

Energy Technologies Area

Energy Performance Indices EP_c and EP_H Calculation Methodology and Implementation in Software tool

Prepared by: Jinqing Peng, D. Charlie Curcija Lawrence Berkeley National Laboratory

Date: 4/28/2017

Lawrence Berkeley National Laboratory

1. INTRODUCTION & BACKGROUND

Energy performance indices, EP_c and EP_H of window attachments are developed on the basis of ISO 18292 standard (ISO 2011), which gives methodology for calculating heating and cooling energy performance of windows. This methodology is based on the results of energy simulation of a typical residential building (house) in a typical cooling and heating climate.

2. Derivation of Energy Performance Index

For the purpose of calculating energy performance indices of window attachments, Houston climate was selected for cooling performance index, EP_C and Minneapolis was selected for heating energy performance index, EP_H. Energy simulation is done using subhourly energy analysis program EnergyPlus (DOE 2016). Three different cases are simulated:

- A. Typical house with windows replaced by adiabatic surfaces (i.e., zero heat flux through window surfaces)
- B. Typical house with baseline windows
- S. Typical house with baseline windows and window shade/attachment over them

Figure 1. Schematic of three different house models

Energy simulation is done over the typical TMY3 year for each location and results of energy for each case are expressed as:

EA: annual HVAC cooling or heating energy use of the house with "adiabatic" window

E_B: annual HVAC cooling or heating energy use of the house with baseline window only

Es: annual HVAC cooling or heating energy use of the house with window attachment.

Based on the results of energy simulation, the following quantities are calculated:

 E_{B-A} = E_{B} - E_{A} , annual energy use caused by the baseline window

 $E_{B-S} = E_{B} - E_{S}$, window attachment energy savings vs. the baseline window

Energy performance indices of window attachments, EP_{C} , and EP_{H} are defined as the ratio of annual cooling/heating energy saving resulting from the addition of window attachment to the annual energy use caused by the baseline window without attachment.

$$EP_{C} = \frac{\left(E_{B-S}\right)_{Houston}}{\left(E_{B-A}\right)_{Houston}}$$

$$EP_{H} = \frac{\left(E_{B-S}\right)_{Minneapolis}}{\left(E_{B-S}\right)_{Minneapolis}}$$
(2)

 $Er_{H} - \overline{(E_{B-A})_{Minneapolis}}$ Typical house is defined from the DOE standard residential building model, combining several building vintages into a single typical house. The listing of assumptions is detailed in Appendix A.

Energy plus runs for both *Baseline* and *Adiabatic* runs are performed once for each climate, making for four sets of results (two for heating and two for cooling EP) and saved as fixed information.

EnergyPlus model for the house with baseline windows, E_B is run using Autosize option for HVAC. This is done once for cooling and once for heating climates. Such calculated HVAC size is then fixed for all subsequent runs, including adiabatic and attachment cases. Baseline windows run is detailed in section 1.1.

EnergyPlus model of a house with window attachment is run at least once per product for fixed attachments (i.e., window panels, solar screens, surface-attached films), two times for 1-D operation shades (e.g., roller shades, cellular shades, pleated shades, roman shades, etc.), where one run is for shade fully closed and second run is for shade half closed (fully retracted option is identical to baseline window); and 7 runs for 2-D operation shades (venetian blinds, vertical blinds, etc.). More details are provided in section 1.3.

3. EnergyPlus Runs

Energy analysis is done using EnergyPlus simulation tool and IDF input file for EnergyPlus simulation is created from the collection of include files (*.inc). The reason for splitting IDF files in several include files is that for different runs, only individual include file would be replaced. The list of include files in following sections are marked in green, yellow, and red, signifying how these files are set. Green colored include files are fixed and are used in each case, E_A, E_B, and E_S. Yellow colored include files are fixed, but are inserted based on the case being run. Red colored include files are specific to each window attachment and are prepared on the fly. More details about include files are provided in Appendix C.

Besides IDF files for each run, energy simulation also requires weather data file (TMY3 file). The weather data file names for these two climates are listed below:

- Houston: USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3.epw
- Minneapolis: USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3.epw

3.1 Adiabatic Windows Run

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_adiabatic_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_adiabatic_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_adiabatic.inc

3.2 Baseline Windows Run

For the baseline window run, the following include files are provided.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_autosize_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_autosize_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc

3.3 Windows with Attachments

Window construction include files for windows with attachments are first defined for each window attachment in WINDOW software tool and exported as IDF file. While most of window attachments have single degree of freedom in operation (retraction operation only) or 0 degree of freedom (fixed window attachments) and therefore have single construction description for its deployed position, some attachments have 2 degrees of freedom (e.g., louvered shades), resulting in 4 window construction records:

- 1) horizontal slats, or 0 deg
- 2) closed slats, or 90 deg
- 3) -45 deg
- 4) 45 deg

Depending on the degree of freedom for window attachments, different number of EnergyPlus runs will be required. Table 1 gives summary for each window attachment class/type.

Shade Type	Degrees of	Fully Deployed (top & bottom window w/	Half Deployed (only top window w/	Total runs
	rreedom	snadej	shadej	
Roller shades	1	1 run	1 run	2
Cellular shades	1	1 run	1 run	2
Solar Screens	0	1 run		1
Applied Films	0	1 run		1
Venetian Blinds	2	4 runs	3 runs	7
Vertical Blinds	2	4 runs	3 runs	7
Window panels	0	1 run		1
Pleated Shades	1	1 run	1 run	2

Table 1. Simulation runs for different deployment situation of each shade

3.3.1 Fully Deployed Window Attachments Runs

The include files needed for fully deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_user_input_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_user_input_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments louvered blinds:
 - Window_construction_user_input0.inc
 - Window_construction_user_input90.inc
 - $\circ \quad Window_construction_user_input-45.inc$
 - Window_construction_user_input+45.inc

3.3.2 Half-Deployed Window Attachments Runs

The include files needed for half-deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments louvered blinds:
 - Window_construction_user_input0.inc
 - Window_construction_user_input90.inc
 - $\circ \quad Window_\,construction_user_input-45.inc$
 - $\circ \quad Window_construction_user_input+45.inc$

4. Calculation of Energy Use

Energy use for each case is calculated from HVAC system results of EnergyPlus simulation. Instructions for generating correct output results are provided in include file EP_Output_Fields.inc, shown in Appendix B. Results are stored in IDF_input_file_name.csv file. The following output fields are used in calculation of energy use:

Houston:

- "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

Minneapolis:

- "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

For brevity and subsequent use in equations, the following nomenclature will be used:

 $E_{DX Coil}(\tau_h)$ = CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)

*E*_{Fan}(τ_h) = CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)

*E*_{Gas}(τ_h) = CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)

Total energy, required for the calculation of E_A, E_B, and E_S is calculated by summing up all hours when cooling system is on (CS=ON) in Houston and when heating system is on (HS=ON) in Minneapolis. "CS=ON" when "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)", is larger than 0. Correspondingly, "HS=ON" when "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)", is larger than 0. The energy totals are also corrected to source energy using following conversion factors:

 SF_E = conversion factor from electricity to source energy in GJ, 3.167·10⁻⁹

 SF_G = conversion factor from natural gas to source energy in GJ, 1.084 \cdot 10⁻⁹

4.1 Adiabatic Windows Runs

The energy use for adiabatic window runs are calculated from output of EnergyPlus simulation for adiabatic window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$E_{A} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{A} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{A}\right) \cdot SF_{E}$$
(3)

Minneapolis:

$$E_{A} = \left(\sum_{HS=ON} E_{Gas} \left(\tau_{h}\right)_{A}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan} \left(\tau_{h}\right)_{A}\right) \cdot SF_{E}$$

$$\tag{4}$$

The resulting energy use E_A is expressed in GJ of source energy. E_A for both locations is calculated once and saved for the calculation of EP.

4.2 Baseline Windows Runs

The energy use for baseline window runs are calculated from output of EnergyPlus simulation for baseline window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$E_{B} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{B} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{B}\right) \cdot SF_{E}$$
(5)

Minneapolis:

$$E_{B} = \left(\sum_{HS=ON} E_{Gas} \left(\tau_{h}\right)_{B}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan} \left(\tau_{h}\right)_{B}\right) \cdot SF_{E}$$
(6)

The resulting energy use E_B is expressed in GJ of source energy. E_B for both locations is calculated once and saved for the calculation of EP.

4.3 Windows with Attachments Runs

Energy uses for windows with attachments are done on demand for each attachment for which EP is calculated. Depending on the attachment type, different level of calculation is done. Details of these calculations for different attachment types are provided below.

4.3.1 Fixed Attachments

For fixed attachments (i.e., non-operable), single and non-weighted calculation is done, similar to cases of adiabatic and baseline window energy use calculations:

Houston:

$$E_{S} = \left(\sum_{CS=ON} E_{DXCoil} \left(\tau_{h}\right)_{S} + \sum_{CS=ON} E_{Fan} \left(\tau_{h}\right)_{S}\right) \cdot SF_{E}$$

$$\tag{7}$$

Minneapolis:

$$E_{S} = \left(\sum_{HS=ON} E_{Gas}(\tau_{h})_{S}\right) \cdot SF_{G} + \left(\sum_{HS=ON} E_{Fan}(\tau_{h})_{S}\right) \cdot SF_{E}$$
(8)

The resulting energy use Es is expressed in GJ of source energy.

4.3.2 Operable Window Attachments with 1-D operation

For these window attachment types, the operation consists of attachment retraction to various degrees. The deployment schedule for operable window attachments, was developed from the results of a behavioral study (DRI 2013). Based on the results of the survey of 2,467 households in 12 markets, a deployment schedule was developed for 3 periods during the day, two periods during the week, and for two seasons. The behavioral study considered three different attachment deployments and identified the percentage of products that were in one of these three positions at different times of day, week and season.

The deployment positions of window attachments considered were:

- 1. **0:** Open (Baseline window runs)
- 2. H: Half-Open (Half-Deployed window attachment runs)
- 3. **C:** Closed (Fully-Deployed window attachment runs)

The periods of day considered were:

- 1. M: Morning, including work hours (6:00 a.m. to 12:00 p.m.)
- 2. A: Afternoon (12:00 p.m. to 6:00 p.m.)
- 3. N: Evening/Night (6:00 p.m. to 6.00 a.m. of next day)

The periods of week considered were:

- 1. **D:** Weekday
- 2. E: Weekend and holidays

Note: Each weather data file contains standard US holidays, which are assigned the weekend schedule in the EnergyPlus input.

Time-weighting of energy use is done in addition to the consideration when cooling or heating system is on, to calculate Es. In order to describe the weighting calculation methodology, indices for hourly, daily, and weekly periods are used. Hourly energy values are labeled using τ_h . Different day in a week (i.e., weekday vs. weekends and holidays) is labeled using index τ_d , and different week in a season is labeled using index τ_w . Using this notation, the following equations are used to calculate weighted source energy use from operable window shades with 1 degree of freedom:

$$E_{\rm S} = E_{\rm O} + E_{\rm H} + E_{\rm C} \tag{9}$$

Where:

$$E_{O} = \sum_{\tau_{w}=S_{I}}^{S_{N}} \left(E_{SDO}\left(\tau_{w}\right) + E_{SEO}\left(\tau_{w}\right) \right) + \sum_{\tau_{w}=W_{I}}^{W_{N}} \left(E_{WDO}\left(\tau_{w}\right) + E_{WEO}\left(\tau_{w}\right) \right)$$
(10)

$$E_{H} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDH}\left(\tau_{w}\right) + E_{SEH}\left(\tau_{w}\right) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDH}\left(\tau_{w}\right) + E_{WEH}\left(\tau_{w}\right) \right)$$
(11)

$$E_{C} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDC}(\tau_{w}) + E_{SEC}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDC}(\tau_{w}) + E_{WEC}(\tau_{w}) \right)$$
(12)

Where (Equations 5-16):

$$\begin{split} & E_{SDO}(\tau_w) = \sum_{\tau_d=1}^{5} \Biggl(F_{SDMO} \cdot \sum_{\tau_h=0}^{12} E_O(\tau_w, \tau_d, \tau_h) + F_{SDAO} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{SDNO} \cdot \sum_{\tau_h=18}^{6(+1day)} E_O(\tau_w, \tau_d, \tau_h) \Biggr) \\ & E_{SEO}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SEMO} \cdot \sum_{\tau_h=0}^{12} E_O(\tau_w, \tau_d, \tau_h) + F_{SEAO} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{SENO} \cdot \sum_{\tau_h=18}^{6(+1day)} E_O(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{WDO}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{WDMO} \cdot \sum_{\tau_h=0}^{12} E_O(\tau_w, \tau_d, \tau_h) + F_{WDAO} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{WDNO} \cdot \sum_{\tau_h=18}^{6(+1day)} E_O(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{WEO}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{WEMO} \cdot \sum_{\tau_h=0}^{12} E_O(\tau_w, \tau_d, \tau_h) + F_{WEAO} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{WENO} \cdot \sum_{\tau_h=18}^{6(+1day)} E_O(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{WEO}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMH} \cdot \sum_{\tau_h=0}^{12} E_O(\tau_w, \tau_d, \tau_h) + F_{SDAH} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{WENO} \cdot \sum_{\tau_h=18}^{6(+1day)} E_O(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{SDH}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMH} \cdot \sum_{\tau_h=0}^{12} E_H(\tau_w, \tau_d, \tau_h) + F_{SDAH} \cdot \sum_{\tau_h=12}^{18} E_H(\tau_w, \tau_d, \tau_h) + F_{SDNH} \cdot \sum_{\tau_h=18}^{6(+1day)} E_H(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{SDH}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMH} \cdot \sum_{\tau_h=0}^{12} E_H(\tau_w, \tau_d, \tau_h) + F_{SDAH} \cdot \sum_{\tau_h=12}^{18} E_H(\tau_w, \tau_d, \tau_h) + F_{SDNH} \cdot \sum_{\tau_h=18}^{6(+1day)} E_H(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{SDH}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMH} \cdot \sum_{\tau_h=0}^{12} E_H(\tau_w, \tau_d, \tau_h) + F_{SDAH} \cdot \sum_{\tau_h=12}^{18} E_H(\tau_w, \tau_d, \tau_h) + F_{SDNH} \cdot \sum_{\tau_h=18}^{6(+1day)} E_H(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ & E_{WDH}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMH} \cdot \sum_{\tau_h=0}^{12} E_H(\tau_w, \tau_d, \tau_h) + F_{WDAH} \cdot \sum_{\tau_h=12}^{18} E_H(\tau_w, \tau_d, \tau_h) + F_{WDAH} \cdot \sum_{\tau_h=12}^{18} E_H(\tau_w, \tau_d, \tau_h) + F_{WDNH} \cdot \sum_{\tau_h=18}^{6(+1day)} E_H(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr) \\ \\ & E_{WDH}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{WDMH} \cdot \sum_{\tau_h=0}^{12} E_H(\tau_w, \tau_d, \tau_h) + F_{WDAH} \cdot \sum_{\tau_h=12}^{18} E_O(\tau_w, \tau_d, \tau_h) + F_{WDH} \cdot \sum_{\tau_h=18}^{6(+1day)} E_H(\tau_w, \tau_d, \tau_h) \Biggr) \Biggr)$$

$$\\ \\ & E_{SOC}(\tau_w) = \sum_{\tau_d=0}^{7} \Biggl(F_{SDMC} \cdot \sum_{\tau_h=0}^{12} E_C(\tau_w, \tau_d, \tau_h) + F_{SDAC} \cdot \sum_{\tau_h=18}^{18} E_C$$

$$E_{SWC}(\tau_w) = \sum_{\tau_d=1}^{5} \left(F_{WDMC} \cdot \sum_{\tau_h=6}^{12} E_C(\tau_w, \tau_d, \tau_h) + F_{WDAC} \cdot \sum_{\tau_h=12}^{18} E_C(\tau_w, \tau_d, \tau_h) + F_{WDNC} \cdot \sum_{\tau_h=18}^{6(+1day)} E_C(\tau_w, \tau_d, \tau_h) \right)$$

$$E_{WEC}(\tau_w) = \sum_{\tau_d=6}^{7} \left(F_{WEMC} \cdot \sum_{\tau_h=6}^{12} E_C(\tau_w, \tau_d, \tau_h) + F_{WEAC} \cdot \sum_{\tau_h=12}^{18} E_C(\tau_w, \tau_d, \tau_h) + F_{WENC} \cdot \sum_{\tau_h=18}^{6(+1day)} E_C(\tau_w, \tau_d, \tau_h) \right)$$

Where:

- τ_d = days of the week, where 1=Monday, and 7=Sunday. The weekend schedule is also applicable to holidays
- τ_{W} = weeks of the year, where S_{1} = first week of the cooling season, and S_{N} = last week of the cooling season, W_{1} = first week of the heating season, and W_{N} = last week of the heating season. S1, SN, W1, and WN are defined in Appendix D.
- τ_h = hours in a day, where 1=1:00 a.m., 12 = 12:00 p.m., and 24 = 12:00 a.m. For the evening/night period, the summation goes from 18 (6:00 p.m.) until 24 (12 a.m.), then the hours reset to 0 and go until 6 a.m. This is indicated in the equations as (+1 day) in the upper limit of the summation sign for the evening/night period

 Table 2. Energy Use Variables

	Cooling	Cooling	Heating	Heating
	Weekday	Weekend	Weekday	Weekend
Open	Esdo	Eseo	Ewdo	Eweo
Half-open	E _{SDH}	Eseh	Ewdh	Еweh
Closed	ESDC	Esec	E_{WDC}	E_{WEC}

Table 3. Deployment Fraction Variab	les
-------------------------------------	-----

	Cooli	ng We	ekday	Cooli	ng We	ekend	Heati	ng We	ekday	Heati	ng We	ekend
Deployment	М	А	N	М	А	N	М	А	Ν	М	А	N
Open	F _{SDMO}	F _{SDAO}	F _{SDNO}	F _{SEMO}	F _{SEAO}	F _{SENO}	F _{WDMO}	F _{WDA0}	F _{WDNO}	F _{WEMO}	F _{WEAO}	F _{WENO}
Half-open	F _{SDMH}	F _{SDAH}	F _{sdnh}	F _{semh}	F _{seah}	F _{senh}	F _{WDMH}	F _{WDAH}	F _{WDNH}	F _{WEMH}	Fweah	F _{WENH}
Closed	F _{SDMC}	F _{SDAC}	F _{SDNC}	F _{SEMC}	F _{SEAC}	F _{SENC}	F _{WDMC}	F _{WDAC}	F _{WDNC}	F _{WEMC}	Fweac	Fwenc

Deployment fraction data for North (heating) and South (cooling) climates are presented in Table 4 and Table 5.

Table 4. Deployment Schedule for	North (Heating) Climate Zone
----------------------------------	------------------------------

Coolii	ng Wee	kday		Cooling Weekend		Heating Weekday			Heating Weekend			
Deployment	М	А	Ν	М	А	Ν	М	А	Ν	М	А	Ν
Open	0.26	0.24	0.23	0.26	0.25	0.23	0.29	0.30	0.23	0.28	0.29	0.22
Half-open	0.35	0.34	0.32	0.36	0.36	0.33	0.32	0.33	0.28	0.32	0.33	0.29
Closed	0.39	0.41	0.45	0.38	0.39	0.44	0.39	0.38	0.49	0.40	0.38	0.49

Table 5. Deployment Schedule for South (Cooling) Climate Zone

Page	11	1
------	----	---

Cooli	ng Wee	kday		Cooling Weekend		Heating Weekday			Heating Weekend			
Deployment	М	А	Ν	М	А	Ν	М	А	Ν	М	А	Ν
Open	0.17	0.15	0.13	0.18	0.17	0.14	0.23	0.23	0.17	0.23	0.23	0.17
Half-open	0.26	0.25	0.23	0.26	0.25	0.24	0.25	0.26	0.22	0.27	0.27	0.23
Closed	0.57	0.60	0.65	0.56	0.58	0.62	0.52	0.51	0.61	0.51	0.50	0.59

Cooling and heating periods are defined for each city in Appendix D.

E(τ_{w} , τ_{d} , τ_{h}) is calculated as follows for each city:

Houston:

$$E_{O}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{B} + E_{Fan}(\tau_{h})_{B}\right)_{CS=ON} \cdot SF_{E}$$
(13)

$$E_{H}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{H} + E_{Fan}(\tau_{h})_{H}\right)_{CS=ON} \cdot SF_{E}$$
(14)

$$E_{C}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{DXCoil}(\tau_{h})_{C} + E_{Fan}(\tau_{h})_{C}\right)_{CS=ON} \cdot SF_{E}$$
(15)

Minneapolis:

$$E_{O}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{Gas}(\tau_{h})_{B}\right) \cdot SF_{G} + \left(E_{Fan}(\tau_{h})_{B}\right)_{HS=ON} \cdot SF_{E}$$
(16)

$$E_{H}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{Gas}(\tau_{h})_{H}\right) \cdot SF_{G} + \left(E_{Fan}(\tau_{h})_{H}\right)_{HS=ON} \cdot SF_{E}$$
(17)

$$E_{C}(\tau_{w},\tau_{d},\tau_{h}) = \left(E_{Gas}(\tau_{h})_{C}\right) \cdot SF_{G} + \left(E_{Fan}(\tau_{h})_{C}\right)_{HS=ON} \cdot SF_{E}$$
(18)

4.3.3 Operable Window Attachments with 2-D operation

Similar to window attachments with 1 degree freedom in operation, energy use for window attachment with 2-D operation is calculated by summing-up weighting Open, Half-Open and Closed states. Because of the increased complexity of the definition of Open, and Half-Open states for attachments with 2 degrees of freedom (retraction levels and slat angle), multiple deployment states are attached to Open and Half-Open states. Currently, louvered blinds (both horizontal louvered blinds, or Venetian blinds, and vertical louvered blinds) have simulation models available for them. Assignment of different EnergyPlus runs and deployment states for louvered blinds are shown in Table 6.

		Run No.	Top Window	Bottom Window
Omen(0)	Fully-deployed	1	0° slat angle	0° slat angle
Open (O)	Fully-retracted	2	No shade	No shade
	Fully-deployed	3	45° slat angle	45° slat angle
	Fully-deployed	4	-45° slat angle	-45° slat angle
Half-Open (H)	Half-deployed	5	90° slat angle	No shade
	Half-deployed	6	45° slat angle	No shade
	Half-deployed	7	-45° slat angle	No shade
Closed (C)	Fully-deployed	8	90° slat angle	90° slat angle

Table 6. Deployment Information for Louvered blinds

The energy use for louvered blinds is the result of averaging hourly results for two open deployments, five half-open and one closed deployment schedules. Averaging procedure is detailed in Equations (19) to (21). Numbers in the third column in Table 6 are used in subsequent equations as an index number (1-2 for open, 3-7 for half-open, and 8 for closed).

$$E_{O} = \frac{\sum_{i=1}^{2} \left(\sum_{\tau_{w}=S_{i}}^{S_{N}} \left(E_{SDO,i}(\tau_{w}) + E_{SEO,i}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{i}}^{W_{N}} \left(E_{WDO,i}(\tau_{w}) + E_{WEO,i}(\tau_{w}) \right) \right)}{2}$$
(19)

$$E_{H} = \frac{\sum_{i=3}^{7} \left(\sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDH,i}(\tau_{w}) + E_{SEH,i}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDH,i}(\tau_{w}) + E_{WEH,i}(\tau_{w}) \right) \right)}{5}$$
(20)

$$E_{C} = \sum_{\tau_{w}=S_{1}}^{S_{N}} \left(E_{SDC,8}(\tau_{w}) + E_{SEC,8}(\tau_{w}) \right) + \sum_{\tau_{w}=W_{1}}^{W_{N}} \left(E_{WDC,8}(\tau_{w}) + E_{WEC,8}(\tau_{w}) \right)$$
(21)

An example of the application of formula to the calculation of $E_{SEO,1}$ is shown below. Other quantities are calculated in the same manner.

$$E_{SEO,1}(\tau_w) = \sum_{\tau_d=6}^{7} \left(F_{SEMO} \cdot \sum_{\tau_h=5}^{17} E_{O,1}(\tau_w, \tau_d, \tau_h) + F_{SEAO} \cdot \sum_{\tau_h=5}^{17} E_{O,1}(\tau_w, \tau_d, \tau_h) + F_{SENO} \cdot \sum_{\tau_h=5}^{17} E_{O,1}(\tau_w, \tau_d, \tau_h) \right)$$

 $E(\tau_{W}, \tau_{d}, \tau_{h})$ is calculated as follows for each city:

Houston:

$$E_{O,i}(\tau_w,\tau_d,\tau_h) = \left(E_{DXCoil}(\tau_h)_{O,i} + E_{Fan}(\tau_h)_{O,i}\right)_{CS=ON} \cdot SF_E \quad (i=1,2)$$
(22)

$$E_{H,i}(\tau_w,\tau_d,\tau_h) = \left(E_{DXCoil}(\tau_h)_{H,i} + E_{Fan}(\tau_h)_{H,i}\right)_{CS=ON} \cdot SF_E \quad (i=3,4,5,6,7)$$
(23)

$$E_{C,8}(\tau_w,\tau_d,\tau_h) = \left(E_{DXCoil}(\tau_h)_{C,8} + E_{Fan}(\tau_h)_{C,8}\right)_{CS=ON} \cdot SF_E$$
(24)

Minneapolis:

$$E_{O,i}(\tau_w,\tau_d,\tau_h) = \left(E_{Gas}(\tau_h)_{O,i}\right)_{HS=ON} \cdot SF_G + \left(E_{Fan}(\tau_h)_{O,i}\right)_{HS=ON} \cdot SF_E \quad (i=1,2)$$
(25)

$$E_{H,i}(\tau_w,\tau_d,\tau_h) = \left(E_{Gas}(\tau_h)_{H,i}\right)_{HS=ON} \cdot SF_G + \left(E_{Fan}(\tau_h)_{H,i}\right)_{HS=ON} \cdot SF_E \quad (i=3,4,5,6,7)$$
(26)

$$E_{C,8}(\tau_w,\tau_d,\tau_h) = \left(E_{Gas}(\tau_h)_{C,8}\right)_{HS=ON} \cdot SF_G + \left(E_{Fan}(\tau_h)_{C,8}\right)_{HS=ON} \cdot SF_E$$
(27)

5. Calculation of Final Results

Energy simulation by EnergyPlus is output into csv files, from which E_A , E_B , and E_S is calculated, using formulas detailed above, and depending on the specific window attachment. The following is process outline:

- Selection which calculation is to be performed, E_A, E_B, E_S/EP
- City; Houston or Minneapolis (alternatively could be choice between Cooling and Heating)
- Window attachment type (for E_A and E_B only, no attachment is supplied)
- Number of csv files
- Each csv file name
 - Deployment state (Open, half-open or closed)
 - Slat angle for louvered blinds

Output from software tool:

- E_A, E_B, and/or E_s, as requested
- EP (applicable when Es is requested)

This interface is accomplished through XML file. XML Schema and example files are included in Appendix E

6. References

- ISO. 2011. "ISO 18292: Energy Performance of Fenestration Systems for Residential Buildings – Calculation Procedure". International Standards Organization. Geneva, Switzerland.
- DOE. 2016. "EnergyPlus 8.6: Software Tool for Calculating Energy Performance of Buildings"

Appendix A: Typical US Residential Buildings Assumptions

PARAMETERS	Proposed Re	sidential	Model Va	alues		Value inputs in E+		
Floor Area	2400 ft ² , 34.6	4ft (W) x	34.64ft (L)	x8.5ft (H)	x2 stories	10.55858m(X)*10.55858m(Y)*2.59m(H)*2 stories		
(ft ² & dim)								
House Type	2-story – One	e small co	re zone an	nd four big	perimeter	Core zone Area=1.41458m*1.41458m		
	zones for eac	h floor, b	ut it has or	nly one HV	Refer to Residential model for AERC MEETING (0415).xlsx			
Bathrooms	3							
Bedrooms	3							
Typical Cities	Heating: Mir Cooling: Hor	nneapolis, <u>uston, T</u> X	MN (Clin (Climate 2	Refer to Residential model for AERC MEETING (0415).xlsx				
Foundation	Unheated Ba city, viz. Mir Slab-on-grad	sement fo ineapolis, e without	or the north MN; t insulation	Basement: 10.55858m(X)*10.55858m(Y)*(- 2.13)m(H)				
Insulation ^(a)	Envelope ins following ins 1998.	ulation le sulation re	evels vary equiremen	with the loo its are refer	cations. The red to IECC	Minneapolis: Exterior Floor: R21 Interior Floor: R21 Exterior Wall: R21		
	Location:	Ceiling R-value	Wall R- value	Floor R- value	Slab/Basement R-value	Ceiling: R49 Exterior Roof: R49 Basement wall: R11		
	Houston	P 30	P 13	P 11	Slab R 0	Exterior Floor: R11		
	Minneapolis	R-49	R-21	R-21	Bsmt, R-11	Interior Floor: R11 Exterior Wall: R13		
		*				Ceiling: R30 Exterior Roof: R30		
Infiltration	Minneapolis	: ACH50=	7			Minneapolis baseline window case: ELA=873;		
	Houston: AC	CH50=10		Minneapolis super insulated window case: ELA=669, air infiltration of super insulated window was 0;				
						Houston baseline window case: ELA=1248;		
					Houston super insulated window case: ELA=1044, air infiltration of super insulated window was 0;			
						The converting method from ACH to ELA is described in ELACalculation.xlsx		
Internal Mass Furniture (lb/ft ²)	8.0 lb/ft ² of fl	oor area						

PARAMETERS	Proposed Residential Model Values	Value inputs in E+
Ventilation Air	0.15 L/s per square meter of floor space	0.033456639274582m3/s
Requirements		=0.15*10.55858*10.55858*2
Wall framing	Wood	
system		
External Doors	U factor: 1.14 W/(m ² .k)	R=0.88
Window Area	15.1%. There are two windows (each window with	2*14(w)*0.75(h)
(% Floor Area)	dimension 2*1.4 m*0.75 m) on each orientation each floor.	Refer to Residential model for AERC MEETING
Window Type	Double clear wood frame baseline window for both climates; VT=0.639, SHGC=0.601, U=0.472 Btu/hr.ft ² .F, AL=2 cfm/ft ² Adiabatic window: VT=0, SHGC=0, U=0, AL=0	Baseline window: double clear using CLEAR_3.DAT, wood fixed frame Adiabatic window: custom created super- insulated opaque window without frame
		Refer to AERC 1 Baseline window B.docx
Window Distribution	8 windows per floor, distributed evenly and centered on the external walls. Each big window was split into the upper and lower small windows.	Refer to Residential model for AERC MEETING (0415).xlsx
Heating Systems	Gas Furnace for Minneapolis, MN; Heat Pump for Houston, TX.	
Heating System	Gas for Minneapolis, MN;	
Fuels	Electricity for Houston, TX.	
Cooling Systems	A/C for Minneapolis, MN; Heat Pump for Houston, TX.	
HVAC System	For each climate, the HVAC systems were sized based	Houston (HP):
Sizing	on the base window option (without window attachments).	Cooling capacity: 13131.31W Heating capacity: 13131.31W Sensible heat ratio: 0.733253 Air flow rate: 0.652m3/s Minneapolis (GAC): Cooling capacity: 10628.64W Heating capacity: 16720.73W Sensible heat ratio: 0.753625 Air flow rate: 0.563m3/s
		Doubleclear_slab_Houston
HVAC Efficiencies	Minneapolis (GAC): AFUE= 0.78 for Gas furnace heating (annual fuel utilization efficiency) Houston (HP): HSPF=6.8 for Air-cooled heat pumps heating mode (the converted COP for heating is ~1.99) Both: SEER=10.0 for Air-cooled air conditioners and heat pumps cooling mode (the converted COP for cooling is ~2.70)	 (1) EER = 1.12 * SEER - 0.02 * SEER2 (2) EER = COP * 3.41 (3) Avg COP = Heat transferred / electrical energy supplied = (HSPF * 1055.056 J/BTU) / (3600 J/watthour) = 0.29307111 HSPF.
Thermostat	Heating: 70°F,	Heating set point: 21.11 °C
Settings	Cooling: 75°F	Cooling set point: 23.89 °C
	No setback	
Internal Loads	Number of People = 3 Hardwire Lights = 1.22 Watts/m ² Plug-in Lights = 0.478 Watts/m ² Refrigerator = 91.09 Watts – Design Level Misc. Electrical Equipment = 2.46 Watts/m ²	

PARAMETERS	Proposed Residential Model Values	Value inpu	ts in E+
	Clothes Washer = 29.6 Watts – Design Level	· ·	
	Clothes Dryer = 222.1 Watts – Design Level		
	Dish Washer = 68.3 Watts – Design Level		
	Misc. Electrical Load = 182.5 Watts – Design Level		
	Gas Cooking range =248.5 Watts – Design Level		
	Misc. Gas Load = 0.297 Watts/m ²		
	Exterior Lights = 58 Watts – Design Level		
	Garage Lights = 9.5 Watts – Design Level		
	The operation schedules of the all equipment are		
	referred to the PNNL model.		
Weather Data	USA_TX_Houston-	All TMY3	
	Bush.Intercontinental.AP.722430_TMY3.epw		
	USA_MN_Minneapolis-		
	St.Paul.Intl.AP.726580_TMY3_2.epw		
Number of	2 typical US cities: Minneapolis, MN for heating;		
Locations	Houston, TX for cooling.		
Calculation Tool	EnergyPlus version 8.5 (LBN's custom version that		
	addresses issue with TIR>0)		
Energy Code	Combination of vintages for each climate zone, but		
	mostly like IECC 1998		
Results extracted	Heating energy use, cooling energy use, fan energy use		
from E+	and total energy use of the house which includes the all		
	energy uses, such as lighting.		
Attachment	Refer to (Bickel, 2013)		
deployment			
operations			
Ground	For Minneapolis unheated basement with R11		
temperature	insulation; For Houston, slab-on-grade with no slab		
	insulation.		
Super insulated	This window can be regarded as an adiabatic surface	0.003,	!- Thickness {m}
window	without heat transferring.	0.000001,	!- Solar Transmittance
		0.999999,	!- Front Reflectance
		0.999999,	!- Back Reflectance
		0.000001,	!- Visible Transmittance
		0.999999,	!- Front Visible Reflectance
		0.999999,	!- Back Visible Reflectance
		0.000000,	!- Infrared Transmittance
		0.000001,	!- Front Infrared Emissivity
		0.000001,	!- Back Infrared Emissivity
		0.00000001;	!- Conductivity {W/m-K}

Appendix B: Output Section in IDF File

!- ======= ALL OBJECTS IN CLASS: OUTPUT:VARIABLE =========

Output:Variable,*,Site Day Type Index,hourly; Output:Variable,*,Air System Electric Energy,hourly; Output:Variable,*,Air System Fan Electric Energy,hourly; Output:Variable,*,Air System DX Cooling Coil Electric Energy,hourly; Output:Variable,*,Zone Lights Electric Energy,hourly; Output:Variable,*,Facility Net Purchased Electric Energy,hourly; Output:Variable,*,Facility Total Building Electric Demand Power,hourly; Output:Variable,*,Facility Total Building Electric Demand Power,hourly; Output:Variable,*,Facility Total HVAC Electric Demand Power,hourly; Output:Variable,*,Facility Total Electric Demand Power,hourly; Output:Variable,*,Air System Cooling Coil Total Cooling Energy,hourly; Output:Variable,*,Air System Heating Coil Total Heating Energy,hourly; Output:Variable,*,Air System Fan Air Heating Energy,hourly; Output:Variable,*,Air System Gas Energy,hourly; Output:Variable,*,Air System Gas Energy,hourly;

Appendix C: Include Files

C.1 Windows:

Same window configuration file is provided for both climate zones/cities. Also, same window configuration file is used for all windows, however with changes made for construction reference (glazing construction and frame) for different window attachment runs (e.g., For baseline window, construction reference is AERC_Doubleclear_Baseline). For different baseline windows, as their averaged frame width are different, the glazing coordinates should be changed as well. The following sections depict the methodologies of calculating the averaged frame width and changing the fenestration coordinates.

C.1.1 Calculating and exporting the average frame width in WINDOW

As EnergyPlus can't model the half-deployed scenario for a window shade, we used two separate small windows (one at the top and one at the bottom) to replace a single window in simulation. However, this replacement results in a larger frame area for the modelled window because the head and sill are counted twice (as shown in the rightmost drawing of the following picture). So, we will replace the original averaged frame width (L_{f_wIN}) from WINDOW with a new averaged frame width (L_{f_ave}) to make sure the modeled two small windows have the same glazing and frame areas as the original window. The methodology for the averaged frame width calculation is detailed later in this section. The following figure illustrates the original window with original frame dimensions, L_s , L_j , and Lh, then window with the original averaged frame dimension, L_{f_wIN} , as it is exported frame windth, L_{f_ave} .

A_{real_g} is the actual window glazing area.

A_{win_g} is the window glazing area normally exported from WINDOW.

*A*_{model_g} is the window glazing area in E+ simulation.

The first step is to calculate the original averaged frame width (L_{f_win}). WINDOW program can calculate L_{f_win} according to the below equations.

$$A_{real_g} = W \cdot H - (L_h \cdot W + L_s \cdot W + 2 \cdot L_j \cdot (H - L_h - L_{s}))$$
(C.1)

$$A_{WIN_g} = W \cdot H - \left(2 \cdot W \cdot L_{f_WIN} + 2 \cdot L_{f_WIN} \cdot \left(H - 2 \cdot L_{f_WIN}\right)\right)$$
(C.2)

Considering that *A*_{real_g} = *A*_{win_g}, and substituting (1) and (2) into this equality, then:

$$W \cdot H - (L_h \cdot W + L_s \cdot W + 2 \cdot L_j \cdot (H - L_h - L_s)) = W \cdot H - (2 \cdot W \cdot L_{f_win} + 2 \cdot L_{f_win} \cdot (H - 2 \cdot L_{f_win}))$$
(C.3)

Or expressed as quadratic equation that can be solved for L_{f_win} .

$$4 \cdot L_{f_{-WIN}}^{2} + 2 \cdot (H + W) \cdot L_{f_{-WIN}} - (W \cdot (L_{h} + L_{s}) + 2 \cdot L_{j} \cdot (H - L_{h} - L_{s})) = 0$$
(C.4)

$$L_{f_{-WIN}} = \frac{-2 \cdot (H + W) \pm \sqrt{4 \cdot (H + W)^{2} + 16 \cdot (W \cdot (L_{h} + L_{s}) + 2 \cdot L_{j} \cdot (H - L_{h} - L_{s}))}}{8}$$
(C.5)

WINDOW program can also export the original averaged frame width (L_{f_win}) to a normal IDF file (which is different from the specialized IDF file for EPCalc only, called "AERC EnergyPlus IDF"). An example of L_{f_win} exportation for AERC Baseline Window B is shown in the following figure.

Window Frames and Dividers Data	
	Lf win is exported in a
WindowProperty:FrameAndDivider,	normal IDE by WINDOW
0.057150,	
3	I France Franklan Provident (m)
2 018756	!- Frame Insider Projection {m}
1.075423,	!- Ratio of Frame-Edge Glass Conductance
0.300000,	!- Frame Solar absorptance
0.300000,	!- Frame Visible absorptance
0.9,	!- Frame inermal nemispherical Emissivit
2	!- Divider Width {m}
3	!- Number of Horizontal Dividers
3	!- Number of Vertical Dividers
3	!- Divider Outside Projection {m}
,	!- Divider Conductance {w/m2-K}
3	!- Ratio of Divider-Edge Glass Conductar
3	!- Divider Solar Absorptance
,	!- DIVIGER VISIBLE ADSORPTANCE
1	!- Outside Reveal Solar Absorptance
2	!- Inside Sill Depth (m)
3	!- Inside Sill Solar Absorptance
· · · · · · · · · · · · · · · · · · ·	!- Inside Reveal Depth (m)
9	:- Inside Reveal Solar Absorptance

The next step is to calculate the new averaged frame width (L_{f_ave}) for the configuration consisting of two windows (top and bottom) with the original averaged frame width (L_{f_WIN}). This calculation was conducted in WINDOW program according to the below equations.

$$A_{Model_g} = W \cdot H - \left(4 \cdot W \cdot L_{f_Ave} + 4 \cdot L_{f_Ave} \cdot \left(\frac{H}{2} - 2 \cdot L_{f_Ave} \right) \right)$$
(C.6)

Considering that *A*_{Model_g} = *A*_{win_g}, and substituting (2) and (6) into this equality, then:

$$W \cdot H - \left(2 \cdot W \cdot L_{f_{-}WIN} + 2 \cdot L_{f_{-}WIN} \cdot \left(H - 2 \cdot L_{f_{-}WIN}\right)\right) = W \cdot H - \left(4 \cdot W \cdot L_{f_{-}Ave} + 4 \cdot L_{f_{-}Ave} \cdot \left(\frac{H}{2} - 2 \cdot L_{f_{-}Ave}\right)\right)$$
(C.7)

Or expressed as quadratic equation that can be solved for *L_{f_Ave}*.

$$-4 \cdot L_{f_{-}Ave}^{2} + (H + 2 \cdot W) \cdot L_{f_{-}Ave}^{2} + 2 \cdot L_{f_{-}WIN}^{2} - (W + H) \cdot L_{f_{-}WIN} = 0$$
(C.8)

$$L_{f_{-Ave}} = \frac{-(H+2\cdot W) \pm \sqrt{(H+2\cdot W)^{2} + 16\cdot (2\cdot L_{f_{-W/N}}^{2} - (W+H)\cdot L_{f_{-W/N}})}}{-8}$$
(C.9)

There are two roots to the quadratic equation (9), $L_{f_Ave_1}$ and $L_{f_Ave_2}$, of which one is solution that we are seeking.

$$L_{f_Ave} = \min(L_{f_Ave_1}, L_{f_Ave_2})$$
(C10)

Take the current AERC baseline window B as an example:

So Equations (8) and (9) can be written as:

$$-4 \cdot L_{f_Ave}^{2} + 4.3 \cdot L_{f_Ave} - 0.1592027 = 0$$
$$L_{f_Ave} = \frac{-4.3 \pm \sqrt{18.49 - 2.54724}}{-8}$$
$$L_{f_Ave} = \min(0.038395, 1.036605)$$
$$L_{f_Ave} = 0.038395$$

This calculation is built into Berkeley Lab WINDOW software tool, which is exported to AERCalc in a new specialized IDF file, called "AERC Energy Plus IDF", where the original frame width, L_{f_wIN} , new averaged frame width L_{f_ave} , and window width and height (W and H, include the frame width), are included in the commented section. New averaged frame width is also inserted in the appropriate IDF field where it is used by EnergyPlus. The following figure illustrates this new AERC EnergyPlus IDF.

For other baseline windows which may have different frame widths, WINDOW program will calculate L_{f_Ave} using equations (9) and (10) and export L_{f_Ave} as shown in the above figure.

C.1.2 Changing the fenestration coordinates in window configuration file

The whole window area, consisting of the glass area and the frame area, is given by specifying the window width (W, includes the frame width) and the height (H, includes the frame width). However, in Energyplus, window coordinates describe vision portion of glazing system only, so full window area is obtained by adding frame width to glazing area. The fenestration coordinates can be calculated by using the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}). The methodology is detailed in this section.

For each window in a typical building, the coordinates of the vertices for the vision area of glazing are calculated starting with lower left corner. The remaining three vertices are then calculated based on the fixed coordinates of the lower-left corner point, the window width (W), height (H) and the new averaged frame width (L_{f_Ave}). However, it is worth noting that the coordinate calculation method is different for different oriented windows. The calculation methods for different orientations are illustrated in sections below.

C.1.2.1 Template for IDF snippet for windows

An IDF snippet for the definition of each window is required. There are 8 windows on each orientation. Template for the IDF snippet is illustrated as follows:

Fenes	trati <u>on</u>	Surface:E	Detailed,		
Wind	low_ <mark>Or</mark>	<mark>TIF_N_Pos</mark>	.unit1, !- Name		
Wind	low,	!- 5	Surface Type		
AER	C_Doub	leclear_B	aseline, !- Construction Name		
Wall	<mark>Ori</mark> W	<mark>F</mark> .unit1,	!- Building Surface Name		
,		!- Outsic	le Boundary Condition Object		
,	, !- View Factor to Ground				
,		!- Shadii	ng Control Name		
AER	C_Wood	d_Frame,	!- Frame and Divider Name		
1,		!- Multi	plier		
4,		!- Numl	ber of Vertices		
<mark>X1,</mark>	Y1,	<mark>Z1,</mark>	!- X,Y,Z ==> Vertex 1 {m}		
X2,	Y2,	Z2,	!- X,Y,Z ==> Vertex 2 {m}		
ХЗ,	Y3,	Z3,	!- X,Y,Z ==> Vertex 3 {m}		
X4,	Y4,	Z4;	!- X,Y,Z ==> Vertex 4 {m}		

Where OriF_N_Pos stand for:

- Ori = Orientation (ldf– front side (South), ldb back side (North), sdr right side (East), sdl left side (West))
- F = Floor number (1 first floor, 2 second floor)
- N = Window number on each floor and orientation (1 left side window, 2 right side window)
- Pos = Window position(Bot bottom window, Top top window)
- W = Wall number of each perimeter zone on each floor (1 external wall on which the windows were installed)

For example, Window_ldf1_2_Bot.unit1 means the right bottom window on the first floor on the south orientation; Wall_sdr1_2.unit1 means the external wall on the second floor of east orientation

C.1.2.2 South facing windows:

There are eight south facing windows (named as Window_ldfF_N_Pos.unit1).

where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

X1= values for each of south facing windows are listed in table below

<mark>Y1=Y2=Y3=Y4=0.00</mark>,

<mark>Z1</mark> values for each of south facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

 $X2=X1+(W-2* L_{f_Ave})$ Z2=Z1 $X3=X+(W-2* L_{f_Ave})$ $Z3=Z+(H/2-2* L_{f_Ave})$ X4=X1 $Z4=Z+(H/2-2* L_{f_Ave})$

For baseline window B, the coordinates of the lower-left corner vertices of the eight south facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_ldf1_1_Bot.unit1	Wall_ldf1_1.unit1	2.50		0.60
Window_ldf1_1_Top.unit1	Wall_ldf1_1.unit1	2.50		1.35
Window_ldf1_2_Bot.unit1	Wall_ldf1_1.unit1	6.60		0.60
Window_ldf1_2_Top.unit1	Wall_ldf1_1.unit1	6.60	0.00	1.35
Window_ldf2_1_Bot.unit1	Wall_ldf1_2.unit1	2.50		3.20
Window_ldf2_1_Top.unit1	Wall_ldf1_2.unit1	2.50		3.95
Window_ldf2_2_Bot.unit1	Wall_ldf1_2.unit1	6.60		3.20
Window_ldf2_2_Top.unit1	Wall_ldf1_2.unit1	6.60		3.95

The coordinates of the lower-left corner vertices of the eight south facing windows are fixed in the E+ model and will be used for different baseline windows. With the coordinates of the lower-left corner vertices, the coordinates of the remaining vertices of each south facing window can be calculated using Equations above.

Take the current AERC baseline window B as an example:

W = 1.4 m H = 1.5 m $L_{f,Ave} = 0.038395$ m

the coordinates of the eight south facing windows are calculated and the values are listed in the below table.

					-
Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_ldf1_1_Bot.unit1	Wall_ldf1_1.unit1	1	2.50000	0.00000	0.60000
		2	3.82321	0.00000	0.60000
		3	3.82321	0.00000	1.27321
		4	2.50000	0.00000	1.27321
Window_ldf1_1_Top.unit1	Wall_ldf1_1.unit1	1	2.50000	0.00000	1.35000
		2	3.82321	0.00000	1.35000
		3	3.82321	0.00000	2.02321
		4	2.50000	0.00000	2.02321
Window_ldf1_2_Bot.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	0.60000
		2	7.92321	0.00000	0.60000
		3	7.92321	0.00000	1.27321
		4	6.60000	0.00000	1.27321
Window_ldf1_2_Top.unit1	Wall_ldf1_1.unit1	1	6.60000	0.00000	1.35000
		2	7.92321	0.00000	1.35000
		3	7.92321	0.00000	2.02321
		4	6.60000	0.00000	2.02321
Window_ldf2_1_Bot.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.20000
		2	3.82321	0.00000	3.20000
		3	3.82321	0.00000	3.87321
		4	2.50000	0.00000	3.87321
Window_ldf2_1_Top.unit1	Wall_ldf1_2.unit1	1	2.50000	0.00000	3.95000
		2	3.82321	0.00000	3.95000
		3	3.82321	0.00000	4.62321
		4	2.50000	0.00000	4.62321
Window ldf2 2 Bot.unit1	Wall ldf1 2.unit1	1	6.60000	0.00000	3.20000
		2	7.92321	0.00000	3.20000
		3	7.92321	0.00000	3.87321
		4	6.60000	0.00000	3.87321
Window ldf2 2 Top.unit1	Wall ldf1 2.unit1	1	6.60000	0.00000	3.95000
		2	7.92321	0.00000	3.95000
		3	7.92321	0.00000	4.62321
		4	6.60000	0.00000	4.62321

C.1.2.3 North facing windows:

There are also eight north facing windows (named as Window_ldbF_N_Pos.unit1). Coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

X1= values for each of north facing windows are listed in table below

Y1=Y2=Y3=Y4=10.55858,

Z1= values for each of north facing windows are listed in table below

The coordinates of the remaining three vertices can be calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the formulas below:

X2=X1-(W-2* L_{f_Ave}) Z2=Z1 X3=X1-(W-2* L_{f_Ave}) Z3=Z1+(H/2-2* L_{f_Ave}) X4=X1 Z4=Z1+(H/2-2* L_{f_Ave})

The coordinates of the lower-left corner vertices of the eight north facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_ldb1_1_Bot.unit1	Wall_ldb1_1.unit1	8.00		0.60
Window_ldb1_1_Top.unit1	Wall_ldb1_1.unit1	8.00		1.35
Window_ldb1_2_Bot.unit1	Wall_ldb1_1.unit1	3.90		0.60
Window_ldb1_2_Top.unit1	Wall_ldb1_1.unit1	3.90	10 55050	1.35
Window_ldb2_1_Bot.unit1	Wall_ldb1_2.unit1	8.00	10.22020	3.20
Window_ldb2_1_Top.unit1	Wall_ldb1_2.unit1	8.00		3.95
Window_ldb2_2_Bot.unit1	Wall_ldb1_2.unit1	3.90		3.20
Window_ldb2_2_Top.unit1	Wall_ldb1_2.unit1	3.90		3.95

The coordinates of the remaining vertices of each north facing window are calculated using above equation.

For AERC baseline window B, the coordinates of the eight north facing windows are as follows

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_ldb1_1_Bot.unit1	Wall_ldb1_1.unit1	1	8.00000	10.55858	0.60000
		2	6.67679	10.55858	0.60000
		3	6.67679	10.55858	1.27321
		4	8.00000	10.55858	1.27321
Window_ldb1_1_Top.unit1	Wall_ldb1_1.unit1	1	8.00000	10.55858	1.35000
		2	6.67679	10.55858	1.35000
		3	6.67679	10.55858	2.02321
		4	8.00000	10.55858	2.02321
Window_ldb1_2_Bot.unit1	Wall_ldb1_1.unit1	1	3.90000	10.55858	0.60000
		2	2.57679	10.55858	0.60000
		3	2.57679	10.55858	1.27321
		4	3.90000	10.55858	1.27321
Window_ldb1_2_Top.unit1	Wall_ldb1_1.unit1	1	3.90000	10.55858	1.35000
		2	2.57679	10.55858	1.35000
		3	2.57679	10.55858	2.02321
		4	3.90000	10.55858	2.02321
Window_ldb2_1_Bot.unit1	Wall_ldb1_2.unit1	1	8.00000	10.55858	3.20000
		2	6.67679	10.55858	3.20000
		3	6.67679	10.55858	3.87321
		4	8.00000	10.55858	3.87321
Window_ldb2_1_Top.unit1	Wall_ldb1_2.unit1	1	8.00000	10.55858	3.95000
		2	6.67679	10.55858	3.95000
		3	6.67679	10.55858	4.62321
		4	8.00000	10.55858	4.62321
Window_ldb2_2_Bot.unit1	Wall_ldb1_2.unit1	1	3.90000	10.55858	3.20000
		2	2.57679	10.55858	3.20000
		3	2.57679	10.55858	3.87321
		4	3.90000	10.55858	3.87321
Window_ldb2_2_Top.unit1	Wall_ldb1_2.unit1	1	3.90000	10.55858	3.95000
		2	2.57679	10.55858	3.95000
		3	2.57679	10.55858	4.62321
		4	3.90000	10.55858	4.62321

C.1.2.4 East facing windows:

There are also eight east facing windows (named as Window_sdrF_N_Pos.unit1). Coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

<mark>X1= X2=X3=X4= 10.55858</mark>,

- Y1= values for each of east facing windows are listed in table below
- Z1= values for each of east facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

Y2= Y1+(W-2* L_{f_Ave}) Z2=Z1 Y3= Y1+(W-2* L_{f_Ave}) Z3= Z1+(H/2-2* L_{f_Ave}) Y4=Y1 Z4= Z1+(H/2-2* L_{f_Ave})

The coordinates of the lower-left corner vertices of the eight east facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1		2.50	0.60
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1		2.50	1.35
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1		6.60	0.60
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	10 55050	6.60	1.35
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	10.52020	2.50	3.20
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1		2.50	3.95
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1		6.60	3.20
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1		6.60	3.95

The coordinates of the remaining vertices of each east facing window are calculated using above equations.

For AERC baseline window B, the full set of coordinates for the eight east facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window sdr1 1 Bot.unit1	Wall sdr1 1.unit1	1	10.55858	2.50000	0.60000
		2	10.55858	3.82321	0.60000
		3	10.55858	3.82321	1.27321
		4	10.55858	2.50000	1.27321
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	1.35000
		2	10.55858	3.82321	1.35000
		3	10.55858	3.82321	2.02321
		4	10.55858	2.50000	2.02321
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	0.60000
		2	10.55858	7.92321	0.60000
		3	10.55858	7.92321	1.27321
		4	10.55858	6.60000	1.27321
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	1.35000
		2	10.55858	7.92321	1.35000
		3	10.55858	7.92321	2.02321
		4	10.55858	6.60000	2.02321
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.20000
		2	10.55858	3.82321	3.20000
		3	10.55858	3.82321	3.87321
		4	10.55858	2.50000	3.87321
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.95000
		2	10.55858	3.82321	3.95000
		3	10.55858	3.82321	4.62321
		4	10.55858	2.50000	4.62321
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.20000
		2	10.55858	7.92321	3.20000
		3	10.55858	7.92321	3.87321
		4	10.55858	6.60000	3.87321
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.95000
		2	10.55858	7.92321	3.95000
		3	10.55858	7.92321	4.62321
		4	10.55858	6.60000	4.62321

C.1.2.5 West facing windows:

There are also eight west facing windows (named as Window_sdlF_N_Pos.unit1). where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:

<mark>X1=X2=X3=X4=0.00</mark>,

Y1=values for each of west facing windows are listed in table below

Z1=values for each of west facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f_Ave}) using the below formulas:

Y2= Y1-(W-2* L_{f_Ave}) Z2=Z1 Y3= Y1-(W-2* L_{f_Ave}) Z3= Z1+(H/2-2* L_{f_Ave}) Y4=Y1 Z4= Z1+(H/2-2* L_{f_Ave})

The coordinates of the lower-left corner vertices of the eight west facing windows are listed as follows:

Fenestration Name	Building Surface Name	Х	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1		8.00	0.60
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1		8.00	1.35
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1		3.90	0.60
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	0.00	3.90	1.35
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1		8.00	3.20
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1		8.00	3.95
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1		3.90	3.20
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1		3.90	3.95

The coordinates of the remaining vertices of each west facing window are calculated using above equations.

For AERC baseline window B, the coordinates of the eight west facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	Х	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	0.60000
		2	0.00000	6.67679	0.60000
		3	0.00000	6.67679	1.27321
		4	0.00000	8.00000	1.27321
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	1.35000
		2	0.00000	6.67679	1.35000
		3	0.00000	6.67679	2.02321
		4	0.00000	8.00000	2.02321
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	0.60000
		2	0.00000	2.57679	0.60000
		3	0.00000	2.57679	1.27321
		4	0.00000	3.90000	1.27321
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	1.35000
		2	0.00000	2.57679	1.35000
		3	0.00000	2.57679	2.02321
		4	0.00000	3.90000	2.02321
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.20000
		2	0.00000	6.67679	3.20000
		3	0.00000	6.67679	3.87321
		4	0.00000	8.00000	3.87321
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.95000
		2	0.00000	6.67679	3.95000
		3	0.00000	6.67679	4.62321
		4	0.00000	8.00000	4.62321
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.20000
		2	0.00000	2.57679	3.20000
		3	0.00000	2.57679	3.87321
		4	0.00000	3.90000	3.87321
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.95000
		2	0.00000	2.57679	3.95000
		3	0.00000	2.57679	4.62321
		4	0.00000	3.90000	4.62321

A complete EnergyPlus window configuration inc file for the current AERC baseline window B was attached at the end of this document as Appendix F.

Baseline Window Configuration Include File:

FenestrationSurface:Detailed,	
Window_ldf1_1_Bot.unit1, !- Name	B: Baseline window run:
Window, !- Surface Type	Clasical association names in
AERC_Doubleclear_Baseline, < !- Construction Name	Glazing construction name is
Wall_ldf1_1.unit1, !- Building Surface Name	AERC_Doubleclear_Baseline.
, !- Outside Boundary Condition Object	Frame construction name is
, !- View Factor to Ground	AERC Wood Frame for both
, !- Shading Control Name	top and bottom "half" of the
AERC_Wood_Frame, - Frame and Divider Name	baseline window
1, !- Multiplier	baseline window.
4, !- Number of Vertices	
2.50000000000, 0.00000000000, 0.600000000, !- :	X,Y,Z ==> Vertex 1 {m}
3.823210000000, 0.000000000000, 0.6000000000, !- :	X,Y,Z ==> Vertex 2 {m}
3.823210000000, 0.000000000000, 1.2732/10000000, !- :	X,Y,Z ==> Vertex 3 {m}
2.50000000000, 0.00000000000, 1.273210000000; !-3	X,Y,Z ==> Vertex 4 {m}
Window Idf1 1 Tanunit1 Name	
Window	
AFRC Doubleslear Paseline / Construction Name	
Wall idit Unit - Building Surface Name	
L Outside Boundary Condition Object	
I- View Factor to Ground	
, I- Shading Control Name	
AFRC Wood Frame - I- Frame and Divider Name	
1 Multiplier	
4. I- Number of Vertices	
2.50000000000, 0.00000000000, 1.35000000000, !- `	X.Y.7 ==> Vertex 1 {m}
3 823210000000 0 0000000000 1 35000000000	$XY7 ==> Vertex 2 {m}$
3.823210000000, 0.000000000000, 2.023210000000	$XY.7 ==> Vertex 3 {m}$
2.50000000000. 0.00000000000. 2.023210000000:	$XY.7 ==> Vertex 4 \{m\}$
	.,,

AERC Doubleclear Baseline,	!- name
LBNLWindow,	!- basis type
None,	!- basis symmetry type
ThermParam_Glz_10001,	!- window thermal model
CFS_Glz_10001_Basis,	!- basis matrix name
CFS_Glz_10001_TfSol,	!- Tfsol
CFS_Glz_10001_RbSol,	!- Rbsol
CFS_Glz_10001_Tfvis,	!- Tfvis
CFS_Glz_10001_Rovis,	!- Rbvis
Glass_102_Layer,	!- layer 1 name
CFS_Glz_10001_Layer_1_fAbs,	!- fAbs
CFS_Glz_10001_Layer_1_bAbs,	!- bAbs
Gap_1_Glz_10001_Layer_1,	!- gap 1 name
,	
Glass_102_Layer,	!- layer 2 name
CFS_Glz_10001_Layer_2_fAbs,	!- fAbs
CFS Glz 10001 Layer 2 bAbs;	!- bAbs

Adiabatic Window Configuration Include File:

FenestrationSurface:Detailed,			
Window_ldf1_1_Bot.unit1, !- Name	A: Adiabatic window run:		
Window, !- Surface Type	Glazing construction name is		
Adiabatic_Window, < Construction Name	Adjabatia window Frame and		
Wall_ldf1_1.unit1, !- Building Surface Name	Adiabatic_window. Frame and		
, !- Outside Boundary Condition Object	divider construction name is		
, !- View Factor to Ground	blank (keep a comma) for both		
, !- Shading Control Name	top and bottom "half" of the		
,	baseline window.		
1, !- Multiplier			
4, !- Number of Vertices			
2.50000000000, 0.00000000000, 0.60000000000	X,Y,Z ==> Vertex 1 {m}		
3.82321000000, 0.0000000000, 0.6000000000, !-	X,Y,Z ==> Vertex 2 {m}		
3.82321000000, 0.0000000000, 1/273210000000, !-	X,Y,Z ==> Vertex 3 {m}		
2.50000000000, 0.00000000000 1.273210000000; !-	X,Y,Z ==> Vertex 4 {m}		
FenestrationSurface:Detailed,			
Window_ldf1_1_lopunit1, !/ Name			
Window, !- Surface Type			
Adiabatic_window, P !- Construction Name			
Wan_luli_1.ullil, Building Surface Name			
, - Outside Boundary Condition Object			
, - View Factor to Ground			
- Shading Control Name			
1 I- Multiplier			
4 I- Number of Vertices			
4, :- Number of vertices 2 50000000000 0 0000000000 1 35000000000 L-XX7 == \Vertex 1 m			
3 823210000000 0 0000000000 1 35000000000 -	$XY7 ==> Vertex 2 \{m\}$		
3.823210000000, 0.00000000000, 2.023210000000, -	$X.Y.Z ==> Vertex 3 \{m\}$		
2,50000000000, 0,00000000000, 2,023210000000; -	$X,Y,Z ==>$ Vertex 4 {m}		
,, _,, _			

Adiabatic Window Construction Include File (Window construction adiabatic.inc):

!----- Window Glass Layers

|-----

WindowMaterial:Glazing,				
Super_Insulate	Super Insulated Glass, !- Name			
SpectralAverag	ge, 🛛 !- Optical Data Type			
, !	- Window Glass Spectral Data Set Name			
0.003,	!- Thickness {m}			
0.000001,	!- Solar Transmittance at Normal Incidence			
0.999999,	!- Front Side Solar Reflectance at Normal Incidence			
0.999999,	!- Back Side Solar Reflectance at Normal Incidence			
0.000001,	!- Visible Transmittance at Normal Incidence			
0.999999,	!- Front Side Visible Reflectance at Normal Incidence			
0.999999,	!- Back Side Visible Reflectance at Normal Incidence			
0.000000,	!- Infrared Transmittance at Normal Incidence			
0.000001,	!- Front Side Infrared Hemispherical Emissivity			
0.000001.	!- Back Side Infrared Hemispherical Emissivity			
0.0000001;	!- Conductivity {W/m-K}			

! Window Construction

|-----

!---

Construction, Adiabatic window, !- Name Super_Insulated_Glass; !- Outside Layer

Half-Deployed	Window C	Configuration	Include File:
		0	

FenestrationSurface:Detailed,		
Window_ldf1_1 <mark>_Bot.</mark> unit1, !- Name	H: Attachments half deployed: Glazing	
Window,	Construction for "Bot" window unit	
AERC_Doubleclear_Baseline, - Construction Name</td <td>AFRC Daublaster Deseling Clasing</td>	AFRC Daublaster Deseling Clasing	
Wall_ldf1_1.unit1,	AERC_Doubleclear_Baseline. Glazing	
, !- Outside Boundary Condition Object	Construction for "Top" window unit is	
, !- View Factor to Ground	AERC_Doubleclear_Attachment, which	
, !- Shading Control Name	is user-specified. Frame construction	
AERC_Wood_Frame, !- Frame and Divider Name	name is AFRC Wood Frame for both	
1, !- Multiplier	ton and bottom "balf" of the baseline	
4, !- Number of Vertices	window	
2.50000000000, 0.00000000000, 0.6000000000, !-	window.	
3.82321000000, 0.00000000000, 0.6000000000, !-	X,Y,Z ==> Vertex 2 {m}	
3.823210000000, 0.000000000000, 1.273210000000, !-	X,Y,Z ==> Vertex 3 {m}	
2.50000000000, 0.00000000000, 1.273210000000; !-	X,Y,Z ==> Vertex 4 {m}	
FenestrationSurface:Detailed,		
Window_ldf1_1 <mark>_Top.</mark> unit1, !- Name		
Window, !- Surface Type		
AERC_Doubleclear_Attachment, Construction Name	e	
Wall_Id11_1.unic1, !- Building Surface Name		
, !- Outside Boundary Condition Object		
, !- View Factor to Ground		
<u>!- Shadi</u> ng Control Name		
AERC_Wood_Frame, Frame and Divider Name		
1, !- Multiplier		
4, !- Number of Vertices		
2.50000000000, 0.00000000000, 1.35000000000, !-	X,Y,Z ==> Vertex 1 {m}	
3.823210000000, 0.000000000000, 1.350000000000, !-	X,Y,Z ==> Vertex 2 {m}	
3.823210000000, 0.000000000000, 2.023210000000, !-	X,Y,Z ==> Vertex 3 {m}	
2.50000000000, 0.00000000000, 2.023210000000; !-	X,Y,Z ==> Vertex 4 {m}	

t,

Fully-Deployed Window Configuration Include File :

FenestrationSurface:Detailed,	S: Attachments fully deployed		
Window_ldf1_1 <mark>_Bot.</mark> unit1, !- Name	Glazing Construction is		
Window, !- Surface Type	AFRC Doubleclear Attachmen		
AERC_Doubleclear_Attachment, < !- Construction Name	ALIC_DOUDIECIEAI_ACCACINITEN		
Wall_ldf1_1.unit1, !- Building Surface Name	which is user-specified. Frame		
, !- Outside Boundary Condition Object	construction name is		
, !- View Factor to Ground	AERC_Wood_Frame for both		
, !- Shading Control Name	top and bottom "half" of the		
AERC_Wood_Frame,	baseline window.		
1, !- Multiplier			
4, !- Number of Vertices			
2.50000000000, 0.00000000000, 0.6000000000, !- X,	Y,Z ==> Vertex 1 {m}		
3.82321000000, 0.00000000000, 0.6000000000, !- X,	Y,Z ==> Vertex 2 {m}		
3.82321000000, 0.00000000000, 1.273210000000, !- X,	Y,Z ==> Vertex 3 {m}		
2.50000000000, 0.00000000000, 1.273210000000; !- X,	Y,Z ==> Vertex 4 {m}		
FenestrationSurface:Detailed,			
Window_ldf1_1_lopunit1, !- Name			
Window, !- Surface Type			
AERC_Doubleclear_Attachment, < !- Construction Name			
wan_ldr1_1.unit1,			
, !- Outside Boundary Condition Object			
, !- View Factor to Ground			
I- Shading Control Name			
AERC_Wood_Frame, !- Frame and Divider Name			
1, !- Multiplier			
4, !- Number of Vertices			
2.50000000000, 0.0000000000, 1.35000000000, !- X,Y,Z ==> Vertex 1 {m}			
3.823210000000, 0.00000000000, 1.35000000000, - X,	$r_{,Z} == > vertex 2 \{m\}$		
3.82321000000, 0.0000000000, 2.023210000000, -X,	$r_{,L} == > vertex 3 \{m\}$		
2.50000000000, 0.00000000000, 2.023210000000; !- X,Y,Z ==> Vertex 4 {m}			

C.2 Zone Infiltration:

The method of calculating air infiltration for the house with baseline windows, adiabatic windows and baseline windows with attachments consists of the following steps:

(1) Calculate the ELA of the whole house with baseline windows, $\ensuremath{\mathsf{ELA}_{\mathsf{H}}}$

(2) Calculate the ELA of all baseline windows, ELAw

(3) Calculate the ELA of the whole house with adiabatic windows (no window infiltration), $ELA_{\rm HO}$

(4) Calculate the ELA of all windows with attachment, ELA_{WA}

(5) Calculate the ELA of the whole house with windows and attachments, $\mathsf{ELA}_{\mathsf{HWA}}$

C.2.1 Calculating the ELA of the whole house with baseline windows, $\ensuremath{\mathsf{ELA}_{\mathsf{H}}}$

$$ELA_{H} = \frac{Q_{50} \left[\frac{\Delta P_{4}}{\Delta P_{50}}\right]^{n}}{\left[\frac{2\Delta P_{4}}{\rho}\right]^{0.5}} \times 10000$$
(I.1)

$$Q_{50} = \frac{V_H \cdot ACH_{50}}{3600} \tag{I.2}$$

Where:

 ELA_H = Effective leakage area of the whole house with baseline windows, (cm²)

 Q_{50} = Total house infiltration at 50 Pa, (m³/s)

 ΔP_{50} = 50 Pa test pressure for windows, (Pa)

 ΔP_4 = 4 Pa used as baseline for comparison, (Pa)

 ρ = 1.29; Air density at standard temp. & press., (kg/m³)

 V_H = The volume of the house, (m³)

ACH₅₀ = Air changes per hour at 50 Pa

C.2.2 Calculating the ELA of all baseline windows, ELAw

$$ELA_{W} = \frac{Q_{W75} \left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2\Delta P_{4}}{\rho}\right]^{0.5}} \times 10000$$
(I.3)

$$Q_{W75} = q_{W75} \cdot A_W \tag{I.4}$$

Where:

*ELA*_W = Effective leakage area of all baseline windows, (cm²)

$$Q_{W75}$$
 = Total baseline window infiltration at 75 Pa, (m³/s)

 ΔP_{75} = 75 Pa test pressure for windows, (Pa)

 $q_{W75} = 0.01016 \text{ m}^3/(\text{s}\cdot\text{m}^2) (2.0 \text{ cfm/ft}^2)$; The infiltration per unit area of baseline window at 75 Pa, (m³/s·m²)

 A_w = Total window area, (m²)

C.2.3 Calculating the ELA of the whole house without windows, ELA_{HO}

$$ELA_{HO} = ELA_{H} - ELA_{W} \tag{I.5}$$

C.2.4 Calculating the ELA of windows with attachments, ELAwA

$$ELA_{WA} = \frac{Q_{WA75} \left[\frac{\Delta P_4}{\Delta P_{75}}\right]^n}{\left[\frac{2\Delta P_4}{\rho}\right]^{0.5}} \cdot 10000$$
(I.6)

$$Q_{WA75} = q_{WA75} \cdot A_W \tag{I.7}$$

Where:

 ELA_{WA} = Effective leakage area of all windows with attachment, (cm²)

 Q_{75WA} = Total infiltration of the windows with attachment at 75 Pa, (m³/s)

 q_{WA75} = The measured air infiltration per unit area of the window with attachment at 75 Pa, also known as air leakage measurement; [m³/(s·m²)]

Conversion of measured air leakage from IP units (cfm/sf^2) to SI units $(m^3/(s \cdot m^2))$ is given by. This quantity is specified as input data in AERCalc for infiltration of window attachment product (baseline window plus window attachment):

$$q_{WA75}(SI) = 0.00508 \cdot q_{WA75}(IP)$$

Where the conversion factor 0.00508 is the result of the following conversion action: (ft to m)/(min to sec), or 0.3048/60.

C.2.5 Calculating the ELA of the whole house with window and attachment, ELA_{HWA}

$$ELA_{HWA} = ELA_{HO} + ELA_{WA} \tag{I.8}$$

Numerical values for the typical house and baseline window in AERCalc air:

$$V_{\rm H}$$
= 577.6288 m³ (I.9)

$$q_{W75} = 0.01016 \text{ m}^3/(\text{s} \cdot \text{m}^2)$$
 (I.12)

$$A_w = 33.6 \text{ m}^2$$
 (I.13)

For cooling climate:

$$ELA_{HO} = 1,044 \text{ cm}^2$$

 $ELA_{HWA} = 1,044 + ELA_{WA} \text{ cm}^2$ (I.14)

For example, if the measured air infiltration of the window with attachment is 1 cfm/sf², then:

ELA_{HWA} equals to 1146 cm², this value should be inputted in the ELA filed of EnergyPlus IDF files for cooling simulation.

$$ELA_{WA} = \frac{1 \cdot 0.00508 \cdot 33.6 \cdot \left[\frac{4}{75}\right]^{0.65}}{\left[\frac{8}{1.29}\right]^{0.5}} \cdot 10000 = 101.977 cm^{2}$$

Therefore,

$$ELA_{HWA} = 1,044 + 101.977 = 1,145.997 cm^2$$

For heating climate calculation:

$$ELA_{H0} = 669 \text{ cm}^2$$

 $ELA_{HWA} = 669 + ELA_{WA} \text{ (cm}^2\text{)}$ (I.15)

For the same example the infiltration for the house with window attachments will be:

 $ELA_{HWA} = 669 + 101.977 = 770.997 cm^2$

<u>Baseline window and half-deployed window infiltration include file for Houston</u> (<u>Air_infiltration_baseline_Houston.inc</u>):

ZoneInfiltration: EffectiveLeakageArea			
Living_ShermanGrimsrud_unit1, !- Name		B and H: Baseline window run	
living_unit1,	!- Zone Name	the effective air leakage area	
always_avail,	!- Schedule Name	(ELA) is 1044+ELAw in Houston	
1248,	!- Effective Air Leakage Are	ELAwie 204	
0.00029,	!- Stack Coefficient	ELAW IS 204.	
0.000231;	!- Wind Coefficient		

<u>Baseline window and half-deployed window infiltration include file for Minneapolis</u> (Air infiltration baseline Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageΔrea		
Living_Shermar	Grimsrud_unit1, !- Name	B and
living_unit1,	- Zone Name	and h
always_avail,	!- Schedule Name	the ef
873,	- Effective Air Leakage Area	(ELA)
0.00029,	!- Stack Coefficient	Minne
0.000231;	!- Wind Coefficient	

B and H: Baseline window run and half-deployed window run: the effective air leakage area ELA) is 669+ELAw in Minneapolis. ELAw is 204.

Adiabatic window infiltration include file for Houston (Air_infiltration_adiabatic_Houston.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !- Zone Name always_avail, !- Schedule Name 1044, !- Effective Air Leakage Area {cm2} 0.00029, !- Stack Coefficient 0.000231; !- Wind Coefficient

A: Adiabatic window run: the effective air leakage area (ELA) is 1044 in Houston.

Adiabatic window infiltration include file for Minneapolis (Air infiltration adiabatic Minneapolis.inc): Zanalnfiltration: Effectivel calege Area

Zoneinfiltration:EffectiveLeakageArea,			
Living_ShermanGrimsrud_unit1, !- Name		effect	
	living_unit1,	!- Zone Nam e	669 ir
	always_avail,	I Schedule Name	
	669,	!- Effective Air Leakage Area	{cm2}
	0.00029,	!- Stack Coefficient	
	0.000231;	!- Wind Coefficient	

Fully-deployed window infiltration include file for Houston (Air infiltration user input Houston.inc):

ZoneInfiltration:EffectiveLeakageArea,

Living_ShermanGrimsrud_unit1, !- Name		F: Attachments fully deployed:
living_unit1,	!- Zone Name	the effective air leakage area
always_avail,	!- Schedule Name	(ELA) is 1044+ELA _s in Houston.
1044+ <mark>ELA_s,</mark>	!- Effective Air Leakage	ELA _s is attachment dependent
0.00029,	!- Stack Coefficient	and is specified as input data.
0.000231;	!- Wind Coefficient	

<u>Fully-deployed window infiltration include file for Minneapolis</u> (<u>Air_infiltration_user_input_Minneapolis.inc</u>):

ZoneInfiltration:EffectiveLeakageArea,		F: Attachments fully deployed:
Living ShermanGrimsrud unit1, !- Name		the effective air leakage area
living unit1.	- Zone Name	 (ELA) is 669+ELA_s in Houston.
always avail,	- Schedule Name	ELA _s is attachment dependent
669+ <mark>ELA</mark> s, ←	- Effective Air Leakag	e and is specified as input data.
0.00029,	!- Stack Coefficient	
0.000231;	!- Wind Coefficient	

Note 1: ELAs in annotations above was replaced with ELA_{WA} notation in equations preeding these annotations.

Note 2: In AERCalc, users are required to input the measured air leakage (AL) of the window with attachment, but in EnergyPlus the infiltration is calculated based on the effective leakage area of the whole house including the windows with attachments. Thus, it is

A: Adiabatic window run: the effective air leakage area (ELA) is 669 in Minneapolis. necessary to convert the user-input air leakage to the effective leakage area of the whole house (ELA_{HWA})at the back-end before starting simulation. In addition to this conversion, unit conversion will often be required, since most common way of reporting AL is in IP units of cfm/sf². The methodology of converting AL into ELA_{HWA} was illustrated in above.

C.3 HVAC:

HVAC System for Houston

- Red highlight: System_autosize_Houston.inc
- Yellow highlight: System_sizing_Houston.inc

AirTerminal:SingleDuct:Unc	ontrolled,	4, for baseline window r
ZoneDirectAir_unit1, always_avail, Zono_lolot_Nodo_unit1	!- Name !- Availability Schedule Name !- Zopo Supply Aim Nado Namo	field keeps autosize, for
autosize;	1- Zone Suppry Air Node Name 1- Maximum Air Flow Rate {m3/s}	runs, this field replaces
0.652;	!- Maximum Air Flow Rate {m3/s}	0.652

other with

Coil:Cooling:DX:SingleS DX Cooling Coil_unit: always_avail, autosize, 13131.31, autosize, 0.733253, 2.70, autosize, 0.652, , Cooling Coil Air Inle Heating Coil Air Inle HPACCoolCapFT, HPACCoolCapFFF, HPACCOOLEIRFT, HPACCOOLEIRFT, HPACCOOLPLFFPLR;	Speed, 1, !- Name !- Availability Schedule Name !- Gross Rated Total Cooling Capacity !- Gross Rated Sensible Heat Ratio !- Gross Rated Sensible Heat Ratio !- Gross Rated Cooling COP {W/W} !- Rated Air Flow Rate {m3/s} !- Rated Cooling Cop Air Scheduler Protal Cooling Capacity Function of !- Total Cooling Capacity Function of !- Total Cooling Capacity Function of !- Energy Input Ratio Function of Flow !- Part Load Fraction Correlation Curv	 5, for baseline window run, this field keeps autosize, for other runs, this field replaces with 13131.31 6, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.733253 7, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.652
<pre>Fan:OnOff, Supply Fan_unit1, always_avail, 0.7, 400, autosize, 0.652, 0.8, 1, air loop inlet node cooling coil air in , General;</pre>	<pre>!- Name !- Availability Schedule Name !- Fan Total Efficiency !- Pressure Rise {Pa}</pre>	, for baseline window run, this eld keeps <mark>autosize,</mark> for other uns, this field replaces with .652
Coil:Heating:DX:SingleSpo Main DX Heating Coil	eed, unit1 t- Name	
always avail,	- Availability Schedule Name	9, for baseline window run, this
autosize,	!- Rated Iotal Heating Capacity {W}	field keeps autosize for other
13131.31	!- Rated Total Heating Capacity {W}	neia keeps autosize, ior other
autosize	<pre>:= Nated Or {W/W}</pre>	runs, this field replaces with
0.652.	<pre>!- Rated Air Flow Rate {m3/s}</pre>	10101 01
,	!- Rated Evaporator Fan Power Per Vo	15151.51
Heating Coil Air Inl	t Node_unit1, !- Air Inlet Node Name	
Supp Heating Coil Ai	· Inlet Node unit1, !- Air Outlet Node N	
HPACHestCapET,	 Foldi Heating Capacity Function of Total Heating Capacity Function of 	10, for baseline window run, this
HPACHeatEIRFT,	!- Energy Input Ratio Function of Ter	field keeps autosize for other
HPACHeatEIRFFF,	!- Energy Input Ratio Function of Fl	field keeps autosize, for other
HPACCOOLPLFFPLR,	!- Part Load Fraction Correlation Cu	runs, this field replaces with
Defrost_EIR_FT,	!- Defrost Energy Input Ratio Function History Outdoor Day Bulb Topportulation	0.050
-17.78,	 Minimum outdoor bry-Buib Temperature 1 Autdoor Dru-Buib Temperature to Tu 	0.652
, 5.0,	!- Maximum Outdoor Dry-Bulb Temperat	
200.0,	<pre>!- Crankcase Heater Capacity {W}</pre>	
10.0,	!- Maximum Outdoor Dry-Bulb Temperat	
ReverseCycle,	I- Defrost Strategy	
unvenand,	- Defrost Time Period Fraction	
;	!- Resistive Defrost Heater Capacity	
-		

Coil:Heating:Electric,	11 for baseline window run this
Supp Heating Coil_unit1, !- Name	
1, !- Efficiency	field keeps autosize, for other
autosize, !- Nominal Capacity {W}	runs, this field replaces with
7910.07, !- Nominal Capacity {W}	
Air Loop Outlet Node unit1: !- Air Outlet Node Name	/910.07
! ALL OBJECTS IN CLASS: AIRLOOPHVAC	
Airl conHUAC.	
Central System_unit1, !- Name	
, !- Controller List Name	
availability list, !- Availability Manager List Name	
0.652, - Pesign Supply Air Flow Nate (NS/S	12. for baseline window run. this
Air Loop Branches_unit1, !- Branch List Name	field keeps suterize for other
, !- Connector List Name Air Loop Inlet Nede unit1 !- Supply Side Inlet Nede Name	heid keeps autosize, for other
Return Air Mixer Outlet unit1. !- Demand Side Outlet Node Name	runs, this field replaces with
Zone Equipment Inlet Node_unit1, !- Demand Side Inlet Node Names	0.000
Air Loop Outlet Node_unit1; !- Supply Side Outlet Node Names	0.652
AirLoopHVAC:UnitaryHeatPump:AirToAir.	
Heat Punp_unit1, !- Name	13, for baseline window run, this
always_avail, ?- Availability Schedule Name Air Loon Inlet node unit1, ?- Air Inlet Node Name	field keeps autosize for other
Air Loop Outlet Node_unit1, !- Air Outlet Node Name	
autosize, <u>t- Supply</u> Air Flow Rate During Cooling Ope	runs, this field replaces with
autosize, !- Supply Air Flow Rate During Heating Ope	0.652
0.652, - Supply Air Flow Rate During Heating Operal 8 8 Supply Air Flow Rate When No Cooling or Heat	
living_unit1, !- Controlling Zone or Thermostat Location	
Fan:OnOff, : Supply Air Fan Object Type	
Coil:Heating:DX:SingleSpeed, !- Heating Coil Object Type	
Main DX Heating Coil_unit1, !- Heating Coil Name	14, for baseline window run, this
DX Cooling Coil_unit1, !- Cooling Coil Name	field keeps autosize for other
Coil:Heating:Electric, !- Supplemental Heating Coil Object Type	neid keeps autosize, tot other
50, feating coll_uniti, ?- Supplemental Heating coll Name 50, ?- Maximum Supply Air Temperature from Supple	runs, this field replaces with
10, !- Maximum Outdoor Dry-Bulb Temperature for Su	¹ 0 652
BlowThrough, ?- Fan Placement Fan cucle: ?- Supplu Air Fan Operating Mode Schedule Nam	0.032
Burrach	
Brancn, Air Loop Main Branch unit1, !- Name	
autosize, !- Maximum Flow Rate {m3/s}	15. for baseline window run, this
0.652,	field keeps suterize for other
AirLoopHVAC:UnitaryHeatPump:AirtoAir, !- Component 1 Object Typ	inera keeps autosize, for other
Heat Pump_unit1, !- Component 1 Name	runs, this field replaces with
Air Loop Iniet Node_unit1, !- Component 1 Iniet Node Name Air Loop Outlet Node unit1. !- Component 1 Outlet Node Name	0.652
ACTIVE; !- Component 1 Branch Control Type	0.032
Pump:VariableSpeed,	
Mains Pressure_unit1,	
Mains Pressure Outlet Node_unit1, !- Outlet Node Name	
autosize, t- Design Maximum Flow Rate (m3/s) 16,	for baseline window run, this
179352, ?- Design Maximum Flow Race (M3/S)	keeps autosize, for other
autosize, !- Design Power Consumption {W}	this field replaces with
0.9, !- Motor Efficiency [UNS	s, this held replaces with
0, !- Coefficient 1 of the Part Load P	00009
1, !- Coefficient 2 of the Part Load P	
0, !- Coefficient 3 of the Part Load P	
0, :- Userricient 4 of the Part Load P 0, :- Design Minimum Flow Rate {m3/s}	
Intermittent; !- Pump Control Type	

1

WaterHeater:Mixed,			
Water Heater_unit1,	t- Name		
0.196841372,	!- Tank Volume {m3}		
dhw_setpt,	!- Setpoint Temperature Schedule Name		
2,	!- Deadband Temperature Diffe <u>rence {deltaC}</u>		
50,	!- Maximum Temperature Limit 17 for bosoling window run this		
Cycle,	theater Control Type 17, IOF Daseline Window run, this		
autosize,	1- Heater Maximum Capacity {\ field keeps autosize for other		
5500, <	t- Heater Maximum Capacity {V		
0,	Peater Minimum Capacity {W runs, this field replaces with		
0,	!- Heater Ignition Minimum F1		
,	!- Heater Ignition Delay {s} 5500		
electricity,	!- Heater Fuel Type		
1,	!- Heater Thermal Efficiency		
,	!- Part Load Factor Curve Name		
,	!- Off Cycle Parasitic Fuel Consumption Rate {W}		
,	!- Off Cycle Parasitic Fuel Type		
,	!- Off Cycle Parasitic Heat Fraction to Tank		
,	!- On Cycle Parasitic Fuel Consumption Rate {W}		
,	!- On Cycle Parasitic Fuel Type		
,	!- On Cycle Parasitic Heat Fraction to Tank		
Zone,	!- Ambient Temperature Indicator		
,	!- Ambient Temperature Schedule Name		
living_unit1,	!- Ambient Temperature Zone Name		
,	!- Ambient Temperature Outdoor Air Node Name		
1.3306616,	!- Off Cycle Loss Coefficient to Ambient Temperature {W/K}		
1,	!- Off Cycle Loss Fraction to Zone		
1.3306616,	!- On Cycle Loss Coefficient to Ambient Temperature {W/K}		
1,	!- On Cycle Loss Fraction to Zone		
0,	!- Peak Use Flow Rate {m3/s}		
,	Ise Flow Rate Fraction Sch 18, for baseline window run, this		
,	!- Cold Water Supply Temperat		
Water Heater use inl	et node_unit1, !- Use Side Inlet TIEIQ KEEPS autoSIZE, TOP OTHER		
Water Heater use out	let node uniti, 1- Use Side Outle runs this field replaces with		
1,	- Use Side Effectiveness		
,	- Source Side Inlet Node Nam 0 000009		
	- Source Side Outlet Node Na		
1,	!- Source Side Effectiveness		
autosize,	!- Use Side Design Flow Rate {m3/s}		
0.000009,	<pre>!- Use Side Vesign Flow Rate {m3/s}</pre>		
U,	Y- Source Side Design Flow Rate {m3/s}		
1.5;	!- Indirect Water Heating Recovery Time {hr}		

PlantLoop,		
DHW Loop_unit1,	!- Name	
Water,	!- Fluid Type	
	!- User Defined Fluid Type	
DHW Loop Operation u	nit1,!- Plant Equipment Operati	10 for bacaling window run, this
DHW Supply Outlet No	de unit1, !- Loop Temperature	s 19, 101 baseline window run, this
100,	!- Maximum Loop Temperatur	^e field keeps autosize for other
0,	!- Minimum Loop Temperatur	re neid keeps datosize, for other
autosize,	!- Maximum Loop Flow Rate,	runs, this field replaces with
0.00009,	!- Maximum Loop Flow Rate	<pre></pre>
0,	!- Minimum Loop Flow Rate	₹ 0.000009
autocalculate,	!- Plant Loop Volume {m3}	
0.006851, <	!- Plant Loop Volume {m3}	
Mains Inlet Node_uni	t1, !- Plant Side Inlet Node N	lame
DHW Supply Outlet No	de_unit1, !- Plant Side Outlet	20 for baseline window run, this
DHW Supply Branches_	unit1, !- Plant Side Branch Li	is 20, for baseline window run, this
DHW Supply Connector:	5_unit1, !- Plant Side Connect	field keeps autocalculate for
DHW Demand Inlet Nod	e_unit1, !- Demand Side Inlet	N neia keeps aatoearearate, ior
Mains Makeup Node_un:	it1, !- Demand Side Outlet Node	other runs, this field replaces
DHW Demand Branches_	unit1, !- Demand Side Branch L	i il o cocort
DHW Demand Connector:	5_unit1, !- Demand Side Connec	t With 0.006851
Optimal:	!- Load Distribution Scher	ne

HVAC System for Minneapolis

- Red highlight: System_autosize_Minneapolis.inc
- Yellow highlight: System_sizing_Minneapolis.inc

Sizing:System,		
Central System_unit1,	!- AirLoop Name	1, for baseline window run, this
Sensible,	!- Type of Load to Size On	California and a feature for a shore
autosize,	!- Design Outdoor Air Flow Rate {m3/s}	tield keeps autosize, for other
0.563, 🧠	!- Design Outdoor Air Flow Rate {m3/s}	where the set of the s
1,	Sentral Heating Maximum System Air Flow	runs, viz. adiabatic window run,
7,	<pre>!- Preheat Design Temperature {C}</pre>	chade fully deployed rup and
0.008,	!- Preheat Design Humidity Ratio {kgWater/i	shade rully-deployed run and
11,	!- Precool Design Temperature {C}	shade half deployed rup this
0.008,	!- Precool Design Humidity Ratio {kgWater/l	shade han-deployed full, this
12,	!- Central Cooling Design Supply Air Temper	field replaces with 0 563
50,	!- Central Heating Design Supply Air Temper	neiu replaces with 0.505
NonCoincident,	t- Type of Zone Sum to Use	
No,	!- 100% Outdoor Air in Cooling	
No,	!- 100% Outdoor Air in Heating	
0.008,	!- Central Cooling Design Supply Air Humid:	
0.008,	!- Central Heating Design Supply Air Humid:	
designday,	!- Cooling Supply Air Flow Rate Method	
,	!- Cooling Supply Air Flow Rate {m3/s}	
,	!- Cooling Supply Air Flow Rate Per Floor i	2 for baseline window run this
,	!- Cooling Fraction of Autosized Cooling St	z, for baseline window run, this
· · ·	!- Cooling Supply Air Flow Rate Per Unit Co	field keeps autosize for other
designday,	!- Heating Supply Air Flow Rate Method	neid keeps autosize, ioi other
,	!- Heating Supply Air Flow Rate {m3/s}	runs this field replaces with
,	!- Heating Supply Air Flow Rate Per Floor i	runs, uns neid replaces with
,	- Heating Fraction of Autosized Heating Si	7979 19
,	- Heating Fraction of Autosized Cooling St	
,	- Heating Supply Air Flow Rate Per Unit Ho	
ZoneSum,	- System Dutdoor Air Method	
0.5,	2000 Maximum Dutdoor Air Fraction {dime	
CoolingDesignCapacity,	- Cooling Design Capacity Method	
autosize,	<pre>!- Cooling Vesign Capacity {W}</pre>	
7979.19, ~	<pre>t- Cooling Design Capacity {W}</pre>	
,	- Cooling Design Capacity Per Floor Area	3 for baseline window run this
, NastingDesignCapacity	Fraction of Autosized Cooling Design Cap A Heating Design Capacity Mathad	5, for baseline window run, this
Heatingvesigncapacity,	- Heating Design Capacity Method	field keeps autosize for other
15122 00 S	- Heating Design Capacity (W)	neia keeps aatosize, ior other
19123.09,	- Heating Design Capacity (W)	runs this field replaces with
,	 Heating vesign capacity for floor Area Fraction of Autocized Heating Decign Cap 	rans, and nera replaces with
2	 Fraction of nucosized nearing Design ca Fentral Conling Canacity Control Method 	15123.09
,	. Seneral obstring sapacity concruit Method	

AirTerminal:SingleDuct:Un	controlled,	A for baseline window run, this
ZoneDirectAir_unit1,	t- Name	+, for baseline window run, this
always_avail,	!- Availability Schedule Name	field keeps autosize for other
Zone Inlet Node_unit1,	!- Zone Supply Air Node Name	neia keeps aatosize, tor other
autosize;	Maximum Air Flow Rate {m3/s}	runs, this field replaces with 0.563
0.563; <	!- Maximum Air Flow Rate {m3/s}	

Coil:Cooling:DX:SingleSpeed, DX Cooling Coil_unit1, !- Name always_avail, Availability Schedule Name autosize, Pross Rated Total Cooling Capacity {V} 10628.64, Gross Rated Total Cooling Capacity {V} autosize, Gross Rated Sensible Heat Ratio 0.753625, Gross Rated Sensible Heat Ratio 2.70, Gross Rated Sensible Heat Ratio 2.70, Rated Air Flow Rate {m3/s} Rated Air Flow Rate {m3/s} , Rated Air Flow Rate {m3/s} , Rated Air Flow Rate {m3/s} , Rated Evaporator Fan Power Per Volume Cooling Coil Air Inlet Node_unit1, !- Air Inlet Node Name Heating Coil Air Inlet Node_unit1, !- Air Outlet Node Name Cool-Cap-FT, !- Total Cooling Capacity Function of Tem ConstantCubic, !- Total Cooling Capacity Function of Fio ConstantCubic, !- Total Cooling Capacity Function of Fio ConstantCubic, !- Energy Input Ratio Function of Tempera ConstantCubic, !- Part Load Fraction Correlation Curve N	 5, for baseline window run, this field keeps autosize, for other runs, this field replaces with 10628.64 6, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.753625 7, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.753625
Fan:OnOff, Supply Fan_unit1,!- Name - Availability Schedule 0.7,0.7,!- Availability Schedule 9.7,400,!- Fan Total Efficiency 400,400,!- Pressure Rise {Pa} autosize,autosize,!- Maximum Flow Rate {m3/s} 0.8,0.8,!- Motor Efficiency 1,1,!- Motor In Airstream Fra air loop inlet node_unit1, !- Air Inlet Node Name cooling coil air inlet node_unit1, !- Air Outlet ,,!- Fan Power Ratio Functi !- Fan Efficiency Ratio F !- Fan Efficiency Ratio F !- End-Use Subcategory	8, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.568

AirLoopHVAC,	9, for baseline window run, this
, !- Controller List Name	field keeps autosize, for other
availability list, <u>!- Availability</u> Manager List Name	runs this field replaces with
autosize, - Vesign Supply Air Flow Rate {m3, 0.563 Design Supply Air Flow Rate {m3/s}	runs, this held replaces with
Air Loop Branches_unit1, !- Branch List Name	0.563
, !- Connector List Name Air Loop Inlet Node unit1. !- Supplu Side Inlet Node Name	
Return Air Mixer Outlet_unit1, !- Demand Side Outlet Node	
Zone Equipment Inlet Node_unit1, !- Demand Side Inlet Node Air Loop Outlet Node unit1: !- Supplu Side Outlet Node Nam	
HLL UBJECTS IN CLHSS: HIRLOUPHOHC:UNITHRYHEHT	
AirLoopHVAC:UnitaryHeatCool,	10, for baseline window run, this
alwaus avail. !- Name	field keeps autosize, for other
air loop inlet node_unit1, !- Unitary System Air Inlet Node	runs this field replaces with
air loop outlet node_unit1, !- Unitary System Air Outlet No fan cucle. !- Supplu Air Fan Operating Mode Su	
80, !- Maximum Supply Air Temperature	0.563
autosize, !- Cooling Supply Air Flow Rate (m	
autosize, t- Heating Supply Air Flow Rate (m	
0.563, +- Heating Supply Air Flow Rate (m3/s)	
living_unit1, !- Controlling Zone or Thermostat	
Fan:OnOff, !- Supply Fan Object Type	11 for baseline window run this
BlowThrough, !- Suppy rail name	11, for baseline window run, this
Coil:Heating:gas, !- Heating Coil Object Type	field keeps autosize, for other
Main gas Heating Coll_unit1, !- Heating Coll Name Coil:Cooling:DX:SingleSpeed. !- Cooling Coil Object Tupe	runs, this field replaces with
DX Cooling Coil_unit1, !- Cooling Coil Name	0.563
None; !- Dehumidification Control Type	0.303
Branch, Air Leon Main Branch unit1 to Name	
autosize, t- Maximum Flow Rate (m3/s)	
0.563, Maximum Flow Rate (m3/s)	
AirLoopHVAC:UnitaryHeatCool, ! Component 1 Object Type	12, for baseline window run, this
ACandF_unit1,	field keeps autosize, for other
Air loop outlet node_unit1, !- Component 1 Outlet Node Name	rung this field replaces with
ACTIVE;	runs, this held replaces with
* ALL OBJECTS IN CLASS: OUTDOORAIR:NODE	0.563
OutdoorAir:Node, outdoor air node_unit1, !- Name 1. !- !- Hoight Aboue Ground (m)	
·, · · · · · · · · · · · · · · · · · ·	13. for baseline window run, this
! ALL OBJECTS IN CLASS: COIL:HEATING:GAS	field keeps autosize for other
Coil:Heating:Gas,	neiu keeps autosize, ior other
Main gas heating coil_unit1, !- Name alwaus avail. !- Availahility Schedule Name	runs, this field replaces with
0.78, !- Gas Burner Efficiency	16720.73
autosize, !- Nominal Capacity {N} 16720.73, !- Nominal Capacity {N}	
heating coil air inlet node_unit1, !- Air Inlet Node Name	
air loop outlet node_unit1; !- Air Outlet Node Name	

Pump:VariableSpeed,	
Mains Pressure_unit1,	t- Name
Mains Inlet Node_unit1	, !- Inlet Node Name Node unit1 Outlet Node Name
	to Decign Maximum Flow Rate (m2/s)
9, 999999	t- Design Maximum Flow Rate {
179352.	- Design Pump Head (Pa) 14, for baseline window run, this
autosize,	!- Design Power Consumption {
0.9,	!- Motor Efficiency field keeps autosize, for other
0,	!- Fraction of Motor Ineffici rups, this field replaces with
0,	!- Coefficient 1 of the Part
1,	!- Coefficient 2 of the Part 0,000009
0,	- Coefficient 3 of the Part
U,	t- Coetticient 4 of the Part Load I
U, Intermittent:	- Design Milinum Flow Rate (No/S)
incernitcent,	- rump concros Type
WaterHeater:Mixed,	• H
Water Heater_Uniti,	t- Name • Tapk Holumo (m2)
0.190841372,	t- lank volume (ma)
unw_secpc,	:- Secholic Temperature Schedul #- Deadband Temperature Differe
2, 50	• Mavinum Tomporature Linit /C
Cucle.	+ Heater Control Tune
autosize.	t- Heater Maximum Capacitu
11137.8.	t- Heater Maximum Capacity 15, for baseline window run, this
0,	1- Heater Minimum Capacity field known outpoing for other
0,	!- Heater Ignition Minimum HEIG REEPS autoSIZE, for Other
,	!- Heater Ignition Delay {s runs this field replaces with
naturalgas,	!- Heater Fuel Type
0.8,	!- Heater Thermal Efficienc <mark> 11137.8</mark>
,	!- Part Load Factor Curve N
,	!- Off Cycle Parasitic Fuel Con
,	!- Off Cycle Parasitic Fuel Typ
,	!- Uff Cycle Parasitic Heat Fra
,	t- Un Cycle Parasitic Fuel Cons t- Un Cycle Parasitic Fuel Type
,	:- UN GULE FARASILI FUEL NUPE ♦_ An Cuclo Descritic Nost Exac
, Zone	 In Syste Farability for the formation Ambient Temperature Indicate
zone,	!- Ambient Temperature Schedule
, livina unit1.	- Ambient Temperature Zone Nam
,	!- Ambient Temperature Outd 16 for baseline window run this
1.3306616,	t- Off Cycle Loss Coefficie
1,	!- Off Cycle Loss Fraction field keeps autosize, for other
1.3306616,	t- On Cycle Loss Coefficien
1,	!- On Cycle Loss Fraction to FUNS, THIS TIELD REPLACES WITH
0,	!- Peak Use Flow Rate {m3/s
,	- Use Flow Rate Fraction Storedeedee
, Hator Hoator uso iplo	t pode upiti te Uco Side Inlet No
Water Heater use Infe	et node unitit - Use Side Autlet
1.	+ lise Side Effectiveness
.,	!- Source Side Inlet Node Name
	!- Source Side Outlet Node Name
i,	t- Source Side Effectiveness
autosize,	t− Use Side Design Flow Rate {m
0.000009,	!- Use Side Design Flow Rate {m
0,	!- Source Side Design Flow Rate
1.5;	t- Indirect Water Heating Recov

PlantLoop,		
DHW Loop_unit1,	!- Name	
Water,	!- Fluid Type	17 for bacaling window run, this
,	!- User Defined Fluid Type	17, for baseline window run, this
DHW Loop Operation unit1	,!- Plant Equipment Operatio	field keeps autosize for other
DHW Supply Outlet Node u	nit1, !- Loop Temperature	neiu keeps autosize, ioi otnei
100,	!- Maximum Loop Temperature	runs this field replaces with
0,	t- Minimum Loop Temperature	runs, and neid replaces with
autosize,	!- Maximum Loop Flow Rate	0.000009
0.000009,	!- Maximum Loop Flow Rate	
0,	!- Minimum Loop Flow Rate {	m3/s}
autocalculate,	<pre>!- Plant Loop Volume {m3}</pre>	
0.006851,	<pre>!- Plant Loop Volume {m3}</pre>	
Mains Inlet Node_unit1,	!- Plant Side Inlet Node Na	IMP
DHW Supply Outlet Node_u	nit1, !- Plant Side Outlet	18 for baseline window run, this
DHW Supply Branches_unit	1, !- Plant Side Branch Li:	10, 101 baseline window run, this
DHW Supply Connectors_un	it1, !- Plant Side Connect	field keeps autocalculate for
DHW Demand Inlet Node_un	it1, !- Demand Side Inlet	
Mains Makeup Node unit1,	!- Demand Side Outlet Node	other runs, this field replaces
DHW Demand Branches unit	1, !- Demand Side Branch L:	
DHW Demand Connectors un	it1, !- Demand Side Connect	with 0.006851
Optimal;	!- Load Distribution Scheme	
• •		

Minneapolis			Houston		
	Start	End		Start	End
Winter	November 1	January 31	Winter	December 1	February 28
Spring	February 1	April 30	Spring	March 1	May 31
Summer	May 1	July 31	Summer	June 1	August 31
Autumn	August 1	October 31	Autumn	September 1	November 30
Heating	September 15	March 16	Heating	October 16	April 14
Cooling	March 17	September 14	Cooling	April 15	October 15

Table D1. Cooling and Heating Season Definition for Heating and Cooling EP

Appendix E: ESCalc XML Schema

ESCalc XML schema describes interface between AERCalc and calculation module ESCalc.

```
<?xml version="1.0" encoding="UTF-8"?>

    edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National

Laboratory) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.1" vc:minVersion="1.1">
  <xs:element name="ESCalc">
     <xs:complexType>
       <xs:sequence>
         <xs:element name="Input" minOccurs="0">
            <xs:annotation>
              <xs:documentation>ESCalc Inputs</xs:documentation>
            </xs:annotation>
            <xs:complexType>
              <xs:sequence>
                <xs:element name="Selection" maxOccurs="3">
                   <xs:annotation>
                     <xs:documentation>Selection of calculation type. EA: Adiabatic Windows Run; EB: Baseline WIndows Runb;
ES: Window Attachment Run</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                     <xs:restriction base="xs:string">
                        <xs:minLength value="2"/>
                        <xs:maxLength value="2"/>
                     </xs:restriction>
                   </xs:simpleType>
                 </xs:element>
                <xs:element name="Climate">
                   <xs:annotation>
                     <xs:documentation>Selection of climate. Cooling: Houston climate data and assumptions; Heating:
Minneapolis climate data and assumptions</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                     <xs:restriction base="xs:string">
                        <xs:minLength value="7"/>
                        <xs:maxLength value="7"/>
                     </xs:restriction>
                   </xs:simpleType>
                 </xs:element>
                <xs:element name="AttachmentType" minOccurs="0">
                   <xs:annotation>
                      <xs:documentation>Selection of Attachment type. RollerShades; CellularShades; SolarScreens;
AppliedFilms; VenetianBlinds; VerticalBlinds; WindowPanels; and PleatedShades</xs:documentation>
                   </xs:annotation>
                   <xs:simpleType>
                     <xs:restriction base="xs:string">
                        <xs:minLength value="12"/>
                        <xs:maxLength value="14"/>
                     </xs:restriction>
                   </xs:simpleType>
                </xs:element>
                <xs:element name="NoCSVFiles" type="xs:integer">
                   <xs:annotation>
                     <xs:documentation>Number of supplied CSV IDF files. 1 file for EA, EB, or ES for fixed attachments; 2 files
for 1D shades; and 7 files for 2D shades</xs:documentation>
                   </xs:annotation>
                </xs:element>
                 <xs:element name="CSVFile" maxOccurs="7">
                   <xs:complexType>
                     <xs:sequence>
                        <xs:element name="CSVFileName" type="xs:string">
                          <xs:annotation>
                            <xs:documentation>Arbitrary CSV File name for each E+ run</xs:documentation>
                          </xs:annotation>
                        </xs:element>
                        <xs:element name="DeploymentState" minOccurs="0">
                          <xs:annotation>
```

<xs:documentation>Deployment State: Open (only for 1-D and 2-D shades), Half (only for 1-D and 2-D shades), or Full (for all shades)</xs:documentation> </xs:annotation> <xs:simpleType> <xs:restriction base="xs:string"> <xs:minLength value="4"/> <xs:maxLength value="4"/> </xs:restriction> </xs:simpleType> </xs:element> <xs:element name="SlatAngle" type="xs:integer" minOccurs="0"> <xs:annotation> <xs:documentation>Slat Angle for Louvered Blinds: 0, -45, 45, 90</xs:documentation> </xs:annotation> </xs:element> </xs:sequence> </xs:complexType> </xs:element> </xs:sequence> </xs:complexType> </xs:element> <xs:element name="Output" minOccurs="0"> <xs:annotation> <xs:documentation>ESCalc Outputs</xs:documentation> </xs:annotation> <xs:complexType> <xs:sequence> <xs:element name="E_HVAC" type="xs:float"/> <xs:element name="EP" type="xs:float" minOccurs="0"/> </xs:sequence> </xs:complexType> </xs:element> </xs:sequence> </xs:complexType> </xs:element> </xs:schema>

The following Figure shows schematic presentation of the Schema.

Figure E1. Schematic Presentation of the ESCalc Schema

Examples of the schema for fixed window attachment and venetian blinds products are shown next, respectively:

Example of a fixed window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
  <Input>
    <Selection>ES</Selection>
    <Climate>Houston</Climate>
    <AttachmentType>SolarScreens</AttachmentType>
    <NoCSVFiles>1</NoCSVFiles>
    <CSVFile>
      <CSVFileName>Test-File-Name-1_SS</CSVFileName>
    </CSVFile>
  </Input>
  <Output>
    <E_HVAC>115.92</E_HVAC>
    <EP>53.2</EP>
  </Output>
</ESCalc>
```

Example of venetian blind window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
  <Input>
    <Selection>ES</Selection>
    <City>Minneapolis</City>
    <AttachmentType>VenetianBlinds</AttachmentType>
    <NoCSVFiles>7</NoCSVFiles>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Open_0</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>0</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Full_-45</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>-45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Full_45</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Full_90</CSVFileName>
      <DeploymentState>Full</DeploymentState>
      <SlatAngle>90</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2 VB Half -45</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>-45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Half_45</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>45</SlatAngle>
    </CSVFile>
    <CSVFile>
      <CSVFileName>Test-File-Name-2_VB_Half_90</CSVFileName>
      <DeploymentState>Half</DeploymentState>
      <SlatAngle>90</SlatAngle>
    </CSVFile>
  </Input>
  <Output>
    <E_HVAC>127.32</E_HVAC>
    <EP>34.6</EP>
  </Output>
</ESCalc>
```

Appendix F: EnergyPlus Window configuration file for baseline window B

```
!- Window_configuration_baseline.inc
!- There are 4 seperated windows on each floor each orientation
 FenestrationSurface:Detailed,
  Window_ldf1_1_Bot.unit1, !- Name
  Window,
                  !- Surface Type
                                 !- Construction Name
  AERC_Doubleclear_Baseline,
  Wall_ldf1_1.unit1, - !- Building Surface Name
                !- Outside Boundary Condition Object
                !- View Factor to Ground
                !- Shading Control Name
  AERC_Wood_Frame,
                           !- Frame and Divider Name
                !- Multiplier
  1,
  4.
                !- Number of Vertices
  2.50000000000,0.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m}
  3.823210000000,0.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m}
  3.823210000000,0.00000000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m}
  2.50000000000,0.0000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m}
 FenestrationSurface:Detailed,
  Window_ldf1_1_Top.unit1, !- Name
                  !- Surface Type
  Window,
                                !- Construction Name
  AERC_Doubleclear_Baseline,
                    !- Building Surface Name
  Wall_ldf1_1.unit1,
                !- Outside Boundary Condition Object
                !- View Factor to Ground
                !- Shading Control Name
  AERC_Wood_Frame,
                           !- Frame and Divider Name
                !- Multiplier
  1,
                !- Number of Vertices
  4.
  2.50000000000,0.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m}
  3.823210000000,0.00000000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m}
  3.823210000000,0.00000000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m}
  2.50000000000,0.00000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m}
 FenestrationSurface:Detailed,
  Window_ldf1_2_Bot.unit1, !- Name
                   !- Surface Type
  Window,
  AERC_Doubleclear_Baseline,
                                - !- Construction Name
  Wall_ldf1_1.unit1, !- Building Surface Name
                !- Outside Boundary Condition Object
                !- View Factor to Ground
                !- Shading Control Name
                           !- Frame and Divider Name
  AERC_Wood_Frame,
  1,
                !- Multiplier
                !- Number of Vertices
  4.
  6.60000000000,0.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m}
  7.923210000000,0.00000000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m}
  7.923210000000,0.00000000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m}
  6.60000000000,0.0000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m}
 FenestrationSurface:Detailed,
  Window_ldf1_2_Top.unit1, !- Name
  Window,
                   !- Surface Type
  AERC_Doubleclear_Baseline,
                                !- Construction Name
                     !- Building Surface Name
  Wall_ldf1_1.unit1,
                I- Outside Boundary Condition Object
                !- View Factor to Ground
                !- Shading Control Name
  AERC_Wood_Frame,
                           !- Frame and Divider Name
                !- Multiplier
  1,
                !- Number of Vertices
  4.
  6.60000000000,0.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m}
  7.923210000000,0.00000000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m}
  7.923210000000,0.00000000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m}
  6.60000000000,0.00000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m}
```

FenestrationSurface:Detailed, Window_ldb1_1_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_ldb1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4. 8.00000000000,10.558580000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 6.67679000000,10.55858000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 6.67679000000,10.55858000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_ldb1_1_Top.unit1, !- Name Window, - Surface Type AERC_Doubleclear_Baseline, - Construction Name Wall_ldb1_1.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** !- Frame and Divider Name AERC_Wood_Frame, !- Multiplier 1, !- Number of Vertices 4 8.00000000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m} 6.676790000000,10.558580000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 6.67679000000,10.55858000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 8.0000000000,10.55858000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldb1_2_Bot.unit1, !- Name Window, !- Surface Type . !- Construction Name AERC_Doubleclear_Baseline, Wall_Idb1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4. 3.90000000000,10.558580000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 2.57679000000,10.55858000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.55858000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window_ldb1_2_Top.unit1, !- Name - Surface Type Window, !- Construction Name AERC_Doubleclear_Baseline, Wall_Idb1_1.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name 1, !- Multiplier !- Number of Vertices 4. 3.90000000000,10.558580000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 2.57679000000,10.558580000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.55858000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr1_1_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, ... !- Construction Name Wall_sdr1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground

!- Shading Control Name AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, 4. **!- Number of Vertices** 10.558580000000,2.50000000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr1_1_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_sdr1_1.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC_Wood_Frame, !- Multiplier 1. **!- Number of Vertices** 4. 10.558580000000,2.50000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.5000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr1_2_Bot.unit1, !- Name Window, !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name !- Building Surface Name Wall_sdr1_1.unit1, I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, !- Number of Vertices 4 10.558580000000,6.60000000000,0.60000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 10.55858000000,6.6000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr1_2_Top.unit1, !- Name Window, - Surface Type - Construction Name AERC_Doubleclear_Baseline, Wall_sdr1_1.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC Wood Frame. !- Multiplier 1, !- Number of Vertices 4. 10.558580000000,6.60000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,6.6000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl1_1_Bot.unit1, !- Name !- Surface Type Window, . !- Construction Name AERC_Doubleclear_Baseline, Wall_sdl1_1.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 0.0000000000,8.0000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,0.6000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,6.67679000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} 0.00000000000,8.0000000000,1.273210000000; !- X,Y,Z ==> Vertex 4 {m}

FenestrationSurface:Detailed, Window_sdl1_1_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_sdl1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 0.0000000000,8.0000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,1.35000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,6.67679000000,2.023210000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,8.000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl1_2_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_sdl1_1.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, !- Number of Vertices 4 0.0000000000,3.9000000000,0.6000000000, !- X,Y,Z ==> Vertex 1 {m} 0.00000000000,2.576790000000,0.60000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,2.57679000000,1.273210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_sdl1_2_Top.unit1, !- Name Window, . !- Surface Type . !- Construction Name AERC_Doubleclear_Baseline, Wall_sdl1_1.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1. **!- Number of Vertices** 4. 0.0000000000,3.9000000000,1.35000000000, !- X,Y,Z ==> Vertex 1 {m} 0.00000000000,2.576790000000,1.350000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,3.9000000000,2.023210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window_ldf2_1_Bot.unit1, !- Name Window, !- Surface Type !- Construction Name AERC_Doubleclear_Baseline, Wall_ldf1_2.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name 1, !- Multiplier !- Number of Vertices 4. 2.50000000000,0.0000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 3.823210000000,0.00000000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 3.823210000000,0.00000000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 2.50000000000,0.0000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldf2_1_Top.unit1, !- Name !- Surface Type Window, AERC_Doubleclear_Baseline, !- Construction Name Wall_Idf1_2.unit1, !- Building Surface Name

- View Factor to Ground

!- Shading Control Name AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, 4. **!- Number of Vertices** 2.50000000000,0.0000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 3.823210000000,0.00000000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 3.823210000000,0.00000000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 2.50000000000,0.0000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldf2_2_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall_ldf1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC_Wood_Frame, !- Multiplier 1. **!- Number of Vertices** 4. 6.60000000000,0.0000000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 7.923210000000,0.00000000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 7.923210000000,0.00000000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 6.60000000000,0.0000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldf2_2_Top.unit1, !- Name Window, . !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name !- Building Surface Name Wall_ldf1_2.unit1, !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier 1, !- Number of Vertices 4 6.60000000000,0.00000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 7.9232100000000,0.00000000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 7.923210000000,0.0000000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 6.60000000000,0.0000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldb2_1_Bot.unit1, !- Name Window, !- Surface Type **!-** Construction Name AERC_Doubleclear_Baseline, Wall_Idb1_2.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC Wood Frame. !- Multiplier 1, !- Number of Vertices 4 8.00000000000,10.558580000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 6.67679000000,10.55858000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 6.67679000000,10.55858000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 8.00000000000,10.55858000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_ldb2_1_Top.unit1, !- Name !- Surface Type Window, AERC_Doubleclear_Baseline, !- Construction Name Wall_ldb1_2.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 8.00000000000,10.558580000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 6.676790000000,10.558580000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 8.00000000000,10.558580000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m}

FenestrationSurface:Detailed, Window_ldb2_2_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name Wall_ldb1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4. 3.90000000000,10.558580000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 2.57679000000,10.55858000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.55858000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} FenestrationSurface:Detailed, Window_ldb2_2_Top.unit1, !- Name Window, - Surface Type AERC_Doubleclear_Baseline, - Construction Name Wall_ldb1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** !- Frame and Divider Name AERC_Wood_Frame, !- Multiplier 1, !- Number of Vertices 4 3.90000000000,10.558580000000,3.950000000000, !- X,Y,Z ==> Vertex 1 {m} 2.576790000000,10.558580000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 2.57679000000,10.558580000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 3.90000000000,10.558580000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr2_1_Bot.unit1, !- Name Window, !- Surface Type - Construction Name AERC_Doubleclear_Baseline, Wall_sdr1_2.unit1, !- Building Surface Name **!- Outside Boundary Condition Object** !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, !- Frame and Divider Name !- Multiplier 1, **!- Number of Vertices** 4. 10.558580000000,2.50000000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,3.200000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed. Window_sdr2_1_Top.unit1, !- Name - Surface Type Window, !- Construction Name AERC_Doubleclear_Baseline, Wall_sdr1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name 1, !- Multiplier !- Number of Vertices 4. 10.558580000000,2.5000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,3.823210000000,3.950000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,3.823210000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,2.50000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr2_2_Bot.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, ... !- Construction Name Wall_sdr1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground

1, 4.

Window,

1.

4.

Window,

1,

4

Window,

1,

4

Wall_sdr1_2.unit1,

!- Shading Control Name AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier **!- Number of Vertices** 10.558580000000,6.60000000000,3.20000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,3.20000000000, !- X,Y,Z ==> Vertex 2 {m} 10.558580000000,7.923210000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 10.558580000000,6.6000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdr2_2_Top.unit1, !- Name !- Surface Type AERC_Doubleclear_Baseline, **!-** Construction Name !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC_Wood_Frame, !- Multiplier **!- Number of Vertices** 10.558580000000,6.6000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 10.558580000000,7.923210000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m} 10.55858000000,6.6000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl2_1_Bot.unit1, !- Name !- Surface Type AERC Doubleclear Baseline, **!-** Construction Name Wall_sdl1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC_Wood_Frame, **!-** Frame and Divider Name !- Multiplier !- Number of Vertices 0.0000000000,8.000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.67679000000,3.2000000000, !- X,Y,Z ==> Vertex 2 m 0.0000000000,6.67679000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m} 0.0000000000,8.0000000000,3.873210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl2_1_Top.unit1, !- Name . !- Surface Type - Construction Name AERC_Doubleclear_Baseline, Wall_sdl1_2.unit1, !- Building Surface Name !- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name !-** Frame and Divider Name AERC Wood Frame. !- Multiplier !- Number of Vertices 0.0000000000,8.000000000,3.95000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,6.676790000000,3.95000000000, !- X,Y,Z ==> Vertex 2 {m} 0.0000000000,6.67679000000,4.623210000000, !- X,Y,Z ==> Vertex 3 {m}

0.0000000000,8.0000000000,4.623210000000; !- X,Y,Z ==> Vertex 4 {m} FenestrationSurface:Detailed, Window_sdl2_2_Bot.unit1, !- Name !- Surface Type Window, . !- Construction Name AERC_Doubleclear_Baseline, Wall_sdl1_2.unit1, !- Building Surface Name I- Outside Boundary Condition Object !- View Factor to Ground **!- Shading Control Name** AERC Wood Frame, **!-** Frame and Divider Name !- Multiplier 1, 4 **!- Number of Vertices** 0.0000000000,3.9000000000,3.2000000000, !- X,Y,Z ==> Vertex 1 {m} 0.0000000000,2.57679000000,3.2000000000, !- X,Y,Z ==> Vertex 2 {m} 0.00000000000,2.57679000000,3.873210000000, !- X,Y,Z ==> Vertex 3 {m}

FenestrationSurface:Detailed, Window_sdl2_2_Top.unit1, !- Name Window, !- Surface Type AERC_Doubleclear_Baseline, !- Construction Name Wall_sdl1_2.unit1, !- Building Surface Name
!- View Factor to Ground
I- Shading Control Name
AERC Wood Frame. !- Frame and Divider Name
1. !- Multiplier
4. I- Number of Vertices
0.0000000000.3.9000000000.3.95000000000. !- X.Y.Z ==> Vertex 1 {m}
0.00000000000, 2.57679000000, 3.95000000000,
0.00000000000, 2.57679000000, 4.623210000000, 1- X,Y,Z ==> Vertex 3 {m}
0.0000000000003.9000000000.4.6232100000000000000000000000000000000000

Appendix G: Energy Use for Adiabatic and Baseline Window Runs

In AERCalc 1.1 baseline energy use is calculated for adiabatic, E_A and baseline window cases, E_B . are calculated once and applied for calculations of EP_H and EP_C .

Adiabatic Windows Runs

The pre-calculated values for E_A are:

Houston: E_A = 58.9154 GJ

Minneapolis: E_A = 90.5778 GJ

Baseline Windows Runs

The pre-calculated values for E_B are:

Houston: E_B = 116.2636 GJ

Minneapolis: E_B = 122.8133 GJ