baseline windows
- S. Typical house with baseline windows and window shade/attachment over them

Figure 1. Schematic of three different house models

Energy simulation is done over the typical TMY3 year for each location and results of energy for each case are expressed as:

 E_A : annual HVAC cooling or heating energy use of the house with "adiabatic" window

 E_{B} : annual HVAC cooling or heating energy use of the house with baseline window only

E_s: annual HVAC cooling or heating energy use of the house with window attachment.

Based on the results of energy simulation, the following quantities are calculated:

 $E_{B-A} = E_B - E_A$, annual energy use caused by the baseline window

 $E_{B-S} = E_B - E_S$, window attachment energy savings vs. the baseline window

Energy performance indices of window attachments, EP_{C} and EP_{H} are defined as the ratio of annual cooling/heating energy saving resulting from the addition of window attachment to the annual energy use caused by the baseline window without attachment.

$$EP_{C} = \frac{\left(E_{B-S}\right)_{Houston}}{\left(E_{B-A}\right)_{Houston}}$$
$$EP_{H} = \frac{\left(E_{B-S}\right)_{Minneapolis}}{\left(E_{B-A}\right)_{Minneapolis}}$$

Typical house is defined from the DOE standard residential building model, combining several building vintages into a single typical house. The listing of assumptions is detailed in Appendix A.

Energy plus runs for both *Baseline* and *Adiabatic* runs are performed once for each climate, making for four sets of results (two for heating and two for cooling EP) and saved as fixed information.

EnergyPlus model for the house with baseline windows, E_B is run using the Autosize option for HVAC. This is done once for cooling and once for heating climates. Such calculated HVAC size is then fixed for all subsequent runs, including adiabatic and attachment cases. Baseline windows run is detailed in section 1.1.

EnergyPlus model of a house with window attachment is run at least once per product for fixed attachments (i.e., window panels, solar screens, surface-attached films), two times for 1-D operation shades (e.g., roller shades, cellular shades, pleated shades, roman shades, etc.), where one run is for shade fully closed and second run is for shade half closed (fully retracted option is identical to baseline window); and 7 runs for 2-D operation shades (venetian blinds, vertical blinds, etc.). More details are provided in section 1.3.

3. EnergyPlus Runs

Energy analysis is done using EnergyPlus simulation tool and IDF input file for EnergyPlus simulation is created from the collection of include files (*.inc). The reason for splitting IDF files into several include files is that for different runs, only individual include files would be replaced. The list of include files in following sections are marked in green, yellow, and red, signifying how these files are set. Green colored include files are fixed and are used in each case, E_A , E_B , and E_S . Yellow colored include files are fixed, but are inserted based on the case being run. Red colored include files are specific to each window attachment and are prepared on the fly. More details about include files are provided in Appendix C.

Besides IDF files for each run, energy simulation also requires a weather data file (TMY3 file). The weather data file names for these two climates are listed below:

- Houston: USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3.epw
- Minneapolis: USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3.epw

3.1 Adiabatic Windows Run

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_adiabatic_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_adiabatic_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_adiabatic.inc

3.2 Baseline Windows Run

For the baseline window run, the following include files are provided.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_autosize_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_autosize_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc

3.3 Windows with Attachments

Window construction include files for windows with attachments are first defined for each window attachment in the WINDOW software tool and exported as an IDF file. While most of window attachments have single degree of freedom in operation (retraction operation only) or 0 degree of freedom (fixed window attachments) and therefore have single construction description for its deployed position, some attachments have 2 degrees of freedom (e.g., louvered shades), resulting in 4 window construction records:

- 1) horizontal slats, or 0 deg
- 2) closed slats, or 90 deg
- 3) -45 deg
- 4) 45 deg

Depending on the degree of freedom for window attachments, a different number of EnergyPlus runs will be required. Table 1 gives a summary for each window attachment class/type. Table 1a gives a summary of products that allow for automation calculations.

Shade Type	Degrees of freedom	Fully Deployed (top & bottom window w/ shade)	Half Deployed (only top window w/ shade)	Total runs
Roller shades	1	1 run	1 run	2
Cellular shades	1	1 run	1 run	2
Solar Screens	0	1 run		1
Applied Films	0	1 run		1
Venetian Blinds	2	4 runs	3 runs	7
Vertical Blinds	2	4 runs	3 runs	7
Window panels	0	1 run		1
Pleated Shades	1	1 run	1 run	2
Roller shutters	1	1 run	1 run	2

Table 1a. Simulation runs for different deployment situation of each shade

Table 1. Shade types that allow for Automation calculations

Shade Type	Automation Simulations Enabled
Roller shades	Yes
Cellular shades	Yes
Solar Screens	No
Applied Films	No
Venetian Blinds	No
Vertical Blinds	No
Window panels	No
Pleated Shades	Yes
Roller shutters	Yes

3.3.1 Fully Deployed Window Attachments Runs

The include files needed for fully deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_user_input_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_user_input_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments louvered blinds:
 - o Window_construction_user_input0.inc
 - o Window_construction_user_input90.inc
 - o Window_construction_user_input-45.inc
 - o Window_construction_user_input+45.inc

3.3.2 Half-Deployed Window Attachments Runs

The include files needed for half-deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments louvered blinds:
 - o Window_construction_user_input0.inc
 - o Window_construction_user_input90.inc
 - o Window_construction_user_input-45.inc
 - o Window_construction_user_input+45.inc

3.3.3 Automation Window Attachments Runs

The include files needed for Automation window attachments run are listed below.

Houston:

- EMS_cooling.inc
- Shd_Sched_N_Cooling.csv
- Shd_Sched_E_Cooling.csv
- Shd_Sched_S_Cooling.csv
- Shd_Sched_W_Cooling.csv

Minneapolis:

- EMS_heating.inc
- Shd_Sched_N_Heating.csv
- Shd_Sched_E_Heating.csv
- Shd_Sched_S_Heating.csv
- Shd_Sched_W_Heating.csv

4. Calculation of Energy Use

Energy use for each case is calculated from HVAC system results of EnergyPlus simulation. Instructions for generating correct output results are provided in include file EP_Output_Fields.inc, shown in Appendix B. Results are stored in IDF_input_file_name.csv file. The following output fields are used in calculation of energy use:

Houston:

- "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

Minneapolis:

- "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

For brevity and subsequent use in equations, the following nomenclature will be used:

 $E_{DX Coil}(\tau_h)$ = CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)

 $E_{Fan}(\tau_h)$ = CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)

 $E_{Gas}(\tau_h)$ = CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)

Total energy, required for the calculation of E_A , E_B , and E_S is calculated by summing up all hours when the cooling system is on (CS=ON) in Houston and when the heating system is on (HS=ON) in Minneapolis. "CS=ON" when "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)", is larger than 0. Correspondingly, "HS=ON" when "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)", is larger than 0. The energy totals are also corrected to source energy using following conversion factors:

 SF_E = conversion factor from electricity to source energy in GJ, 3.167 \cdot 10⁻⁹

 SF_G = conversion factor from natural gas to source energy in GJ, 1.084 \cdot 10⁻⁹

4.1 Adiabatic Windows Runs

The energy use for adiabatic window runs are calculated from output of EnergyPlus simulation for adiabatic window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$E_{A} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{A} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{A}\right) \cdot SF_{E}$$

Minneapolis:

$$E_{A} = \left(\sum_{HS=ON} E_{Gas} \left(\tau_{h}\right)_{A}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan} \left(\tau_{h}\right)_{A}\right) \cdot SF_{E}$$

The resulting energy use E_A is expressed in GJ of source energy. E_A for both locations is calculated once and saved for the calculation of EP.

4.2 Baseline Windows Runs

The energy use for baseline window runs are calculated from output of EnergyPlus simulation for baseline window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$E_{B} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{B} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{B}\right) \cdot SF_{E}$$

Minneapolis:

$$E_{B} = \left(\sum_{HS=ON} E_{Gas} \left(\tau_{h}\right)_{B}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan} \left(\tau_{h}\right)_{B}\right) \cdot SF_{E}$$

The resulting energy use E_B is expressed in GJ of source energy. E_B for both locations is calculated once and saved for the calculation of EP.

4.3 Windows with Attachments Runs

Energy uses for windows with attachments are done on demand for each attachment for which EP is calculated. Depending on the attachment type, different levels of calculation are done. Details of these calculations for different attachment types are provided below.

4.3.1 Fixed Attachments

For fixed attachments (i.e., non-operable), single and non-weighted calculation is done, similar to cases of adiabatic and baseline window energy use calculations:

Houston:

$$E_{S} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{S} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{S}\right) \cdot SF_{E}$$

Minneapolis:

$$E_{S} = \left(\sum_{HS=ON} E_{Gas}(\tau_{h})_{S}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan}(\tau_{h})_{S}\right) \cdot SF_{E}$$

The resulting energy use E_s is expressed in GJ of source energy.

4.3.2 Operable Window Attachments with 1-D operation

4.3.2.1 Manual Operation

For these window attachment types, the operation consists of attachment retraction to various degrees. The deployment schedule for operable window attachments, was developed from the results of a behavioral study (DRI 2013). Based on the results of the survey of 2,467 households in 12 markets, a deployment schedule was developed for 3 periods during the day, two periods during the week, and for two seasons. The behavioral study considered three different attachment deployments and identified the percentage of products that were in one of these three positions at different times of day, week and season.

The deployment positions of window attachments considered were:

- 1. **O:** Open (Baseline window runs)
- 2. H: Half-Open (Half-Deployed window attachment runs)
- 3. **C:** Closed (Fully-Deployed window attachment runs)

The periods of day considered were:

- 1. M: Morning, including work hours (6:00 a.m. to 12:00 p.m.)
- 2. A: Afternoon (12:00 p.m. to 6:00 p.m.)
- 3. N: Evening/Night (6:00 p.m. to 6.00 a.m. of next day)

The periods of week considered were:

- 1. **D:** Weekday
- 2. **E:** Weekend and holidays

Note: Each weather data file contains standard US holidays, which are assigned the weekend schedule in the EnergyPlus input.

Time-weighting of energy use is done in addition to the consideration when the cooling or heating system is on, to calculate E_s . In order to describe the weighting calculation methodology, indices for hourly, daily, and weekly periods are used. Hourly energy values are labeled using τ_h . Different days in a week (i.e., weekday vs. weekends and holidays) are labeled using index τ_d , and different weeks in a season are labeled using index τ_w . Using this notation, the following equations are used to calculate weighted source energy use from operable window shades with 1 degree of freedom:

$$\boldsymbol{E}_{\mathrm{S}} = \boldsymbol{E}_{\mathrm{O}} + \boldsymbol{E}_{\mathrm{H}} + \boldsymbol{E}_{\mathrm{C}}$$

Where:

$$E_{O} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDO}(\tau_{w}) + E_{SEO}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDO}(\tau_{w}) + E_{WEO}(\tau_{w}) \right)$$
$$E_{H} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDH}(\tau_{w}) + E_{SEH}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDH}(\tau_{w}) + E_{WEH}(\tau_{w}) \right)$$
$$E_{C} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDC}(\tau_{w}) + E_{SEC}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDC}(\tau_{w}) + E_{WEC}(\tau_{w}) \right)$$

Where (Equations 5-16):

$$\begin{split} & E_{SDO}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{SDMO} \cdot \sum_{\tau_{h}=0}^{12} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{SDAO} \cdot \sum_{\tau_{h}=12}^{18} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{SDNO} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{O}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{SEO}(\tau_{w}) = \sum_{\tau_{q}=0}^{7} \left(F_{SEMO} \cdot \sum_{\tau_{h}=0}^{12} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{SEAO} \cdot \sum_{\tau_{h}=12}^{18} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{SENO} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{O}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WDO}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{WDMO} \cdot \sum_{\tau_{h}=0}^{12} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDAO} \cdot \sum_{\tau_{h}=12}^{18} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDNO} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{O}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WDO}(\tau_{w}) = \sum_{\tau_{q}=0}^{7} \left(F_{WDMO} \cdot \sum_{\tau_{h}=0}^{12} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDAO} \cdot \sum_{\tau_{h}=12}^{18} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDNO} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{O}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WEO}(\tau_{w}) = \sum_{\tau_{q}=0}^{7} \left(F_{WEMO} \cdot \sum_{\tau_{h}=0}^{12} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WEAO} \cdot \sum_{\tau_{h}=12}^{18} E_{O}(\tau_{w},\tau_{d},\tau_{h}) + F_{WENO} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{O}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{SDH}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{SDMH} \cdot \sum_{\tau_{h}=0}^{12} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{SDAH} \cdot \sum_{\tau_{h}=12}^{18} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{SDNH} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{H}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{SDH}(\tau_{w}) = \sum_{\tau_{q}=0}^{7} \left(F_{SDMH} \cdot \sum_{\tau_{h}=0}^{12} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{SEAH} \cdot \sum_{\tau_{h}=12}^{18} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{SDNH} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{H}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WDH}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{WDMH} \cdot \sum_{\tau_{h}=0}^{12} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDAH} \cdot \sum_{\tau_{h}=12}^{18} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDNH} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{H}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WDH}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{WDMH} \cdot \sum_{\tau_{h}=0}^{12} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDAH} \cdot \sum_{\tau_{h}=12}^{18} E_{H}(\tau_{w},\tau_{d},\tau_{h}) + F_{WDNH} \cdot \sum_{\tau_{h}=18}^{6(+1dey)} E_{H}(\tau_{w},\tau_{d},\tau_{h})\right) \right) \\ & E_{WDH}(\tau_{w}) = \sum_{\tau_{q}=0}^{5} \left(F_{WDMH} \cdot \sum_{\tau_{h}=0}^{12} E_{H}(\tau_{w},\tau_{h},\tau_{h}) + F_{WDAH} \cdot \sum_{\tau$$

$$E_{SEC}(\tau_{w}) = \sum_{\tau_{d}=6}^{7} \left(F_{SEMC} \cdot \sum_{\tau_{h}=6}^{12} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{SEAC} \cdot \sum_{\tau_{h}=12}^{18} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{SENC} \cdot \sum_{\tau_{h}=18}^{6(+1day)} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) \right)$$

$$E_{SWC}(\tau_{w}) = \sum_{\tau_{d}=1}^{5} \left(F_{WDMC} \cdot \sum_{\tau_{h}=6}^{12} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{WDAC} \cdot \sum_{\tau_{h}=12}^{18} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{WDNC} \cdot \sum_{\tau_{h}=18}^{6(+1day)} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) \right)$$

$$E_{WEC}(\tau_{w}) = \sum_{\tau_{d}=6}^{7} \left(F_{WEMC} \cdot \sum_{\tau_{h}=6}^{12} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{WEAC} \cdot \sum_{\tau_{h}=12}^{18} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{WENC} \cdot \sum_{\tau_{h}=18}^{6(+1day)} E_{C}(\tau_{w}, \tau_{d}, \tau_{h}) \right)$$

Where:

- τ_d = days of the week, where 1=Monday, and 7=Sunday. The weekend schedule is also applicable to holidays
- τ_w = weeks of the year, where S_1 = first week of the cooling season, and S_N = last week of the cooling season, W_1 = first week of the heating season, and W_N = last week of the heating season. S1, SN, W1, and WN are defined in Appendix D.
- τ_h = hours in a day, where 1=1:00 a.m., 12 = 12:00 p.m., and 24 = 12:00 a.m. For the evening/night period, the summation goes from 18 (6:00 p.m.) until 24 (12 a.m.), then the hours reset to 0 and go until 6 a.m. This is indicated in the equations as (+1 day) in the upper limit of the summation sign for the evening/night period

	Cooling Weekday	Cooling Weekend	Heating Weekday	Heating Weekend
Open	E_{SDO}	E_{SEO}	E_{WDO}	E_{WEO}
Half-open	E_{SDH}	E_{SEH}	$E_{\scriptscriptstyle WDH}$	E_{WEH}
Closed	E_{SDC}	E_{SEC}	E_{WDC}	E_{WEC}

Table 2. Energy Use Variables

 Table 3. Deployment Fraction Variables

	Cooli	ng We	ekday	Cooli	ng We	ekend	Heati	ng We	ekday	Heati	ng We	ekend
Deployment	М	А	N	М	А	N	М	А	Ν	М	А	N
Open	F _{SDMO}	F _{SDAO}	F _{sdno}	F _{semo}	F _{SEAO}	F _{seno}	F _{WDMO}	F _{WDAO}	F _{WDNO}	F _{wemo}	F _{WEAO}	F _{WENO}
Half-open	F _{sdmh}	F _{sdah}	F _{sdnh}	F _{semh}	F _{SEAH}	F _{senh}	F _{wdmh}	F _{WDAH}	F _{wdnh}	F _{wemh}	F _{WEAH}	F _{wenh}
Closed	F _{SDMC}	F _{SDAC}	F _{SDNC}	F _{semc}	F _{SEAC}	F _{senc}	F _{WDMC}	F _{WDAC}	F _{WDNC}	F _{wemc}	F _{WEAC}	F _{WENC}

Deployment fraction data for North (heating) and South (cooling) climates are presented in Table 4 and Table 5.

 Table 4. Deployment Schedule for North (Heating) Climate Zone

Cooling Weekday		Cooling Weekend		Heating Weekday		Heating Weekend						
Deployment	M	А	Ν	М	А	Ν	М	А	Ν	М	А	Ν

	0.26	0.24	0.23		0.2							
Open				0.26	5	0.23	0.29	0.30	0.23	0.28	0.29	0.22
	0.35	0.34	0.32		0.3							
Half-open				0.36	6	0.33	0.32	0.33	0.28	0.32	0.33	0.29
	0.39	0.41	0.45		0.3							
Closed				0.38	9	0.44	0.39	0.38	0.49	0.40	0.38	0.49

Table 5. Deployment Schedule for South (Cooling) Climate Zone

Coolii	ng Weel	kday		Cooling Weekend		Heating Weekday			Heating Weekend			
Deployment	М	А	Ν	М	А	Ν	М	Α	Ν	М	А	Ν
	0.17	0.15	0.13		0.1							
Open				0.18	7	0.14	0.23	0.23	0.17	0.23	0.23	0.17
	0.26	0.25	0.23		0.2							
Half-open				0.26	5	0.24	0.25	0.26	0.22	0.27	0.27	0.23
	0.57	0.60	0.65		0.5							
Closed				0.56	8	0.62	0.52	0.51	0.61	0.51	0.50	0.59

Cooling and heating periods are defined for each city in Appendix D.

 $E(\tau_{w}, \tau_{d}, \tau_{h})$ is calculated as follows for each city:

Houston:

$$E_{O}(\tau_{w},\tau_{d},\tau_{h}) = (E_{DXCoil}(\tau_{h})_{B} + E_{Fan}(\tau_{h})_{B})_{CS=ON} \cdot SF_{E}$$

$$E_{H}(\tau_{w},\tau_{d},\tau_{h}) = (E_{DXCoil}(\tau_{h})_{H} + E_{Fan}(\tau_{h})_{H})_{CS=ON} \cdot SF_{E}$$

$$E_{C}(\tau_{w},\tau_{d},\tau_{h}) = (E_{DXCoil}(\tau_{h})_{C} + E_{Fan}(\tau_{h})_{C})_{CS=ON} \cdot SF_{E}$$

Minneapolis:

$$\begin{split} E_{O}\left(\tau_{w},\tau_{d},\tau_{h}\right) &= \left(E_{Gas}\left(\tau_{h}\right)_{B}\right) \cdot SF_{G} + \left(E_{Fan}\left(\tau_{h}\right)_{B}\right)_{HS=ON} \cdot SF_{E} \\ E_{H}\left(\tau_{w},\tau_{d},\tau_{h}\right) &= \left(E_{Gas}\left(\tau_{h}\right)_{H}\right) \cdot SF_{G} + \left(E_{Fan}\left(\tau_{h}\right)_{H}\right)_{HS=ON} \cdot SF_{E} \\ E_{C}\left(\tau_{w},\tau_{d},\tau_{h}\right) &= \left(E_{Gas}\left(\tau_{h}\right)_{C}\right) \cdot SF_{G} + \left(E_{Fan}\left(\tau_{h}\right)_{C}\right)_{HS=ON} \cdot SF_{E} \end{split}$$

4.3.2.2 Automated Operation

For these window attachment types, the operation consists of attachment either fully deployed or fully retractracted. The performance is calculated in a single EnergyPlus run utilizing the EMS system to deploy or retract the shade for each simulation timestep based on a given deployment schedule. The deployment schedules for Automated 1D window

attachments were developed by the AERC Automation working Group and are shown in Tables 6 and 7.

	Window Orientation						
	North	South	East	West			
June 1 - August 31	Closed All Day	Closed All Day	Closed All Day	Closed All Day			
September 1 - May 31	Closed All Day	Open 08:00-16:00	Open 08:00-12:00	Open 12:00-16:00			

Table 6. Deployment Schedule for North (Heating) Climate Zone

	Window Orientation						
	North	South	East	West			
April 1 - October 31	Closed All Day	Closed All Day	Closed All Day	Closed All Day			
November 1 - March 31	Open 08:00-16:00	Closed All Day	Open 12:00-16:00	Open 08:00-12:00			

For automation operation runs, the energy results for the automation run are equal to the energy use of the shade in the EP calculation:

 $E_{\rm S} = E_{\rm AUTOMATION}$

4.3.3 Operable Window Attachments with 2-D operation

Similar to window attachments with 1 degree freedom in operation, energy use for window attachment with 2-D operation is calculated by summing-up weighting Open, Half-Open and Closed states. Because of the increased complexity of the definition of Open, and Half-Open states for attachments with 2 degrees of freedom (retraction levels and slat angle), multiple deployment states are attached to Open and Half-Open states. Currently, louvered blinds (both horizontal louvered blinds, or Venetian blinds, and vertical louvered blinds) have simulation models available for them. Assignments of different EnergyPlus runs and deployment states for louvered blinds are shown in Table 6.

		Run No.	Top Window	Bottom Window
() ()	Fully-deployed	1	0° slat angle	0° slat angle
Open (0)	Fully-retracted	2	No shade	No shade
	Fully-deployed	3	45° slat angle	45° slat angle
	Fully-deployed	4	-45° slat angle	-45° slat angle
Half-Open (H)	Half-deployed	5	90° slat angle	No shade
	Half-deployed	6	45° slat angle	No shade
	Half-deployed	7	-45° slat angle	No shade

Table 8. Deployment Information for Louvered blinds

Closed (C)	Fully-deployed	8	90° slat angle	90° slat angle
------------	----------------	---	----------------	----------------

The energy use for louvered blinds is the result of averaging hourly results for two open deployments, five half-open and one closed deployment schedules. Averaging procedure is detailed in Equations to . Numbers in the third column in Table 6 are used in subsequent equations as an index number (1-2 for open, 3-7 for half-open, and 8 for closed).

$$E_{O} = \frac{\sum_{i=1}^{2} \left(\sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDO,i}\left(\tau_{w}\right) + E_{SEO,i}\left(\tau_{w}\right) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDO,i}\left(\tau_{w}\right) + E_{WEO,i}\left(\tau_{w}\right) \right) \right)}{2}$$

$$E_{H} = \frac{\sum_{i=3}^{7} \left(\sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDH,i}\left(\tau_{w}\right) + E_{SEH,i}\left(\tau_{w}\right) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDH,i}\left(\tau_{w}\right) + E_{WEH,i}\left(\tau_{w}\right) \right) \right)}{5}$$

$$E_{C} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDC,8}\left(\tau_{w}\right) + E_{SEC,8}\left(\tau_{w}\right) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDC,8}\left(\tau_{w}\right) + E_{WEC,8}\left(\tau_{w}\right) \right)$$

An example of the application of formula to the calculation of $E_{SEO,1}$ is shown below. Other quantities are calculated in the same manner.

$$E_{SEO,1}(\tau_{w}) = \sum_{\tau_{d}=6}^{7} \left(F_{SEMO} \cdot \sum_{\tau_{h}=5}^{17} E_{O,1}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{SEAO} \cdot \sum_{\tau_{h}=5}^{17} E_{O,1}(\tau_{w}, \tau_{d}, \tau_{h}) + F_{SENO} \cdot \sum_{\tau_{h}=5}^{17} E_{O,1}(\tau_{w}, \tau_{d}, \tau_{h}) \right)$$

 $E(\tau_{w}, \tau_{d}, \tau_{h})$ is calculated as follows for each city:

Houston:

$$E_{O,i}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{O,i} + E_{Fan}(\tau_{h})_{O,i}\right)_{CS=ON} \cdot SF_{E} \quad (i=1,2)$$

$$E_{H,i}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{H,i} + E_{Fan}(\tau_{h})_{H,i}\right)_{CS=ON} \cdot SF_{E} \quad (i=3,4,5,6,7)$$

$$E_{C,8}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{C,8} + E_{Fan}(\tau_{h})_{C,8}\right)_{CS=ON} \cdot SF_{E}$$

Minneapolis:

$$E_{O,i}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{Gas}(\tau_{h})_{O,i}\right)_{HS=ON} \cdot SF_{G} + \left(E_{Fan}(\tau_{h})_{O,i}\right)_{HS=ON} \cdot SF_{E} \quad (i=1,2)$$

$$E_{H,i}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{Gas}(\tau_{h})_{H,i}\right)_{HS=ON} \cdot SF_{G} + \left(E_{Fan}(\tau_{h})_{H,i}\right)_{HS=ON} \cdot SF_{E} \quad (i=3,4,5,6,7)$$

 $E_{C,8}\left(\tau_{w},\tau_{d},\tau_{h}\right) = \left(E_{Gas}\left(\tau_{h}\right)_{C,8}\right)_{HS=ON} \cdot SF_{G} + \left(E_{Fan}\left(\tau_{h}\right)_{C,8}\right)_{HS=ON} \cdot SF_{E}$

5. Calculation of Final Results

Energy simulation by EnergyPlus is output into csv files, from which E_A , E_B , and E_S is calculated, using formulas detailed above, and depending on the specific window attachment. The following is process outline:

- Selection which calculation is to be performed, E_A, E_B, E_S/EP
- City; Houston or Minneapolis (alternatively could be choice between Cooling and Heating)
- Window attachment type (for E_A and E_B only, no attachment is supplied)
- Number of csv files
- Each csv file name
 - o Deployment state (Open, half-open or closed)
 - Slat angle for louvered blinds

Output from software tool:

- E_A , E_B , and/or E_S , as requested
- EP (applicable when E_s is requested)

This interface is accomplished through an XML file. XML Schema and example files are included in Appendix E

6. References

- ISO. 2011. "ISO 18292: Energy Performance of Fenestration Systems for Residential Buildings – Calculation Procedure". International Standards Organization. Geneva, Switzerland.
- DOE. 2016. "EnergyPlus 8.6: Software Tool for Calculating Energy Performance of Buildings"

Appendix A: Typical US Residential Buildings Assumptions

PARAMETERS	Proposed Re	sidential	Model Va	lues		Value inputs in E+
Floor Area (ft ² & dim)	2400 ft ² , 34.6	64ft (W) x	34.64ft (L)	x8.5ft (H) >	x2 stories	10.55858m(X)*10.55858m(Y)*2.59m(H)*2 stories
House Type		ones for each floor, but it has only one HVAC zone.		Core zone Area=1.41458m*1.41458m Refer to Residential model for AERC MEETING (0415).xlsx		
Bathrooms	3					
Bedrooms	3					
Typical Cities	Heating: Minneapolis, MN (Climate Zone 6A) Cooling: Houston, TX (Climate Zone 2A)			Refer to Residential model for AERC MEETING (0415).xlsx		
Foundation	Unheated Basement for the north heating dominated city, viz. Minneapolis, MN; Slab-on-grade without insulation for the south cooling			Basement: 10.55858m(X)*10.55858m(Y)*(-2.13)m(H)		
Insulation ^(a)		Envelope insulation levels vary with the locations. The following insulation requirements are referred to IECC 1998.				Minneapolis: Exterior Floor: R21 Interior Floor: R21 Exterior Wall: R21 Ceiling: R49 Exterior Roof: R49 Basement wall: R11
	Location:	Ceiling R-value	Wall R-value	Floor R-value	Slab/Basemen t R-value	Houston: Exterior Floor: R11
	Houston:	R-30	R-13	R-11	Slab, R-0	Interior Floor: R11 Exterior Wall: R13
	Minneapolis:	R-49	R-21	R-21	Bsmt, R-11	Ceiling: R30 Exterior Roof: R30
Infiltration	Minneapolis	: ACH50=	7			Minneapolis baseline window case: ELA=873;
	Houston: AC	CH50=10				Minneapolis super insulated window case: ELA=669, air infiltration of super insulated window was 0; Houston baseline window case: ELA=1248;
						Houston super insulated window case: ELA=1044, air infiltration of super insulated window was 0;
						The converting method from ACH to ELA is described in ELACalculation.xlsx
Internal Mass Furniture (lb/ft ²)	8.0 lb/ft ² of fl					
Ventilation Air Requirements	0.15 L/s per s	square me	eter of floor	r space		0.033456639274582m3/s

		=0.15*10.55858*10.55858*2
Wall framing system	Wood	
External Doors	U factor: 1.14 W/(m ² .k)	R=0.88
Window Area (% Floor Area)	15.1%. There are two windows (each window with dimension 2*1.4 m*0.75 m) on each orientation each floor.	2*1.4(w)*0.75(h) Refer to Residential model for AERC MEETING (0415).xlsx
Window Type	Double clear wood frame baseline window for both climates; VT=0.639, SHGC=0.601, U=0.472 Btu/hr.ft ² .F, AL=2 cfm/ft ² Adiabatic window: VT=0, SHGC=0, U=0, AL=0	Baseline window: double clear using CLEAR_3.DAT, wood fixed frame Adiabatic window: custom created super-insulated opaque window without frame Refer to AERC 1 Baseline window B.docx
Window Distribution	8 windows per floor, distributed evenly and centered on the external walls. Each big window was split into the upper and lower small windows.	Refer to Residential model for AERC MEETING (0415).xlsx
Heating Systems	Gas Furnace for Minneapolis, MN; Heat Pump for Houston, TX.	
Heating System Fuels	Gas for Minneapolis, MN; Electricity for Houston, TX.	
Cooling Systems	A/C for Minneapolis, MN; Heat Pump for Houston, TX.	
HVAC System Sizing	For each climate, the HVAC systems were sized based on the base window option (without window attachments).	Houston (HP): Cooling capacity: 13131.31W Heating capacity: 13131.31W Sensible heat ratio: 0.733253 Air flow rate: 0.652m3/s Minneapolis (GAC): Cooling capacity: 10628.64W Heating capacity: 16720.73W Sensible heat ratio: 0.753625 Air flow rate: 0.563m3/s Refer to Doubleclear_basement_Minneapolis, & Doubleclear_slab_Houston
HVAC Efficiencies	Minneapolis (GAC): AFUE= 0.78 for Gas furnace heating (annual fuel utilization efficiency) Houston (HP): HSPF=6.8 for Air-cooled heat pumps heating mode (the converted COP for heating is ~1.99) Both: SEER=10.0 for Air-cooled air conditioners and heat pumps cooling mode (the converted COP for cooling is ~2.70)	 (1) EER = 1.12 * SEER - 0.02 * SEER2 (2) EER = COP * 3.41 (3) Avg COP = Heat transferred / electrical energy supplied = (HSPF * 1055.056 J/BTU) / (3600 J/watt-hour) = 0.29307111 HSPF.
Thermostat Settings	Heating: 70°F, Cooling: 75°F No setback	Heating set point: 21.11 °C Cooling set point: 23.89 °C
Internal Loads	Number of People = 3 Hardwire Lights = 1.22 Watts/m ² Plug-in Lights = 0.478 Watts/m ² Refrigerator = 91.09 Watts – Design Level Misc. Electrical Equipment = 2.46 Watts/m ² Clothes Washer = 29.6 Watts – Design Level Clothes Dryer = 222.1 Watts – Design Level Dish Washer = 68.3 Watts – Design Level Misc. Electrical Load = 182.5 Watts – Design Level Gas Cooking range =248.5 Watts – Design Level Misc. Gas Load = 0.297 Watts/m ² Exterior Lights = 58 Watts – Design Level Garage Lights = 9.5 Watts – Design Level	

		l	
	The operation schedules of the all equipment are		
	referred to the PNNL model.		
Weather Data	USA_TX_Houston-Bush.Intercontinental.AP.722430_T	All TMY3	
	MY3.epw		
	USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3_2		
	.epw		
Number of	2 typical US cities: Minneapolis, MN for heating;		
Locations	Houston, TX for cooling.		
Calculation Tool	EnergyPlus version 8.5 (LBN's custom version that		
	addresses issue with TIR>0)		
Energy Code	Combination of vintages for each climate zone, but		
	mostly like IECC 1998		
Results extracted	Heating energy use, cooling energy use, fan energy use		
from E+	and total energy use of the house which includes the all		
-	energy uses, such as lighting.		
Attachment	Refer to (Bickel, 2013)		
deployment			
operations			
Ground	For Minneapolis unheated basement with R11		
temperature	insulation; For Houston, slab-on-grade with no slab		
temperature	insulation.		
Super insulated	This window can be regarded as an adiabatic surface	0.003,	!- Thickness {m}
window	without heat transferring.	0.000001,	!- Solar Transmittance
	······································	0.9999999,	!- Front Reflectance
		0.9999999,	!- Back Reflectance
		0.000001,	!- Visible Transmittance
		0.9999999,	!- Front Visible Reflectance
		0.9999999,	!- Back Visible Reflectance
		0.000000,	!- Infrared Transmittance
		0.000001,	!- Front Infrared
		Emissivity	· · · · · · · · · · · · · · · · · · ·
		0.000001,	!- Back Infrared Emissivity
			!- Conductivity {W/m-K}
		0.0000001;	- Conductivity {w/m-K}

Appendix B: Output Section in IDF File

!- ======== ALL OBJECTS IN CLASS: OUTPUT:VARIABLE =========

Output:Variable,*,Site Day Type Index,hourly; Output:Variable,*,Air System Electric Energy,hourly; Output:Variable,*,Air System Fan Electric Energy,hourly; Output:Variable,*,Air System DX Cooling Coil Electric Energy,hourly; Output:Variable,*,Zone Lights Electric Energy,hourly; Output:Variable,*,Facility Net Purchased Electric Energy,hourly; Output:Variable,*,Facility Total Building Electric Demand Power,hourly; Output:Variable,*,Facility Total Building Electric Demand Power,hourly; Output:Variable,*,Facility Total HVAC Electric Demand Power,hourly; Output:Variable,*,Facility Total Electric Demand Power,hourly; Output:Variable,*,Air System Cooling Coil Total Cooling Energy,hourly; Output:Variable,*,Air System Heating Coil Total Heating Energy,hourly; Output:Variable,*,Air System Fan Air Heating Energy,hourly; Output:Variable,*,Air System Gas Energy,hourly; Output:Variable,*,Zone Gas Equipment Gas Energy,hourly;

Appendix C: Include Files

C.1 Windows:

Same window configuration file is provided for both climate zones/cities. Also, same window configuration file is used for all windows, however with changes made for construction reference (glazing construction and frame) for different window attachment runs (e.g., For baseline window, construction reference is AERC_Doubleclear_Baseline). For different baseline windows, as their averaged frame width are different, the glazing coordinates should be changed as well. The following sections depict the methodologies of calculating the averaged frame width and changing the fenestration coordinates.

C.1.1 Calculating and exporting the average frame width in WINDOW

As EnergyPlus can't model the half-deployed scenario for a window shade, we used two separate small windows (one at the top and one at the bottom) to replace a single window in simulation. However, this replacement results in a larger frame area for the modelled window because the head and sill are counted twice (as shown in the rightmost drawing of the following picture). So, we will replace the original averaged frame width (L_{f_win}) from WINDOW with a new averaged frame width (L_{f_ave}) to make sure the modeled two small windows have the same glazing and frame areas as the original window. The methodology for the averaged frame width calculation is detailed later in this section. The following figure illustrates the original window with original frame dimensions, L_s , L_j , and Lh, then window with the original averaged frame dimension, L_{f_win} , as it is exported from WINDOW to IDF file, and resulting 2 windows used in simulation, with the new averaged frame width, L_{f_ave} .

 A_{real_g} is the actual window glazing area.

 A_{win_g} is the window glazing area normally exported from WINDOW.

 A_{model_g} is the window glazing area in E+ simulation.

The first step is to calculate the original averaged frame width (L_{f_win}). WINDOW program can calculate L_{f_win} according to the below equations.

$$A_{real_g} = W \cdot H - (L_h \cdot W + L_s \cdot W + 2 \cdot L_j \cdot (H - L_h - L_{s}))$$
(C.1)

$$A_{WIN_g} = W \cdot H - \left(2 \cdot W \cdot L_{f_WIN} + 2 \cdot L_{f_WIN} \cdot \left(H - 2 \cdot L_{f_WIN}\right)\right)$$
(C.2)

Considering that $A_{real_g} = A_{win_g}$, and substituting (1) and (2) into this equality, then:

$$W \cdot H - (L_h \cdot W + L_s \cdot W + 2 \cdot L_j \cdot (H - L_h - L_{s})) = W \cdot H - (2 \cdot W \cdot L_{f_win} + 2 \cdot L_{f_win} \cdot (H - 2 \cdot L_{f_win}))$$
(C.3)

Or expressed as quadratic equation that can be solved for $L_{f_{e}WIN}$.

$$4 \cdot L_{f_{-WIN}}^{2} + 2 \cdot (H + W) \cdot L_{f_{-WIN}} - (W \cdot (L_{h} + L_{s}) + 2 \cdot L_{j} \cdot (H - L_{h} - L_{s})) = 0$$
(C.4)

$$L_{f_{-WIN}} = \frac{-2 \cdot (H+W) \pm \sqrt{4 \cdot (H+W)^{2} + 16 \cdot (W \cdot (L_{h}+L_{s}) + 2 \cdot L_{j} \cdot (H-L_{h}-L_{s}))}}{8}$$
(C.5)

WINDOW program can also export the original averaged frame width (L_{f_win}) to a normal IDF file (which is different from the specialized IDF file for EPCalc only, called "AERC EnergyPlus IDF"). An example of L_{f_win} exportation for AERC Baseline Window B is shown in the following figure.

Window Frames and Dividers Data WindowProperty:FrameAndDivider, AERC_Wood_Frame, 0.057150,	Lf_win is exported in a normal IDF by WINDOW
, 2.918756, 1.075423, 0.300000, 0.300000, 0.9,	! ! ! ! !
	<pre>!- Divider Type !- Divider Width {m} !- Number of Horizontal Dividers !- Number of Vertical Dividers !- Divider Outside Projection {m} !- Divider Insider Projection {m} !- Divider Conductance {w/m2-K} !- Ratio of Divider-Edge Glass Conductar !- Divider Solar Absorptance !- Divider Visible Absorptance !- Divider Thermal Hemispherical Emissiv !- Outside Reveal Solar Absorptance !- Inside Sill Depth (m) !- Inside Sill Solar Absorptance</pre>

The next step is to calculate the new averaged frame width ($L_{f_{ave}}$) for the configuration consisting of two windows (top and bottom) with the original averaged frame width ($L_{f_{ave}}$). This calculation was conducted in WINDOW program according to the below equations.

$$A_{Model_g} = W \cdot H - \left(4 \cdot W \cdot L_{f_Ave} + 4 \cdot L_{f_Ave} \cdot \left(\frac{H}{2} - 2 \cdot L_{f_Ave}\right)\right)$$
(C.6)

Considering that $A_{Model_g} = A_{win_g}$, and substituting (2) and (6) into this equality, then:

$$W \cdot H - \left(2 \cdot W \cdot L_{f_{win}} + 2 \cdot L_{f_{win}} \cdot \left(H - 2 \cdot L_{f_{win}}\right)\right) = W \cdot H - \left(4 \cdot W \cdot L_{f_{ave}} + 4 \cdot L_{f_{ave}} \cdot \left(\frac{H}{2} - 2 \cdot L_{f_{ave}}\right)\right)$$

Or expressed as quadratic equation that can be solved for L_{f_Ave} .

$$-4 \cdot L_{f_{-}Ave}^{2} + (H + 2 \cdot W) \cdot L_{f_{-}Ave}^{2} + 2 \cdot L_{f_{-}WIN}^{2} - (W + H) \cdot L_{f_{-}WIN} = 0$$
(C.8)

$$L_{f_{-Ave}} = \frac{-(H+2\cdot W) \pm \sqrt{(H+2\cdot W)^{2} + 16\cdot (2\cdot L_{f_{-WIN}}^{2} - (W+H)\cdot L_{f_{-WIN}})}}{-8}$$
(C.9)

There are two roots to the quadratic equation (9), $L_{f_Ave_1}$ and $L_{f_Ave_2}$, of which one is solution that we are seeking.

$$L_{f_{Ave}} = \min(L_{f_{Ave_{1}}}, L_{f_{Ave_{2}}})$$
(C10)

Take the current AERC baseline window B as an example:

So Equations (8) and (9) can be written as:

$$-4 \cdot L_{f_Ave}^2 + 4.3 \cdot L_{f_Ave} - 0.1592027 = 0$$

$$L_{f_{-Ave}} = \frac{-4.3 \pm \sqrt{18.49 - 2.54724}}{-8}$$

$$L_{f_{-Ave}} = \min(0.038395, 1.036605)$$

 $L_{f_Ave} = 0.038395$

This calculation is built into Berkeley Lab WINDOW software tool, which is exported to AERCalc in a new specialized IDF file, called "AERC Energy Plus IDF", where the original frame width, L_{f_will} , new averaged frame width L_{f_ave} , and window width and height (W and H, include the frame width), are included in the commented section. New averaged frame width is also inserted in the appropriate IDF field where it is used by EnergyPlus. The following figure illustrates this new AERC EnergyPlus IDF.

!	ndow Frames and Divid erty:FrameAndDivider, low Panel Exterior::Wi		These dimensions are the Width and Height dimensions from WINDOW	Add this comment to the E+ BSDF IDF report when generated from the WINDOW Window Library
! Original ! Window He ! Window Wi	CALC Information Averaged Frame width ight (including frame) dth (including frame) ged Frame width calco	cal culated by e) = 1.5 m) = 1.4 m	OW (per AERC Documentation) = (WINDOW !- Frame Width {m} !- Frame Outside Projection {m}	calculated value>
1.993951, 1.084695, 0.300000, 0.300000, 0.9, , , ,	This value is the new value for Frame Width calculated by WINDOW		<pre>!- Frame Insider Projection {m} !- Frame Conductance {w/m2-K} !- Ratio of Frame-Edge Glass Conduct !- Frame Solar absorptance !- Frame Visible absorptance !- Frame Thermal hemispherical Emist !- Divider Type !- Divider of Horizontal Dividers !- Number of Horizontal Dividers !- Number of Vertical Dividers !- Divider Outside Projection {m} !- Divider Insider Projection {m} !- Divider Solar Absorptance !- Divider Solar Absorptance !- Divider Thermal Hemispherical Emist - Divider Solar Absorptance !- Divider Thermal Hemispherical Emist - Divider Solar Absorptance !- Inside Sill Depth (m) !- Inside Reveal Depth (m) !- Inside Reveal Solar Absorptance</pre>	sivity luctance to Center-Of- hissivity

For other baseline windows which may have different frame widths, WINDOW program will calculate L_{f_Ave} using equations (9) and (10) and export L_{f_Ave} as shown in the above figure.

C.1.2 Changing the fenestration coordinates in window configuration file

The whole window area, consisting of the glass area and the frame area, is given by specifying the window width (W, includes the frame width) and the height (H, includes the frame width). However, in Energyplus, window coordinates describe vision portion of glazing system only, so full window area is obtained by adding frame width to glazing area. The fenestration coordinates can be calculated by using the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}). The methodology is detailed in this section.

For each window in a typical building, the coordinates of the vertices for the vision area of glazing are calculated starting with lower left corner. The remaining three vertices are then calculated based on the fixed coordinates of the lower-left corner point, the window width

(W), height (H) and the new averaged frame width ($L_{f_{Ave}}$). However, it is worth noting that the coordinate calculation method is different for different oriented windows. The calculation methods for different orientations are illustrated in sections below.

C.1.2.1 Template for IDF snippet for windows

An IDF snippet for the definition of each window is required. There are 8 windows on each orientation. Template for the IDF snippet is illustrated as follows:

FenestrationSurface:Detailed,						
Window_ <mark>0</mark>	<mark>riF_N_Pos</mark> .ւ	unit1, !- Name				
Window, !- Surface Type						
AERC_Doubleclear_Baseline, !- Construction Name						
Wall_ <mark>Ori</mark> W	<mark>F</mark> .unit1,	!- Building Surface Name				
,	!- Outside	e Boundary Condition Object				
,	!- View F	actor to Ground				
,	!- Shadin	g Control Name				
AERC_Woo	d_Frame,	!- Frame and Divider Name				
1,	!- Multip	olier				
4,	!- Numb	er of Vertices				
<mark>X1, Y1,</mark>	<mark>Z1,</mark>	!- X,Y,Z ==> Vertex 1 {m}				
X2, Y2,	Z2,	!- X,Y,Z ==> Vertex 2 {m}				
X3, Y3,	Z3,	!- X,Y,Z ==> Vertex 3 {m}				
X4, Y4,	Z4;	!- X,Y,Z ==> Vertex 4 {m}				

Where **OriF_N_Pos** stand for:

- Ori = Orientation (ldf– front side (South), ldb back side (North), sdr right side (East), sdl left side (West))
- F = Floor number (1 first floor, 2 second floor)
- N = Window number on each floor and orientation (1 left side window, 2 right side window)
- Pos = Window position(Bot bottom window, Top top window)
- W = Wall number of each perimeter zone on each floor (1 external wall on which the windows were installed)

For example, Window_ldf1_2_Bot.unit1 means the right bottom window on the first floor on the south orientation; Wall_sdr1_2.unit1 means the external wall on the second floor of east orientation

C.1.2.2 South facing windows:

There are eight south facing windows (named as Window_ldfF_N_Pos.unit1).

where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

<mark>X1=</mark> values for each of south facing windows are listed in table below

Y1=Y2=Y3=Y4=0.00,

<mark>Z1</mark> values for each of south facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

 $\begin{array}{l} X2=X1+(W-2^{*} L_{f_{Ave}})\\ Z2=Z1\\ X3=X+(W-2^{*} L_{f_{Ave}})\\ Z3=Z+(H/2-2^{*} L_{f_{Ave}})\\ X4=X1\\ Z4=Z+(H/2-2^{*} L_{f_{Ave}}) \end{array}$

For baseline window B, the coordinates of the lower-left corner vertices of the eight south facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_ldf1_1_Bot.unit1	Wall_ldf1_1.unit1	2.50		0.60
Window_ldf1_1_Top.unit1	Wall_ldf1_1.unit1	2.50		1.35
Window_ldf1_2_Bot.unit1	Wall_ldf1_1.unit1	6.60		0.60
Window_ldf1_2_Top.unit1	Wall_ldf1_1.unit1	6.60	0.00	1.35
Window_ldf2_1_Bot.unit1	Wall_ldf1_2.unit1	2.50		3.20
Window_ldf2_1_Top.unit1	Wall_ldf1_2.unit1	2.50		3.95
Window_ldf2_2_Bot.unit1	Wall_ldf1_2.unit1	6.60		3.20
Window_ldf2_2_Top.unit1	Wall_ldf1_2.unit1	6.60		3.95

The coordinates of the lower-left corner vertices of the eight south facing windows are fixed in the E+ model and will be used for different baseline windows. With the coordinates of the lower-left corner vertices, the coordinates of the remaining vertices of each south facing window can be calculated using Equations above.

Take the current AERC baseline window B as an example:

W = 1.4 m

H = 1.5 m

 $L_{f_Ave} = 0.038395 \text{ m}$

the coordinates of the eight south facing windows are calculated and the values are listed in the below table.

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_ldf1_1_Bot.unit1	Wall_ldf1_1.unit1	1	2.50000	0.00000	0.60000
		2	3.82321	0.00000	0.60000
		3	3.82321	0.00000	1.27321
		4	2.50000	0.00000	1.27321
Window_ldf1_1_Top.unit1	Wall_ldf1_1.unit1	1	2.50000	0.00000	1.35000
		2	3.82321	0.00000	1.35000
		3	3.82321	0.00000	2.02321

		4	2.50000	0.00000	2.02321
Window_ldf1_2_Bot.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	0.60000
		2	7.92321	0.00000	0.60000
		3	7.92321	0.00000	1.27321
		4	6.60000	0.00000	1.27321
Window_ldf1_2_Top.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	1.35000
		2	7.92321	0.00000	1.35000
		3	7.92321	0.00000	2.02321
		4	6.60000	0.00000	2.02321
Window_ldf2_1_Bot.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.20000
		2	3.82321	0.00000	3.20000
		3	3.82321	0.00000	3.87321
		4	2.50000	0.00000	3.87321
Window_ldf2_1_Top.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.95000
		2	3.82321	0.00000	3.95000
		3	3.82321	0.00000	4.62321
		4	2.50000	0.00000	4.62321
Window_ldf2_2_Bot.unit1	Wall_ldf1_2.unit1	1	6.60000	0.00000	3.20000
		2	7.92321	0.00000	3.20000
		3	7.92321	0.00000	3.87321
		4	6.60000	0.00000	3.87321
Window_ldf2_2_Top.unit1	Wall_ldf1_2.unit1	1	6.60000	0.00000	3.95000
		2	7.92321	0.00000	3.95000
		3	7.92321	0.00000	4.62321
		4	6.60000	0.00000	4.62321

C.1.2.3 North facing windows:

There are also eight north facing windows (named as Window_ldbF_N_Pos.unit1).

Coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

X1= values for each of north facing windows are listed in table below

<mark>Y1=Y2=Y3=Y4=10.55858</mark>,

Z1= values for each of north facing windows are listed in table below

The coordinates of the remaining three vertices can be calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f,Ave}$) using the formulas below:

X2=X1-(W-2* L_{f_Ave}) Z2=Z1 X3=X1-(W-2* L_{f_Ave}) Z3=Z1+(H/2-2* L_{f_Ave}) X4=X1 Z4=Z1+(H/2-2* L_{f_Ave}) The coordinates of the lower-left corner vertices of the eight north facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_ldb1_1_Bot.unit1	Wall_ldb1_1.unit1	8.00		0.60
Window_ldb1_1_Top.unit1	Wall_ldb1_1.unit1	8.00		1.35
Window_ldb1_2_Bot.unit1	Wall_ldb1_1.unit1	3.90		0.60
Window_ldb1_2_Top.unit1	Wall_ldb1_1.unit1	3.90	10.55858	1.35
Window_ldb2_1_Bot.unit1	Wall_ldb1_2.unit1	8.00	10.55656	3.20
Window_ldb2_1_Top.unit1	Wall_ldb1_2.unit1	8.00		3.95
Window_ldb2_2_Bot.unit1	Wall_ldb1_2.unit1	3.90		3.20
Window_ldb2_2_Top.unit1	Wall_ldb1_2.unit1	3.90		3.95

The coordinates of the remaining vertices of each north facing window are calculated using above equation.

For AERC baseline window B, the coordinates of the eight north facing windows are as follows

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_ldb1_1_Bot.unit1	Wall_ldb1_1.unit1	1	8.00000	10.55858	0.60000
		2	6.67679	10.55858	0.60000
		3	6.67679	10.55858	1.27321
		4	8.00000	10.55858	1.27321
Window_ldb1_1_Top.unit1	Wall_ldb1_1.unit1	1	8.00000	10.55858	1.35000
		2	6.67679	10.55858	1.35000
		3	6.67679	10.55858	2.02321
		4	8.00000	10.55858	2.02321
Window_ldb1_2_Bot.unit1	Wall_ldb1_1.unit1	1	3.90000	10.55858	0.60000
		2	2.57679	10.55858	0.60000
		3	2.57679	10.55858	1.27321
		4	3.90000	10.55858	1.27321
Window_ldb1_2_Top.unit1	Wall_ldb1_1.unit1	1	3.90000	10.55858	1.35000
		2	2.57679	10.55858	1.35000
		3	2.57679	10.55858	2.02321
		4	3.90000	10.55858	2.02321
Window_ldb2_1_Bot.unit1	Wall_ldb1_2.unit1	1	8.00000	10.55858	3.20000
		2	6.67679	10.55858	3.20000
		3	6.67679	10.55858	3.87321
		4	8.00000	10.55858	3.87321
Window_ldb2_1_Top.unit1	Wall_ldb1_2.unit1	1	8.00000	10.55858	3.95000
		2	6.67679	10.55858	3.95000
		3	6.67679	10.55858	4.62321
		4	8.00000	10.55858	4.62321
Window_ldb2_2_Bot.unit1	Wall_ldb1_2.unit1	1	3.90000	10.55858	3.20000

		2	2.57679	10.55858	3.20000
		3	2.57679	10.55858	3.87321
		4	3.90000	10.55858	3.87321
Window_ldb2_2_Top.unit1	Wall_ldb1_2.unit1	1	3.90000	10.55858	3.95000
		2	2.57679	10.55858	3.95000
		3	2.57679	10.55858	4.62321
		4	3.90000	10.55858	4.62321

C.1.2.4 East facing windows:

There are also eight east facing windows (named as Window_sdrF_N_Pos.unit1).

Coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

<mark>X1= X2=X3=X4= 10.55858</mark>,

Y1= values for each of east facing windows are listed in table below

<mark>Z1=</mark> values for each of east facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

Y2= Y1+(W-2*
$$L_{f_Ave}$$
)
Z2=Z1
Y3= Y1+(W-2* L_{f_Ave})
Z3= Z1+(H/2-2* L_{f_Ave})
Y4=Y1
Z4= Z1+(H/2-2* L_{f_Ave})

The coordinates of the lower-left corner vertices of the eight east facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1		2.50	0.60
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1		2.50	1.35
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1		6.60	0.60
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	10.55858	6.60	1.35
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	10.55858	2.50	3.20
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1		2.50	3.95
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1		6.60	3.20
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1		6.60	3.95

The coordinates of the remaining vertices of each east facing window are calculated using above equations.

For AERC baseline window B, the full set of coordinates for the eight east facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	0.60000
		2	10.55858	3.82321	0.60000
		3	10.55858	3.82321	1.27321
		4	10.55858	2.50000	1.27321
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	1.35000
		2	10.55858	3.82321	1.35000
		3	10.55858	3.82321	2.02321
		4	10.55858	2.50000	2.02321
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	0.60000
		2	10.55858	7.92321	0.60000
		3	10.55858	7.92321	1.27321
		4	10.55858	6.60000	1.27321
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	1.35000
		2	10.55858	7.92321	1.35000
		3	10.55858	7.92321	2.02321
		4	10.55858	6.60000	2.02321
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.20000
		2	10.55858	3.82321	3.20000
		3	10.55858	3.82321	3.87321
		4	10.55858	2.50000	3.87321
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.95000
		2	10.55858	3.82321	3.95000
		3	10.55858	3.82321	4.62321
		4	10.55858	2.50000	4.62321
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.20000
		2	10.55858	7.92321	3.20000
		3	10.55858	7.92321	3.87321
		4	10.55858	6.60000	3.87321
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.95000
		2	10.55858	7.92321	3.95000
		3	10.55858	7.92321	4.62321
		4	10.55858	6.60000	4.62321

C.1.2.5 West facing windows:

There are also eight west facing windows (named as Window_sdlF_N_Pos.unit1). where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

X1=X2=X3=X4=0.00,

Y1=values for each of west facing windows are listed in table below

<mark>Z1=</mark>values for each of west facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

Y2= Y1-(W-2* L_{f_Ave}) Z2=Z1 Y3= Y1-(W-2* L_{f_Ave}) Z3= Z1+(H/2-2* L_{f_Ave}) Y4=Y1 Z4= Z1+(H/2-2* L_{f_Ave})

The coordinates of the lower-left corner vertices of the eight west facing windows are listed as follows:

Fenestration Name	Building Surface Name	Х	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1		8.00	0.60
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1		8.00	1.35
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1		3.90	0.60
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	0.00	3.90	1.35
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1		8.00	3.20
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1		8.00	3.95
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1		3.90	3.20
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1		3.90	3.95

The coordinates of the remaining vertices of each west facing window are calculated using above equations.

For AERC baseline window B, the coordinates of the eight west facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	0.60000
		2	0.00000	6.67679	0.60000
		3	0.00000	6.67679	1.27321
		4	0.00000	8.00000	1.27321
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	1.35000
		2	0.00000	6.67679	1.35000
		3	0.00000	6.67679	2.02321
		4	0.00000	8.00000	2.02321

				-	
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	0.60000
		2	0.00000	2.57679	0.60000
		3	0.00000	2.57679	1.27321
		4	0.00000	3.90000	1.27321
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	1.35000
		2	0.00000	2.57679	1.35000
		3	0.00000	2.57679	2.02321
		4	0.00000	3.90000	2.02321
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.20000
		2	0.00000	6.67679	3.20000
		3	0.00000	6.67679	3.87321
		4	0.00000	8.00000	3.87321
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.95000
		2	0.00000	6.67679	3.95000
		3	0.00000	6.67679	4.62321
		4	0.00000	8.00000	4.62321
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.20000
		2	0.00000	2.57679	3.20000
		3	0.00000	2.57679	3.87321
		4	0.00000	3.90000	3.87321
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.95000
		2	0.00000	2.57679	3.95000
		3	0.00000	2.57679	4.62321
		4	0.00000	3.90000	4.62321

A complete EnergyPlus window configuration inc file for the current AERC baseline window B was attached at the end of this document as Appendix F.

Baseline Window Configuration Include File:

FenestrationSurface:Detailed,			
Window_ldf1_1_Bot.unit1, !- Name	B: Baseline window run:		
Window, !- Surface Type			
AERC_Doubleclear_Baseline, <- !- Construction Name	Glazing construction name is		
Wall_ldf1_1.unit1, !- Building Surface Name	AERC_Doubleclear_Baseline.		
, !- Outside Boundary Condition Object	Frame construction name is		
, !- View Factor to Ground	AERC Wood Frame for both		
, !- Shading Control Name	top and bottom "half" of the		
AERC_Wood_Frame, - Frame and Divider Name	baseline window.		
1, !- Multiplier	baseline window.		
4, !- Number of Vertices			
2.50000000000, 0.00000000000, 0.6000000000, !-	X,Y,Z ==> Vertex 1 {m}		
3.823210000000, 0.000000000000, 0.60000000000, !-	X,Y,Z ==> Vertex 2 {m}		
3.823210000000, 0.000000000000, 1.273210000000, !-	X,Y,Z ==> Vertex 3 {m}		
2.50000000000, 0.00000000000, 1.273210000000; !-	X,Y,Z ==> Vertex 4 {m}		
FenestrationSurface:Detailed,			
Window_ldf1_1 <mark>_Top.</mark> unit1, !- Name/			
Window, !- Surface Type			
AERC_Doubleclear_Baseline, / / I- Construction Name			
wali_idf1_1.unit1, !- Building Surface Name			
, !- Outside Boundary Condition Object			
, !- View Factor to Ground			
. <u>I- Shadi</u> ng Control Name			
AERC_Wood_Frame, 🐐 !- Frame and Divider Name			
1, !- Multiplier			
4, !- Number of Vertices			
2.50000000000, 0.00000000000, 1.35000000000, !-	X,Y,Z ==> Vertex 1 {m}		
3.823210000000, 0.000000000000, 1.350000000000, !-	X,Y,Z ==> Vertex 2 {m}		
3.823210000000, 0.000000000000, 2.023210000000, !-			
2.50000000000, 0.00000000000, 2.023210000000; !-	X,Y,Z ==> Vertex 4 {m}		

....

. Window Material/Construct	ction file with spectral data in IDF format
Construction:ComplexFenestrat	tionState,
AERC_Doubleclear_Baseline,	!- name
LBNLWindow,	!- basis type
None,	!- basis symmetry type
ThermParam_Glz_10001,	!- window thermal model
CFS_Glz_10001_Basis,	!- basis matrix name
CFS_GIz_10001_TfSol,	!- Tfsol
CFS_Glz_10001_RbSol,	!- Rbsol
CFS_GIz_10001_T	!- Tfvis
CFS_GIz_10001_Rbvis,	!- Rbvis
Glass_102_Layer,	!- layer 1 name
CFS_Glz_10001_Layer_1_fAbs,	!- fAbs
CFS_Glz_10001_Layer_1_bAbs,	!- bAbs
Gap_1_Glz_10001_Layer_1,	!- gap 1 name
Glass_102_Layer,	!- layer 2 name
CFS_Glz_10001_Layer_2_fAbs,	!- fAbs
CFS_Glz_10001_Layer_2_bAbs;	!- bAbs

Adiabatic Window Configuration Include File:

FenestrationSurface:Detailed,					
Window_ldf1_1_Bot.unit1, !- Name	A: Adiabatic window run:				
Window, !- Surface Type	Glazing construction name is				
Adiabatic_Window, < Construction Name					
Wall_ldf1_1.unit1,	Adiabatic_window. Frame and				
, !- Outside Boundary Condition Object	divider construction name is				
, !- View Factor to Ground	blank (keep a comma) for both				
, !- Shading Control Name	top and bottom "half" of the				
, - Frame and Divider Name 1, - Multiplier	baseline window.				
4, !- Number of Vertices					
2.50000000000, 0.00000000000, 0.6000000000, !-	X,Y,Z ==> Vertex 1 {m}				
3.823210000000, 0.000000000000, 0.60000000000, !-					
3.823210000000, 0.00000000000, 1,273210000000, !- X,Y,Z ==> Vertex 3 {m}					
2.50000000000, 0.00000000000, 1.273210000000; !- X,Y,Z ==> Vertex 4 {m}					
FenestrationSurface:Detailed,					
Window_ldf1_1 Top.unit1, !/ Name					
Window, !- Surface Type					
Adiabatic Window,					
Wall_ldf1_1.unit1, /- Building Surface Name					
, !- Outside Boundary Condition Object					
, !- View Factor to Ground					
J- Shading Control Name					
,					
1, !- Multiplier					
4, !- Number of Vertices					
2.50000000000, 0.00000000000, 1.35000000000, !-	X,Y,Z ==> Vertex 1 {m}				
3.82321000000, 0.00000000000, 1.35000000000, !-	X,Y,Z ==> Vertex 2 {m}				
3.82321000000, 0.00000000000, 2.023210000000, !-	X,Y,Z ==> Vertex 3 {m}				
2.50000000000, 0.00000000000, 2.023210000000; !-	X,Y,Z ==> Vertex 4 {m}				

Adiabatic Window Construction Include File (Window construction adiabatic.inc):

|-----! Window Glass Layers

|-----

WindowMateri	0.
Super_Insulate	ed_Glass, !- Name
SpectralAvera	ge, 🛛 !- Optical Data Type
,	!- Window Glass Spectral Data Set Name
0.003,	!- Thickness {m}
0.000001,	!- Solar Transmittance at Normal Incidence
0.999999,	I- Front Side Solar Reflectance at Normal Incidence
0.999999,	I- Back Side Solar Reflectance at Normal Incidence
0.000001,	!- Visible Transmittance at Normal Incidence
0.999999,	I- Front Side Visible Reflectance at Normal Incidence
0.999999,	!- Back Side Visible Reflectance at Normal Incidence
0.000000,	Infrared Transmittance at Normal Incidence
0.000001,	I- Front Side Infrared Hemispherical Emissivity
0.000001,	!- Back Side Infrared Hemispherical Emissivity
0.00000001	<pre>!- Conductivity {W/m-K}</pre>

!--------

!-----

1 Window Construction

Construction, Adiabatic_window !- Name Super_Insulated_Glass; !- Outside Layer
Half-Deployed Window Configuration Include File:

FenestrationSurface:Detailed,		
Window_ldf1_1_Bot.unit1, !- Name	H: Attachments half deployed: Glazing	
Window, !- Surface Type	Construction for "Bot" window unit	
AERC_Doubleclear_Baseline, !- Construction Name	AERC_Doubleclear_Baseline. Glazing	
Wall_ldf1_1.unit1, !- Building Surface Name	Construction for "Top" window unit is	
, !- Outside Boundary Condition Object . !- View Factor to Ground	AERC Doubleclear Attachment, which	
, !- View Factor to Ground , !- Shading Control Name	— — — — — — — — — — — — — — — — — — — —	
AERC_Wood_Frame, !- Frame and Divider Name	is user-specified. Frame construction	
1, !- Multiplier	name is AERC_Wood_Frame for both	
4, !- Number of Vertices	top and bottom "half" of the baseline	
2.50000000000, 0.00000000000, 0.6000000000, !-	window.	
3.823210000000, 0.000000000000, 0.60000000000, !-	X,Y,Z ==> Vertex 2 {m}	
3.823210000000, 0.000000000000, 1.273210000000, !-		
2.50000000000, 0.00000000000, 1.273210000000; !-		
FenestrationSurface:Detailed,		
Window_ldf1_1 <mark>_Top.</mark> unit1, !- Name		
Window, !- Surface Type		
AERC_Doubleclear_Attachment, < !- Construction Name	e	
Wall_ldf1_1.unic1,		
, !- Outside Boundary Condition Object		
, !- View Factor to Ground		
. <u>I- Shading</u> Control Name		
AERC_Wood_Frame, I - Frame and Divider Name 1, I - Multiplier		
4, !- Number of Vertices		
2.50000000000, 0.00000000000, 1.35000000000, !-	XY7 ==> Vertex 1 {m}	
3.823210000000, 0.000000000000, 1.350000000000, !-		
3.823210000000, 0.00000000000, 2.023210000000, !-		
2.50000000000, 0.00000000000, 2.023210000000; !-		

Fully-Deployed Window Configuration Include File :

FenestrationSurface:Detailed,	S: Attachments fully deployed:	
Window_ldf1_1_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Attachment, !- Construction Name Wall_ldf1_1.unit1, !- Building Surface Name , !- Outside Boundary Condition Object , !- View Factor to Ground , !- Shading Control Name AERC_Wood_Frame, !- Frame and Divider Name 1, !- Multiplier	Glazing Construction is AERC_Doubleclear_Attachment, which is user-specified. Frame construction name is AERC_Wood_Frame for both top and bottom "half" of the baseline window.	
4, !- Number of Vertices 2.50000000000, 0.00000000000, 0.60000000000	<pre><,Y,Z ==> Vertex 2 {m} <,Y,Z ==> Vertex 3 {m}</pre>	
FenestrationSurface:Detailed, Window_ldf1_1_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Attachment, !- Construction Name Wall_ldf1_1.unit1, !- Building Surface Name , !- Outside Boundary Condition Object , !- View Factor to Ground . !- Shading Control Name AERC_Wood_Frame, !- Frame and Divider Name 1, !- Multiplier		
4, !- Number of Vertices 2.50000000000, 0.00000000000, 1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 3.823210000000, 0.00000000000, 1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 3.823210000000, 0.00000000000, 2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 2.500000000000, 0.00000000000, 2.023210000000; !- X,Y,Z ==> Vertex 4 {m}		

C.2 Zone Infiltration:

The method of calculating air infiltration for the house with baseline windows, adiabatic windows and baseline windows with attachments consists of the following steps:

(1) Calculate the ELA of the whole house with baseline windows, ELA_{H}

(2) Calculate the ELA of all baseline windows, ELA_W

(3) Calculate the ELA of the whole house with adiabatic windows (no window infiltration), $\text{ELA}_{\rm HO}$

(4) Calculate the ELA of all windows with attachment, ELA_{WA}

(5) Calculate the ELA of the whole house with windows and attachments, ELA_{HWA}

C.2.1 Calculating the ELA of the whole house with baseline windows, $ELA_{\rm H}$

$$ELA_{H} = \frac{Q_{50} \left[\frac{\Delta P_{4}}{\Delta P_{50}}\right]^{n}}{\left[\frac{2\Delta P_{4}}{\rho}\right]^{0.5}} \times 10000$$
(I.1)

$$Q_{50} = \frac{V_H \cdot ACH_{50}}{3600}$$
(I.2)

Where:

 ELA_H = Effective leakage area of the whole house with baseline windows, (cm²)

$$Q_{50}$$
 = Total house infiltration at 50 Pa, (m³/s)

$$\Delta P_{50}$$
 = 50 Pa test pressure for windows, (Pa)

$$\Delta P_4$$
 = 4 Pa used as baseline for comparison, (Pa)

$$\rho$$
 = 1.29; Air density at standard temp. & press., (kg/m³)

 V_H = The volume of the house, (m³)

 ACH_{50} = Air changes per hour at 50 Pa

C.2.2 Calculating the ELA of all baseline windows, $\mbox{ELA}_{\mbox{w}}$

$$ELA_{W} = \frac{Q_{W75} \left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2\Delta P_{4}}{\rho}\right]^{0.5}} \times 10000$$
(I.3)

$$Q_{W75} = q_{W75} \cdot A_W \tag{I.4}$$

Where:

 $ELA_{W} = \text{Effective leakage area of all baseline windows, (cm²)}$ $Q_{W75} = \text{Total baseline window infiltration at 75 Pa, (m³/s)}$ $\Delta P_{75} = 75 \text{ Pa test pressure for windows, (Pa)}$ $q_{W75} = 0.01016 \text{ m}^{3}/(\text{s} \cdot \text{m}^{2}) (2.0 \text{ cfm/ft}^{2}); \text{ The infiltration per unit area of baseline window at 75 Pa, (m³/s \cdot \text{m}^{2})}$ $A_{W} = \text{Total window area, (m²)}$

C.2.3 Calculating the ELA of the whole house without windows, ELA_{HO}

$$ELA_{HO} = ELA_{H} - ELA_{W}$$
(I.5)

C.2.4 Calculating the ELA of windows with attachments, ELA_{WA}

$$ELA_{WA} = \frac{Q_{WA75} \left[\frac{\Delta P_4}{\Delta P_{75}}\right]^n}{\left[\frac{2\Delta P_4}{\rho}\right]^{0.5}} \cdot 10000$$
(I.6)

$$Q_{WA75} = q_{WA75} \cdot A_W \tag{I.7}$$

Where:

 ELA_{WA} = Effective leakage area of all windows with attachment, (cm²) Q_{75WA} = Total infiltration of the windows with attachment at 75 Pa, (m³/s) q_{WA75} = The measured air infiltration per unit area of the window with attachment at 75 Pa, also known as air leakage measurement; [m³/(s · m²)] Conversion of measured air leakage from IP units (cfm/sf^2) to SI units $(m^3/(s \cdot m^2))$ is given by. This quantity is specified as input data in AERCalc for infiltration of window attachment product (baseline window plus window attachment):

$$q_{WA75}(SI) = 0.00508 \cdot q_{WA75}(IP)$$

Where the conversion factor 0.00508 is the result of the following conversion action: (ft to m)/(min to sec), or 0.3048/60.

C.2.5 Calculating the ELA of the whole house with window and attachment, ELA_{HWA}

$$ELA_{HWA} = ELA_{HO} + ELA_{WA}$$
(I.8)

Numerical values for the typical house and baseline window in AERCalc air:

$$V_{\rm H}$$
= 577.6288 m³ (I.9)

$$ACH_{50}$$
_cooling=10 1/hr (I.10)

$$ACH_{50}$$
 heating=7 1/hr (I.11)

$$q_{W75} = 0.01016 \text{ m}^3/(\text{s} \cdot \text{m}^2)$$
 (I.12)

$$A_w = 33.6 \text{ m}^2$$
 (I.13)

For cooling climate:

$$ELA_{HO} = 1,044$$
 cm²
 $ELA_{HWA} = 1,044 + ELA_{WA}$ cm² (I.14)

For example, if the measured air infiltration of the window with attachment is 1 cfm/sf², then:

 ELA_{HWA} equals to 1146 cm², this value should be inputted in the ELA filed of EnergyPlus IDF files for cooling simulation.

$$ELA_{WA} = \frac{1 \cdot 0.00508 \cdot 33.6 \cdot \left[\frac{4}{75}\right]^{0.65}}{\left[\frac{8}{1.29}\right]^{0.5}} \cdot 10000 = 101.977 cm^{2}$$

Therefore,

$$ELA_{HWA} = 1,044 + 101.977 = 1,145.997 cm^{2}$$

For heating climate calculation:

$$ELA_{H0} = 669 \text{ cm}^2$$

 $ELA_{HWA} = 669 + ELA_{WA} \text{ (cm}^2\text{)}$ (I.15)

For the same example the infiltration for the house with window attachments will be:

 $ELA_{HWA} = 669 + 101.977 = 770.997 cm^2$

Baseline window and half-deployed window infiltration include file for Houston (Air infiltration baseline Houston.inc):

ZoneInfiltration:	EffectiveLeakageArea,	Deniel H. Denieling and adverses
Living_Sherma	nGrimsrud_unit1, !- Name	B and H: Baseline window run and half-deployed window run:
living_unit1,	!- Zone Name	the effective air leakage area
always_avail,	!- Schedule Name	(ELA) is 1044+ELAw in Houston.
1248,	!- Effective Air Leakage Are;	ELAw is 204.
0.00029,	!- Stack Coefficient	EDAW IS 204.
0.000231;	!- Wind Coefficient	

<u>Baseline window and half-deployed window infiltration include file for Minneapolis</u> (Air infiltration baseline Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea,			
	Living_ShermanGrimsrud_unit1, !- Name		
	!- Zone Name	and	
always_avail,	!- Schedule Name	the	
873,	!- Effective Air Leakage Area	(EL	
0.00029,	!- Stack Coefficient	Mi	
0.000231;	!- Wind Coefficient		

B and H: Baseline window run and half-deployed window run: he effective air leakage area ELA) is 669+ELAw in Minneapolis. ELAw is 204. 0.00029,

0.000231;

A: Adiabatic window run: the ZoneInfiltration:EffectiveLeakageArea, effective air leakage area (ELA) is Living ShermanGrimsrud unit1, !- Name 1044 in Houston. living_unit1, !- Zone Name always_avail, Schedule Name 1044, !- Effective Air Leakage Area {cm2}

Adiabatic window infiltration include file for Houston (Air infiltration adiabatic Houston.inc):

Adiabatic window infiltration include file for Minneapolis
(Air infiltration adiabatic Minneapolis.inc):

!- Stack Coefficient

!- Wind Coefficient

Living_Sherma	:EffectiveLeakageArea, anGrimsrud_unit1, !- Name !- Zone Name	A: Adiabatic window run: the effective air leakage area (ELA) is 669 in Minneapolis.
always_avail,	- Schedule Name	
669,	!- Effective Air Leakage Area	ı {cm2}
0.00029,	!- Stack Coefficient	
0.000231;	!- Wind Coefficient	

Fully-deployed window infiltration include file for Houston (Air infiltration user input Houston.inc):

ZoneInfiltration:EffectiveLeakageArea,		
Living_Sherma	nGrimsrud_unit1, !- Name	F: Attachments fully deployed:
living_unit1,	!- Zone Name	the effective air leakage area
always_avail,	!- Schedule Name	(ELA) is 1044+ELA _s in Houston.
1044+ <mark>ELA_s,</mark>	!- Effective Air Leakage	ELA _s is attachment dependent
0.00029,	!- Stack Coefficient	and is specified as input data.
0.000231;	!- Wind Coefficient	

<u>Fully-deployed window infiltration include file for Minneapolis</u> (Air infiltration user input Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea,		F: Attachments fully deployed:
	nGrimsrud_unit1, !- Name	the effective air leakage area
living unit1,	!- Zone Name	(ELA) is <mark>669+ELA_s in Houston.</mark>
always_avail,	!- Schedule Name	ELA _s is attachment dependent
669+ <mark>ELA</mark> s,	- Effective Air Leakage	and is specified as input data.
0.00029,	!- Stack Coefficient	
0.000231;	!- Wind Coefficient	

Note 1: ELA_s in annotations above was replaced with ELA_{WA} notation in equations preeding these annotations.

Note 2: In AERCalc, users are required to input the measured air leakage (AL) of the window with attachment, but in EnergyPlus the infiltration is calculated based on the effective leakage area of the whole house including the windows with attachments. Thus, it is necessary to convert the user-input air leakage to the effective leakage area of the whole house (ELA_{HWA}) at the back-end before starting simulation. In addition to this conversion, unit conversion will often be required, since most common way of reporting AL is in IP units of cfm/sf². The methodology of converting AL into ELA_{HWA} was illustrated in above.

C.3 HVAC:

HVAC System for Houston

- Red highlight: System_autosize_Houston.inc
- Yellow highlight: System_sizing_Houston.inc

izing:System, Central System_unit1,	!- AirLoop Name	
Sensible,	!- Type of Load to Size On	
autosize,	!- Design Outdoor Air Flow Rate {m3/s}	1, for baseline window run, this
0.652,	!- Design Outdoor Air Flow Rate {m3/s}	e i i i e e e e e e e e e e e e e e e e
1,	1- Central Heating Maximum System Air Flow Ratio	field keeps autosize, for other
7,	<pre>!- Preheat Design Temperature {C}</pre>	and the second
0.008,	!- Preheat Design Humidity Ratio {kgWater/kgDryAi	runs, viz. adiabatic window run,
11,	!- Precool Design Temperature {C}	a la a dia fini bina la mandri un ana di
0.008,	!- Precool Design Humidity Ratio {kgWater/kgDryAi	shade fully deployed run and
12, 50,	!- Central Cooling Design Supply Air Temperature	shade half deployed rup, this
Sø, NonCoincident,	!- Central Heating Design Supply Air Temperature !- Tupe of Zone Sum to Use	shade half deployed run, this
No,	!- 100% Outdoor Air in Cooling	field replaces with 0.652
No,	!- 100% Outdoor Air in Heating	neid replaces with 0.052
0.008,	!- Central Cooling Design Supply Air Humidity Rat	
0.008,	!- Central Heating Design Supply Air Humidity Rat !- Central Heating Design Supply Air Humidity Rat	
designday,	!- Cooling Supply Air Flow Rate Method	
-	!- Cooling Supply Air Flow Rate {m3/s}	
	!- Cooling Supply Air Flow Rate Per Floor Area {	
	!- Cooling Fraction of Autosized Cooling Supply f	
	!- Cooling Supply Air Flow Rate Per Unit Cooling	
designday,	!- Heating Supply Air Flow Rate Method	field keeps autosize, for other
3	!- Heating Supply Air Flow Rate {m3/s}	
,	!- Heating Supply Air Flow Rate Per Floor Area {	
,	!- Heating Fraction of Autosized Heating Supply A	
,	!- Heating Fraction of Autosized Cooling Supply A	9485.25
,	!- Heating Supply Air Flow Rate Per Unit Heating	
ZoneSum,	!- System Outdoor Air Method	
0.5,	!- Zone Maximum Outdoor Air Fraction {dimensionle	
CoolingDesignCapacity,	!- Cooling Design Capacity Method	
autosize,	t- Cooling Design Capacity {W}	
9485.25, 🧲	!- Cooling Design Capacity {W}	3, for baseline window run, this
,	!- Cooling Design Capacity Per Floor Area {W/m2}	
, HeatingDesignCapacity,	!- Fraction of Autosized Cooling Design Capacity !- Heating Design Capacity Method	field keeps autosize, for other
autosize,	- Heating Design Capacity (W)	
7126.4,	<pre>!- Heating Design Capacity {W}</pre>	runs, this field replaces with
	<pre>!- Heating Design Capacity for Floor Area {W/m2}</pre>	
,	!- Fraction of Autosized Heating Design Capacity	7126.4
,	!- Central Cooling Capacity Control Method	

AirTerminal:SingleDuct:Und	-	4, for baseline window run, this
ZoneDirectAir_unit1, always avail,	!- Name !- Availability Schedule Name	field keeps autosize, for other
Zone Inlet Node_unit1,	A Tree Coursel Alter Hade Haves	runs, this field replaces with
autosize;	<pre>!- Maximum Air Flow Rate {m3/s} !- Maximum Air Flow Rate {m3/s}</pre>	runs, uns neid replaces with
0.052,	· Havingh ut 1100 Nace (10757	0.652

		5
Coil:Cooling:DX:SingleSp		fi
DX Cooling Coil_unit1,		
always_avail,	!- Availability Schedule Name	r
autosize,	!- Gross Rated Total Cooling Capacity	
13131.31,	!- Gross Rated Total Cooling Capacity	
autosize,	!- Gross Rated Sensible Heat Ratio	
0.733253,	!- Gross Rated Sensible Heat Ratio	C
2.70,	!- Gross Rated Cooling COP {W/W}	6
autosize,	!- Rated Air Flow Rate {m3/s}	f
0.652, <	!- Rated Air Flow Rate {m3/s}	
,	!- Rated Evaporator Fan Power Per Volu	r
Cooling Coil Air Inlet	Node_unit1, !- Air Inlet Node Name	1
Heating Coil Air Inlet	Node unit1, !- Air Outlet Node Name	0
HPACCoolCapFT,	!- Total Cooling Capacity Function of	
HPACCoolCapFFF,	!- Total Cooling Capacity Function of	
HPACCOOLEIRFT,	!- Energy Input Ratio Function of Temp	7
HPACCOOLEIRFFF,	!- Energy Input Ratio Function of Flow	
HPACCOOLPLFFPLR;	!- Part Load Fraction Correlation Curv	

5, for baseline window run, this field keeps autosize, for other runs, this field replaces with

6, for baseline window run, this field keeps <mark>autosize,</mark> for other runs, this field replaces with 0 733253

7, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.652

Fan:OnOff,		
Supply Fan_unit1,	t- Name	
always_avail,	!- Availability Schedule Name	
0.7,	!- Fan Total Efficiency	
400, autosi za	!- Pressure Rise {Pa}	8, for baseline window run, this
autosize,	<pre>!- Maximum Flow Rate {M3/s !- Maximum Flow Rate {m3/s}</pre>	
0.652,< 0.8,	!- Motor Efficiency	field keeps autosize, for other
1,	!- Motor In Airstream Fraction	where the state is a second
', air loop inlet node		runs, this field replaces with
	Let node unit1. !- Air Outlet Node	0.652
,	!- Fan Power Ratio Function of	
,	!- Fan Efficiency Ratio Functi	
, General;	!- End-Use Subcategory	
oil:Heating:DX:SingleSpee		
Main DX Heating Coil_u		9, for baseline window run, this
always_avail, autosize,	!- Availability Schedule Name !- Rated Iotal Heating Capacity {W}	
13131.31,	?- Rated Total Heating Capacity {W}	
1.99,	<pre>!- Rated COP {W/W}</pre>	
autosize,	!- Rated Air Flow Rate {m3/s}	runs, this field replaces with
0.652,	<pre>!- Rated Air Flow Rate {m3/s}</pre>	13131.31
,	!- Rated Evaporator Fan Power Per U	
	Node_unit1, !- Air Inlet Node Name	
HPACHeatCapFT,	Inlet Node_unit1, !- Air Outlet Node !- Total Heating Capacity Function	
HPACHeatCapFFF,	!- Total Heating Capacity Function	
HPACHeatEIRFT,	!- Energy Input Ratio Function of 1	
HPACHeatEIRFFF,	!- Energy Input Ratio Function of F	
HPACCOOLPLFFPLR,	!- Part Load Fraction Correlation C	
Defrost_EIR_FT,	!- Defrost Energy Input Ratio Funct	. 1 ,
-17.78,	!- Minimum Outdoor Dry-Bulb Tempera	<u>t</u> 0.652
, F 0	!- Outdoor Dry-Bulb Temperature to	
5.0, 200.0,	!- Maximum Outdoor Dry-Bulb Tempera !- Crankcase Heater Capacity {W}	
10.0,	!- Maximum Outdoor Dry-Bulb Tempera	t.
ReverseCycle,	!- Defrost Strategy	-
OnDemand,	!- Defrost Control	
,	!- Defrost Time Period Fraction	
;	!- Resistive Defrost Heater Capacit	9
bil:Heating:Electric,		11, for baseline window run, this
Supp Heating Coil_unit1,		
always_avail, 1,	!- Availability Schedule Name !- Efficiency	field keeps autosize, for other
autosize,	<pre>!- Nominal Capacity {W}</pre>	rung this field replaces with
7910.07,	!- Nominal Capacity {W}	runs, this field replaces with
	let Node_unit1, !- Air Inlet Node Name	7910.07
Air Loop Outlet Node_uni	t1; !- Air Outlet Node Name	
ALL OBJECT	S IN CLASS: AIRLOOPHUAC =======	
AirLoopHVAC,		
Central System_unit1,	t- Name	
, 	!- Controller List Name	
availability list, autosize,	!- Availability Manager List Name !- Design Supply Air Flow Rate {m3/s}	
8.652, <	<pre>!- Design Supply Air Flow Rate {m3/s} !- Design Supply Air Flow Rate {m3/s}</pre>	12, for baseline window run, this
Air Loop Branches_unit1,		
,	!- Connector List Name	field keeps autosize, for other
	1, !- Supply Side Inlet Node Name	· · · · · · · · · · · · · · · · · · ·
	unit1, !- Demand Side Outlet Node Name	runs, this field replaces with
	e_unit1, !- Demand Side Inlet Node Names	0.652
HIR LOOP VUTLET NODE_UNI	t1; !- Supply Side Outlet Node Names	0.002

AirLoopHUAC:UnitaryHeatPump:AirToAir, Heat Pump_unit1, !- Name always_avail, !- Availability Schedule Name Air Loop Inlet node_unit1, !- Air Inlet Node Name Air Loop Outlet Node_unit1, !- Air Outlet Node Name autosize,	
0.0, f - Supply Air Flow Rate When No Cooling or Heat living_unit1, Fan:OnOff, Supply Fan_unit1, f - Supply Air Fan Object Type Supply Fan_unit1, f - Supply Air Fan Name	
Coil:Heating:DX:SingleSpeed, !- Heating Coil Object Type Main DX Heating Coil_unit1, !- Heating Coil Name Coil:Cooling:DX:SingleSpeed, !- Cooling Coil Object Type DX Cooling Coil_unit1, !- Cooling Coil Name Coil:Heating:Electric, !- Supplemental Heating Coil Object Type Supp Heating Coil_unit1, !- Supplemental Heating Coil Name 50, !- Maximum Supply Air Temperature from Supplem 10, !- Maximum Outdoor Dry-Bulb Temperature for Sup BlowThrough, !- Fan Placement fan_cycle; !- Supply Air Fan Operating Mode Schedule Name	

BI	, !-		15, for baseline window run, this field keeps autosize, for other
	Air Loop Outlet Node_unit1,	!- Component 1 Name !- Component 1 Inlet Node Name !- Component 1 Outlet Node Name Component 1 Branch Control Type	runs, this field replaces with 0.652

	, !- Name t1, !- Inlet Node Name t Node unit1, !- Outlet Node Name	
autosize,	<pre>!- Design Maximum Flow Rate {m3/s}</pre>	16, for baseline window run, this
0.000009, ← 179352,	!- Design Maximum Flow Rate {m3/s} !- Design Pump_Head {Pa}	field keeps autosize, for other
autosize,	!- Design Power Consumption {\} !- Motor Efficiency	runs, this field replaces with
0.9, 0,	 Procession of Motor Inefficiencies 	
0,	!- Coefficient 1 of the Part Load !- Coefficient 2 of the Part Load	
1, 0,	the coefficient 3 of the Part Load	
0,	!- Coefficient 4 of the Part Load	P
0, Intermittent;	!- Design Minimum Flow Rate {m3/s} !- Pump Control Type	

WaterHeater:Mixed,				
Water Heater_unit1,	!- Name			
0.196841372,	!- Tank Volume {m3}			
dhw_setpt,	!- Setpoint Temperature Schedule Name			
2,	!- Deadband Temperature Difference {deltaC}			
50,	!- Maximum Temperature Limit 17 for bosciine window www.thio			
Cycle,	the start control Type 17, for baseline window run, this			
autosize,	t- Heater Maximum Capacity (W) field keeps autosize, for other			
5500, <	t- Heater Maximum Capacity {W			
0,	!- Heater Minimum Capacity {W runs, this field replaces with			
0,	!- Heater Ignition Minimum Fi			
,	!- Heater Ignition Delay {s} 5500			
electricity,	!- Heater Fuel Type			
1,	!- Heater Thermal Efficiency			
,	!- Part Load Factor Curve Name			
,	!- Off Cycle Parasitic Fuel Consumption Rate {\}			
,	!- Off Cycle Parasitic Fuel Type			
,	!- Off Cycle Parasitic Heat Fraction to Tank			
,	<pre>!- On Cycle Parasitic Fuel Consumption Rate {W}</pre>			
,	t- On Cycle Parasitic Fuel Type			
,	!- On Cycle Parasitic Heat Fraction to Tank			
Zone,	!- Ambient Temperature Indicator			
,	!- Ambient Temperature Schedule Name			
living_unit1,	!- Ambient Temperature Zone Name			
,	!- Ambient Temperature Outdoor Air Node Name			
1.3306616,	!- Off Cycle Loss Coefficient to Ambient Temperature {W/K}			
1,	<pre>!- Off Cycle Loss Fraction to Zone</pre>			
1.3306616,	!- On Cycle Loss Coefficient to Ambient Temperature {W/K}			
1,	!- On Cycle Loss Fraction to Zone			
0,	!- Peak Use Flow Rate {m3/s}			
,	!- Use Flow Rate Fraction Sch 18, for baseline window run, this			
,	!- Cold Water Supply Temperat			
	et node_unit1, !- Use Side Inlet field keeps autosize, for other			
	let node_unit1, !- Use Side Outle !- Use Side Effectiveness runs, this field replaces with			
1,				
,	!- Source Side Inlet Node Nam 0.000009			
	- Source side outlet Node Na			
1,	!- Source Side Effectiveness			
autosize,	!- Use Side Design Flow Rate {m3/s}			
0.000009,	t- Use Side Design Flow Rate (m3/s)			
0,	!- Source Side Design Flow Rate {m3/s}			
1.5;	!- Indirect Water Heating Recovery Time {hr}			

PlantLoop, DHW Loop_unit1, !- Name Water, !- Fluid Type !- User Defined Fluid Type , DHW Loop Operation_unit1,!- Plant Equipment Operatio 19, for baseline window run, this DHW Supply Outlet Node_unit1, !- Loop Temperature S 100, !- Maximum Loop Temperature field keeps autosize, for other Ø, !- Minimum Loop Temperature Maximum Loop Flow Rate (runs, this field replaces with autosize, 0.000009, **!- Maximum Loop Flow Rate** !- Minimum Loop Flow Rate { 0, autocalculate,
 autocalculate,
 !- Plant Loop Volume {m3}

 0.006851,
 !- Plant Loop Volume {m3}

 Mains Inlet Node_Unit1,
 !- Plant Side Inlet Node Name
 DHW Supply Outlet Node_unit1, 1- Plant Side Outlet DHW Supply Branches_unit1, 1- Plant Side Branch Lis 20, for baseline window run, this DHW Supply Connectors_unit1, !- Plant Side Connecto DHW Demand Inlet Node_unit1, !- Demand Side Inlet N Mains Makeup Node_unit1, !- Demand Side Outlet Node other runs, this field replaces DHW Demand Branches_unit1, !- Demand Side Branch Li DHW Demand Connectors_unit1, !- Demand Side Connect With 0.006851 !- Load Distribution Scheme Optimal;

HVAC System for Minneapolis

- Red highlight: System_autosize_Minneapolis.inc
- Yellow highlight: System_sizing_Minneapolis.inc

Sizing:System, Central System_unit1, Sensible, autoSize, 0.563, 1, 7, 0.008, 11, 0.008, 12, 50, NonCoincident,	 PairLoop Name Type of Load to Size On Posign Outdoor Air Flow Rate {m3/s} Central Heating Maximum System Air Flow Preheat Design Temperature {C} Preheat Design Temperature {C} Precool Design Temperature {C} Precool Design Humidity Ratio {kgWater/I Central Cooling Design Supply Air Temper Central Heating Design Supply Air Temper Central Heating Design Supply Air Temper Perto Sum Sum Superset Superset Superset 	shade half-deployed run, this
No, No, 0.008, 0.008, designday, , , , designday, , ,	 190% Outdoor Air in Cooling 100% Outdoor Air in Cooling 100% Outdoor Air in Cooling Central Cooling Design Supply Air Humid: Cooling Supply Air Flow Rate Method Cooling Supply Air Flow Rate Method Cooling Supply Air Flow Rate Per Floor of Cooling Supply Air Flow Rate Per Unit Co Heating Supply Air Flow Rate Method Heating Supply Air Flow Rate Method Heating Supply Air Flow Rate Per Floor of Heating Supply Air Flow Rate Per Floor of Heating Supply Air Flow Rate Per Floor of Heating Fraction of Autosized Cooling So Heating Fraction of Autosized Cooling So 	2, for baseline window run, this field keeps autosize , for other runs, this field replaces with
, ZoneSum, 0.5, CoolingDesignCapacity, autosize, 7979.19, , HeatingDesignCapacity, autosize, 15123.09, ,	 Heating Supply Air Flow Rate Per Unit Ho System Outdoor Air Method Zone Maximum Outdoor Air Fraction {dimention of the second secon	3, for baseline window run, this field keeps <mark>autosize</mark> , for other runs, this field replaces with

AirTerminal:SingleDuct:Unc ZoneDirectAir_unit1, always avail,	ontrolled, !- Name !- Availability Schedule Name	4, for baseline window run, this
Zone Inlet Node_unit1,		field keeps autosize, for other
autosize;	Maximum Air Flow Rate {m3/s}	runs, this field replaces with 0.563
0.563; <	!- Maximum Air Flow Rate {m3/s}	

	<pre>!- Name !- Availability Schedule Name !- Gross Rated Total Cooling Capacity {W} !- Gross Rated Total Cooling Capacity {W} !- Gross Rated Sensible Heat Ratio !- Gross Rated Sensible Heat Ratio</pre>	0.753625
<pre>Fan:OnOff, Supply Fan_unit1 always_avai1, 0.7, 400, autosize, 0.563, 0.8, 1, air loop inlet n cooling coil air , , General;</pre>	 •- Availability Schedule •- Fan Total Efficiency •- Pressure Rise {Pa} •- Maximum Flow Rate {m3/s} •- Maximum Flow Rate {m3/s} •- Motor Efficiency •- Motor In Airstream Frame 	8, for baseline window run, this field keeps <mark>autosize,</mark> for other runs, this field replaces with 0.563

irLoopHVAC, Central System_unit1, , availability list,	!- Name !- Controller <u>List Name</u> !- Availability Manager List Name	9, for baseline window run, this field keeps autosize, for other
autosize,	!- Design Supply Air Flow Rate {m3	runs, this field replaces with
0.563, !	 Design Supply Air Flow Rate {m3/s} 	0.563
	, !- Branch List Name !- Connector List Name t1, !- Supply Side Inlet Node Name unit1, !- Demand Side Outlet Node	
Zone Equipment Inlet No	de_unit1, !- Demand Side Inlet Node it1; !- Supply Side Outlet Node Nam	
====== ALL OBJEC	TS IN CLASS: AIRLOOPHVAC:UNITARYHEAT	1
irLoopHVAC:UnitaryHeatCo	01,	10, for baseline window run, this
ACandF_unit1, always_avail,	!- Name !- Availability Schedule Name	field keeps autosize, for other
air loop inlet node_uni	t1, !- Unitary System Air Inlet Nod it1, !- Unitary System Air Outlet N	
fan_cycle,	!- Supply Air Fan Operating Mode S	•
80, autosize,	!- Maximum Supply Air Temperature !- Cooling Supply Air Flow Rate {maintain temperature	
0.563, ?	- Cooling Supply Air Flow Rate {m3/s	
autosize,	!- Heating Supply Air Flow Rate {m - Heating Supply Air Flow Rate {m3/s	
0,	!- No Load Supply Air Flow Rate {m	6
living_unit1, Fan:OnOff,	 !- Controlling Zone or Thermostat !- Supply Fan Object Type 	
Supply Fan_unit1,	!- Supply Fan Name	11, for baseline window run, this
BlowThrough, Coil:Heating:gas,	!- Fan Placement !- Heating Coil Object Type	field keeps autosize, for other
	nit1, !- Heating Coil Name peed, !- Cooling Coil Object Type	runs, this field replaces with
DX Cooling Coil_unit1,	<pre>!- Cooling Coil Name</pre>	0.563
None;	!- Dehumidification Control Type	0.505
ranch,		
Air Loop Main Branch_uni autosize,	<pre>it1, !- Name !- Maximum Flow Rate {m3/s}</pre>	
	- Maximum Flow Rate {m3/s}	
,	!- Pressure Drop Curve Name	
	Cool, ! Component 1 Object Type	12, for baseline window run, this
ACandF_unit1,	Cool, !- Component 1 Object Type !- Component 1 Name	
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name	field keeps autosize, for other
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE;	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type	
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE;	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name	field keeps autosize, for other
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE;	Cool, ? Component 1 Object Type ?- Component 1 Name c1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE =======	field keeps autosize, for other
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE; ALL OBJEC1 NutdoorAir:Node, 0.914355407629293; NutdoorAir:Node,	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE unit1, ?- Name ?- Height Above Ground {m}	field keeps autosize, for other
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE; ALL OBJEC1 NutdoorAir:Node, outside air inlet node_u 0.914355407629293;	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE unit1, ?- Name ?- Height Above Ground {m}	field keeps autosize, for other runs, this field replaces with 0.563
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_unit ACTIVE; ALL OBJEC1 NutdoorAir:Node, 0.914355407629293; NutdoorAir:Node, outdoor air node_unit1, 1;	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE ======== unit1, ?- Name ?- Height Above Ground {m} ?- Name	field keeps autosize, for other runs, this field replaces with 0.563
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE; ALL OBJEC1 NutdoorAir:Node, outside air inlet node_u 0.914355407629293; NutdoorAir:Node, outdoor air node_unit1, 1; ALL OBJEC1	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE ======== unit1, ?- Name ?- Height Above Ground {m} ?- Height Above Ground {m}	field keeps autosize, for other runs, this field replaces with 0.563
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE; ALL OBJECT NutdoorAir:Node, outside air inlet node_u 0.914355407629293; NutdoorAir:Node, outdoor air node_unit1, 1; ALL OBJECT Coil:Heating:Gas, Main gas heating coil_ur	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE INITI, ?- Name ?- Height Above Ground {m} ?- Height Above Ground {m} IS IN CLASS: COIL:HEATING:GAS hit1, ?- Name	field keeps autosize, for other runs, this field replaces with 0.563 13, for baseline window run, this field keeps autosize, for other
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_unit ACTIVE; ALL OBJEC1 NutdoorAir:Node, outside air inlet node_u 0.914355407629293; NutdoorAir:Node, outdoor air node_unit1, 1; ALL OBJEC1 Coil:Heating:Gas, Main gas heating coil_ur always_avail,	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE ========= unit1, ?- Name ?- Height Above Ground {m} ?- Height Above Ground {m} IS IN CLASS: COIL:HEATING:GAS ======= hit1, ?- Name ?- Availability Schedule Name	field keeps autosize, for other runs, this field replaces with 0.563 13, for baseline window run, this field keeps autosize, for other runs, this field replaces with
ACandF_unit1, Air Loop Inlet Node_unit Air loop outlet node_uni ACTIVE; ALL OBJECT NutdoorAir:Node, outside air inlet node_u 0.914355407629293; NutdoorAir:Node, outdoor air node_unit1, 1; ALL OBJECT Coil:Heating:Gas, Main gas heating coil_ur	Cool, ? Component 1 Object Type ?- Component 1 Name t1, ?- Component 1 Inlet Node Name it1, ?- Component 1 Outlet Node Name ?- Component 1 Branch Control Type IS IN CLASS: OUTDOORAIR:NODE INITI, ?- Name ?- Height Above Ground {m} ?- Height Above Ground {m} IS IN CLASS: COIL:HEATING:GAS hit1, ?- Name	runs, this field replaces with 0.563 13, for baseline window run, this field keeps autosize, for other

	: Node_unit1, !- Outlet Node Name
autosize,	t- Design Maximum Flow Rate (m3/s)
0.000009,	t- Design Maximum Flow Rate { t- Design Pump Head {Pa} 14, for baseline window run, this
autosize,	- Design Power Consumption /
0.9,	- Motor Efficiency field keeps autosize, for other
0,	A Freedom of Hohen Accelet
0,	to coefficient 1 of the Part runs, this field replaces with
1,	!- Coefficient 2 of the Part 0.000009
0,	!- Coefficient 3 of the Part
0,	!- Coefficient 4 of the Part Load I
0, Intermittent;	!- Design Minimum Flow Rate {m3/s} !- Pump Control Type
Incernicency	
aterHeater:Mixed,	
Water Heater_unit1,	!- Name
0.196841372,	!- Tank Volume {m3}
dhw_setpt,	!- Setpoint Temperature Schedul !- Deadband Temperature Differe
2, 50,	!- Maximum Temperature Limit {C
Cycle,	!- Heater Control Type
autosize,	t- Heater Maximum Canacitu
11137.8,	t- Heater Maximum Capacity 15, for baseline window run, th
0,	- Heater Minimum Capacity
0,	!- Heater Ignition Minimum THER REEPS autoSize, for Other
,	!- Heater Ignition Delay (s runs, this field replaces with
naturalgas,	r- Heater Fuel Type
0.8,	!- Heater Thermal Efficiency 11137.8
,	!- Part Load Factor Curve N
,	!- Off Cycle Parasitic Fuel Con
,	!- Off Cycle Parasitic Fuel Typ !- Off Cycle Parasitic Heat Fra
,	!- On Cycle Parasitic Fuel Cons
,	!- On Cycle Parasitic Fuel Type
,	!- On Cycle Parasitic Heat Frac
, Zone,	!- Ambient Temperature Indicato
,	!- Ambient Temperature Schedule
, living_unit1,	!- Ambient Temperature Zone Mam
,	!- Ambient Temperature Outd 16, for baseline window run, th
1.3306616,	- Uff CUCle Loss Coefficie
1,	!- Off Cycle Loss Fraction field keeps autosize, for other
1.3306616,	•- On Cucle Loss Coefficier
1,	- On Cycle Loss Fraction to runs, this field replaces with
0,	!- Peak Use Flow Rate {m3/s !- Use Flow Pate Exaction \$ 0.000009
,	:- OSE FIOW NACE FRACTION S
, Nator Neator use inl	the cold Water Supply Temperatur
	let node_unit1, !- Use Side Inlet No tlet node unit1, !- Use Side Outlet
1,	Use Side Effectiveness
.,	!- Source Side Inlet Node Name
	!- Source Side Outlet Node Name
, 1,	!- Source Side Effectiveness
autosize,	!- Use Side Design Flow Rate {m

PlantLoop, DHW Loop_unit1, !- Name Water, !- Fluid Type , !- User Defined Fluid Type DHW Loop Operation_unit1, !- Plant Equipment Operation DHW Supply Outlet Node_unit1, !- Loop Temperature 100, !- Maximum Loop Temperature 100, !- Maximum Loop Temperature				
Water, '- Fluid Type '- User Defined Fluid Type DHW Loop Operation_unit1, '- Plant Equipment Operation DHW Supply Outlet Node_unit1, '- Loop Temperature 100, '- Maximum Loop Temperature 100, this field replaces with	PlantLoo	ρ,		
, !- User Defined Fluid Type 17, TOR Daseline Window run, this DHW Loop Operation_unit1,!- Plant Equipment Operation DHW Supply Outlet Node_unit1, !- Loop Temperature 100, !- Maximum Loop Temperature runs, this field replaces with	DHW Lo	op_unit1, !-	- Name	
DHW Loop Operation_unit1, !- Plant Equipment Operation DHW Supply Outlet Node_unit1, !- Loop Temperature 100, !- Maximum Loop Temperature runs, this field replaces with	Water,	t-	· Fluid Type	17 for boooling window win this
DHW Supply Outlet Node_unit1, !- Loop Temperature, The Reep's autosize, for Other 100, !- Maximum Loop Temperature runs, this field replaces with		•-	 User Defined Fluid Type 	17, for baseline window run, this
100, !- Maximum Loop Temperature runs, this field replaces with	DHW Lo	op Operation unit1,!-	· Plant Equipment Operati	field keeps autosize for other
100, !- Maximum Loop Temperatury runs, this field replaces with				neid keeps autosize, for other
Turis, this held replaces with				runs this field replaces with
Ø. !- Minimum Loop Temperatur(0,		Minimum Loop Temperatur	runs, uns neiù replaces with
autosize,				
0.080009, ?- Maximum Loop Flow Rate				
0, !- Minimum Loop Flow Rate (m3/s)				
autocalculate, !- Plant Loop Volume {m3}				(107.5)
9.806851. !- Plant Loop Volume (m3)				
Mains Inlet Node unit1, !- Plant Side Inlet Node Name				
Dia Suppry Diancies_unicity i france Side Dianci Er				
DHW Supply Connectors_unit1, !- Plant Side Connect field keeps autocalculate, for				
DHW Demand Inlet Node_unit1, !- Demand Side Inlet				
Mains Makeup Node_unit1, !- Demand Side Outlet Node Other runs, this field replaces				other runs, this field replaces
DHW Demand Branches_unit1, !- Demand Side Branch L	DHW De	mand Branches_unit1,	!- Demand Side Branch L	
DHW Demand Connectors_unit1, !- Demand Side Connect With 0.006851	DHW De	mand Connectors_unit1	l, !- Demand Side Connec	WITH 0.006851
Optimal; !- Load Distribution Scheme			 Load Distribution Schem 	

Appendix D: Cooling and Heating Season Definition

Minneapolis			Houston		
	Start	End		Start	End
Winter	November 1	January 31	Winter	December 1	February 28
Spring	February 1	April 30	Spring	March 1	May 31
Summer	May 1	July 31	Summer	June 1	August 31
Autumn	August 1	October 31	Autumn	September 1	November 30
Heating	September 15	March 16	Heating	October 16	April 14
Cooling	March 17	September 14	Cooling	April 15	October 15

Table D1. Cooling and	Heating Season	Definition for	r Heating and	Cooling EP

Appendix E: ESCalc XML Schema

ESCalc XML schema describes interface between AERCalc and calculation module ESCalc.

```
<?xml version="1.0" encoding="UTF-8"?>
edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.1" vc:minVersion="1.1">
  <xs:element name="ESCalc">
    <xs:complexType>
       <xs:sequence>
         <xs:element name="Input" minOccurs="0">
            <xs:annotation>
              <xs:documentation>ESCalc Inputs</xs:documentation>
            </xs:annotation>
            <xs:complexType>
              <xs:sequence>
                 <xs:element name="Selection" maxOccurs="3">
                   <xs:annotation>
                      <xs:documentation>Selection of calculation type. EA: Adiabatic Windows Run; EB: Baseline WIndows Runb;
ES: Window Attachment Run</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                      <xs:restriction base="xs:string">
                        <xs:minLength value="2"/>
                        <xs:maxLength value="2"/>
                      </xs:restriction>
                   </xs:simpleType>
                 </xs<sup>·</sup>element>
                 <xs:element name="Climate">
                   <xs:annotation>
                      <xs:documentation>Selection of climate. Cooling: Houston climate data and assumptions; Heating:
Minneapolis climate data and assumptions</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                      <xs:restriction base="xs:string">
                        <xs:minLength value="7"/>
                        <xs:maxLength value="7"/>
                      </xs:restriction>
                   </xs:simpleType>
                 </xs:element>
                 <xs:element name="AttachmentType" minOccurs="0">
                   <xs:annotation>
                      <xs:documentation>Selection of Attachment type. RollerShades; CellularShades; SolarScreens;
AppliedFilms; VenetianBlinds; VerticalBlinds; WindowPanels; and PleatedShades</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                      <xs:restriction base="xs:string">
                        <xs:minLength value="12"/>
                        <xs:maxLength value="14"/>
                      </xs:restriction>
                   </xs:simpleType>
                 </xs:element>
                 <xs:element name="NoCSVFiles" type="xs:integer">
                   <xs:annotation>
                      <xs:documentation>Number of supplied CSV IDF files. 1 file for EA, EB, or ES for fixed attachments; 2 files
for 1D shades; and 7 files for 2D shades</xs:documentation>
                   </xs<sup>annotation></sup>
                 </xs:element>
                 <xs:element name="CSVFile" maxOccurs="7">
                   <xs:complexType>
                      <xs:sequence>
                        <xs:element name="CSVFileName" type="xs:string">
                           <xs:annotation>
                             <xs:documentation>Arbitrary CSV File name for each E+ run</xs:documentation>
                           </xs:annotation>
```

```
</xs:element>
                        <xs:element name="DeploymentState" minOccurs="0">
                          <xs:annotation>
                             <xs:documentation>Deployment State: Open (only for 1-D and 2-D shades), Half (only for 1-D and
2-D shades), or Full (for all shades)</xs:documentation>
                          </xs:annotation>
                          <xs:simpleType>
                             <xs:restriction base="xs:string">
                               <xs:minLength value="4"/>
                               <xs:maxLength value="4"/>
                             </xs:restriction>
                          </xs:simpleType>
                        </xs:element>
                        <xs:element name="SlatAngle" type="xs:integer" minOccurs="0">
                          <xs:annotation>
                             <xs:documentation>Slat Angle for Louvered Blinds: 0, -45, 45, 90</xs:documentation>
                          </xs:annotation>
                        </xs:element>
                     </xs:sequence>
                   </xs:complexType>
                 </xs:element>
              </xs:sequence>
            </xs:complexType>
          </xs:element>
          <xs:element name="Output" minOccurs="0">
            <xs:annotation>
              <xs:documentation>ESCalc Outputs</xs:documentation>
            </xs:annotation>
            <xs:complexType>
              <xs:sequence>
                 <xs:element name="E_HVAC" type="xs:float"/>
                 <xs:element name="EP" type="xs:float" minOccurs="0"/>
              </xs:sequence>
            </xs:complexType>
         </xs:element>
       </xs:sequence>
     </xs:complexType>
  </xs:element>
</xs:schema>
```

The following Figure shows schematic presentation of the Schema.

Figure E1. Schematic Presentation of the ESCalc Schema

Examples of the schema for fixed window attachment and venetian blinds products are shown next, respectively:

Example of a fixed window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc v3.xsd">
  <Input>
    <Selection>ES</Selection>
    <Climate>Houston</Climate>
    <AttachmentType>SolarScreens</AttachmentType>
    <NoCSVFiles>1</NoCSVFiles>
    <CSVFile>
      <CSVFileName>Test-File-Name-1_SS</CSVFileName>
    </CSVFile>
  </Input>
  <Output>
    <E_HVAC>115.92</E_HVAC>
    <EP>53.2</EP>
  </Output>
```

</ESCalc>

Example of venetian blind window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
  <Input>
    <Selection>ES</Selection>
    <City>Minneapolis</City>
    <AttachmentType>VenetianBlinds</AttachmentType>
    <NoCSVFiles>7</NoCSVFiles>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Open_0</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>0</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2 VB Full -45</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>-45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Full_45</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Full_90</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>90</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Half_-45</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>-45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Half_45</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2 VB Half 90</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>90</SlatAngle>
    </CSVFile>
  </Input>
  <Output>
    <E_HVAC>127.32</E_HVAC>
    <EP>34.6</EP>
  </Output>
</ESCalc>
```

Appendix F: EnergyPlus Window configuration file for baseline window B

!- Window_configuration_baseline.inc !- There are 4 seperated windows on each floor each orientation FenestrationSurface:Detailed, Window_ldf1_1_Bot.unit1, !- Name !- Surface Type Window AERC_Doubleclear_Baseline, **!-** Construction Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, !- Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4 2.50000000000.0.0000000000.0.6000000000. !- X.Y.Z ==> Vertex 1 {m} 3.823210000000,0.00000000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 3.82321000000,0.0000000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 2.50000000000,0.0000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldf1_1_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_ldf1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4 2.50000000000,0.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 3.823210000000,0.00000000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 2.50000000000,0.0000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window Idf1 2 Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4. 6.60000000000,0.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m} 7.92321000000,0.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 7.923210000000,0.00000000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_ldf1_2_Top.unit1, !- Name !- Surface Type Window AERC Doubleclear Baseline, **!-** Construction Name Wall_ldf1_1.unit1, !- Building Surface Name I- Outside Boundary Condition Object I- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4, **!- Number of Vertices**

6.60000000000,0.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 7.92321000000,0.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 7.923210000000,0.00000000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 6.60000000000,0.0000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window Idb1 1 Bot.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall Idb1 1.unit1, - Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 8.00000000000,10.558580000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 6.67679000000,10.55858000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 6.676790000000,10.558580000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 8.00000000000,10.558580000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window Idb1 1 Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall_ldb1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1. 4 **!-** Number of Vertices 8.00000000000,10.558580000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 6.67679000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 6.67679000000,10.55858000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 8.00000000000,10.558580000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldb1_2_Bot.unit1, !- Name Window, !- Surface Type !- Construction Name AERC_Doubleclear_Baseline, Wall Idb1 1.unit1, - Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 3.90000000000,10.558580000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 2.576790000000,10.558580000000,0.600000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.558580000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window ldb1 2 Top.unit1, !- Name Window. !- Surface Type **!- Construction Name** AERC_Doubleclear_Baseline, Wall_ldb1_1.unit1, I- Building Surface Name I- Outside Boundary Condition Object I- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name 1, !- Multiplier 4 **!- Number of Vertices** 3.90000000000,10.558580000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 2.57679000000,10.558580000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.55858000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m}

3.90000000000,10.558580000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr1_1_Bot.unit1, !- Name Window !- Surface Type AERC Doubleclear Baseline, !- Construction Name Wall sdr1 1.unit1, **!-** Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name I- Multiplier 1, 4 **!- Number of Vertices** 10.558580000000,2.50000000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m} 10.55858000000,3.82321000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window sdr1 1 Top.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall sdr1 1.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name 1, !- Multiplier 4 **!-** Number of Vertices 10.558580000000,2.50000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window sdr1 2 Bot.unit1, !- Name !- Surface Type Window, AERC Doubleclear Baseline, !- Construction Name Wall_sdr1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1. !- Number of Vertices 4 10.558580000000,6.60000000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 10.55858000000,6.6000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window_sdr1_2_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall sdr1 1 unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, **!-** Number of Vertices 4 10.55858000000,6.6000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 10.55858000000,6.6000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m}

FenestrationSurface:Detailed,

Window_sdl1_1_Bot.unit1, !- Name !- Surface Type Window, AERC Doubleclear Baseline, !- Construction Name Wall_sdl1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 0.0000000000,8.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,6.67679000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_sdl1_1_Top.unit1, !- Name Window !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall sdl1 1.unit1, **!-** Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name I- Multiplier 1, **!- Number of Vertices** 4 0.0000000000,8.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,8.0000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window sdl1 2 Bot.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall sdl1 1.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!-** Number of Vertices 0.0000000000,3.9000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,2.57679000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,2.57679000000,1.27321000000, !- X,Y,Z ==> Vertex 3 {m} 0.00000000000,3.9000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window sdl1 2 Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 !- Number of Vertices 0.00000000000,3.9000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,2.57679000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,2.57679000000,2.02321000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,3.9000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window_ldf2_1_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name

Wall_ldf1_2.unit1, **!- Building Surface Name !- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4. 2.50000000000,0.0000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 3.82321000000,0.0000000000,3.2000000000, !- X,Y,Z ==> Vertex 2 {m} 3.823210000000,0.00000000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_ldf2_1_Top.unit1, !- Name !- Surface Type Window, AERC_Doubleclear_Baseline, **!-** Construction Name Wall_ldf1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground I- Shading Control Name AERC_Wood_Frame, **!-** Frame and Divider Name - Multiplier 1, 4 **!- Number of Vertices** 2.50000000000,0.0000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 3.82321000000,0.0000000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 3.82321000000,0.0000000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed. Window_ldf2_2_Bot.unit1, !- Name Window !- Surface Type **!-** Construction Name AERC Doubleclear Baseline, Wall Idf1 2.unit1, **!-** Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4 6.60000000000,0.0000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 7.923210000000,0.00000000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 6.60000000000,0.00000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window Idf2 2 Top.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall Idf1 2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!-** Number of Vertices 6.60000000000,0.0000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 7.923210000000,0.0000000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 7.92321000000,0.0000000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 6.60000000000,0.0000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window Idb2 1 Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall_ldb1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** I- View Factor to Ground

!- Shading Control Name AERC Wood_Frame, !- Frame and Divider Name 1, !- Multiplier 4, **!- Number of Vertices** 8.00000000000,10.558580000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 6.676790000000,10.558580000000,3.200000000000, !- X,Y,Z ==> Vertex 2 {m} 6.676790000000,10.558580000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 8.00000000000,10.558580000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldb2_1_Top.unit1, !- Name !- Surface Type Window, AERC_Doubleclear_Baseline, **!-** Construction Name Wall_ldb1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** !- Frame and Divider Name AERC_Wood_Frame, 1, !- Multiplier **!- Number of Vertices** 4. 8.00000000000,10.558580000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 6.676790000000,10.558580000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 6.67679000000,10.55858000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_ldb2_2_Bot.unit1, !- Name Window, !- Surface Type AERC Doubleclear Baseline, !- Construction Name Wall_ldb1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4 3.90000000000,10.558580000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 2.576790000000,10.558580000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.55858000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window Idb2 2 Top.unit1, !- Name Window !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall Idb1 2.unit1, **!-** Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 3.90000000000,10.558580000000,3.950000000000, !- X,Y,Z ==> Vertex 1 {m} 2.576790000000,10.558580000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window sdr2 1 Bot.unit1, !- Name Window. !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall sdr1 2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name **!-** Multiplier 1

4 **!- Number of Vertices** 10.55858000000,2.5000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,3.200000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr2_1_Top.unit1, !- Name - Surface Type Window, AERC Doubleclear Baseline, **!-** Construction Name Wall sdr1 2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** I- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, I- Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4. 10.558580000000,2.50000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr2_2_Bot.unit1, !- Name !- Surface Type Window. AERC_Doubleclear_Baseline, !- Construction Name Wall_sdr1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4. 10.558580000000,7.923210000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_sdr2_2_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall_sdr1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name 1, !- Multiplier 4 **!- Number of Vertices** 10.558580000000,6.60000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,6.60000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window sdl2 1 Bot.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name **!-** Building Surface Name Wall sdl1 2.unit1, I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, I- Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 0.0000000000,8.0000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,3.2000000000, !- X,Y,Z ==> Vertex 2 {m}

0.00000000000,6.67679000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_sdl2_1_Top.unit1, !- Name Window. !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall_sdl1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name 1, !- Multiplier **!- Number of Vertices** 4. 0.0000000000,8.000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.676790000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,6.67679000000,4.62321000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,8.0000000000,4.62321000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl2_2_Bot.unit1, !- Name Window, !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall_sdl1_2.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name - Multiplier 1. 4, **!- Number of Vertices** 0.0000000000,3.9000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,2.57679000000,3.2000000000, !- X,Y,Z ==> Vertex 2 {m} 0.00000000000,2.57679000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,3.9000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl2_2_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_sdl1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 0.0000000000,3.9000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,2.576790000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,2.57679000000,4.62321000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,3.9000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m}