

Complex Glazing Summary

Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell

Windows & Daylighting Research Group March 2008

Software Tools Overview

WINDOW6

Specular vs Complex Glazings

- WINDOW4 and WINDOW5 have focused on specular glazings. These are products that are nondiffusing, such as clear or coated glass.
- WINDOW6 can handle 'complex glazing devices'

Component Characterization

- Visible & Solar
- Far Infrared

- Conduction
- Convection

Complex Shading Device Types

Diffuse • Patterned glass • Translucent interlayers • Fritted glass	Woven shades • <u>Complex weaves</u> • <u>Bi-color threads</u>
Plexiglass/Acrylic • Honeycombs • Prismatic panels	Non-woven Planar Shades • Roller shades • Solid Vinyl shades
Slat shading • Diffuse • Specular • Transparent	• <u>Woven material with pleated,</u> non-planar shapes
Square weave products • Bug screens • Simple, uniform weave	Honeycomb Shade
Other products	

Optical Measurements and Model

- Integrating Sphere Measurement
- Angular Scan Measurement
- Radiosity Model
- Ray Tracing

Optical – Radiosity Model

- Calculation method based on defined geometry, diffuse component materials only
- Large effort to develop model, quick calculations
- Venetian blind slat example:

Optical – Direct Scan

- Scanning all scattering directions mechanically
- Data stored in CGDB without model (except compression)

Optical–Integrating Sphere

- Total hemispherical data
- Limited BTDF data
- Might be enough for isotropic samples

Optical–Ray Trace

- Material properties obtained with experimental methods.
- CAD model using measured material properties.
- Data stored explicitly without any model.

Ray Traced Geometric / Optical model

Product Location

Thermal Models

- ISO 15099
- Convective Scalar
- Waterloo (Integral venetian blind)
- Waterloo (Interior shade)

Thermal – ISO 15099

- Chapter 7, Shading Devices
- Glazing cavity is divided into 3 sections
- Minimal effect of openness of shade and gaps at top and bottom of shade

Thermal – Convective Scalar

Thermal – Waterloo Integral

- Specific to Venetian Blinds
- Convection only
- Radiation is calculated based on real geometry

Thermal – Waterloo Interior

- Based on CFD correlations
- Developed for ASHRAE
- Convection only
- Radiation is calculated based on real geometry

Thermal – CFD

- Detailed calculation to verify model parameters or develop new models
- Calculation intensive

Material, Layer, System

Diffuse Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Diffuse Patterned glass Translucent interlayers Fritted glass 	Material Characterization • Angle scan Layer Characterization • Angle Scan • Integrating sphere (possibly) • W6 Frit model (Implemented)	Same as WINDOW 5

Plexiglass / Acrylic Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
Plexiglass/Acrylic	Material Characterization:	Issues
HoneycombsPrismatic panels	Standard nonscattering test for base material	 Need better thermal conductivity (Keff) of layers
	 Layer Characterization W6 Radiosity Model (To be developed) Raytrace 	• Treat as a solid layer

Slat Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Slat shading (such as venetian blind) Diffuse Specular Transparent 	Material Characterization • Measure slat material Layer Characterization • W6 Radiosity model (Implemented) • W6 Radiosity model (Implemented) • W6 Radiosity model (Implemented) • The former of the specular slats	 Interior shading systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) Waterloo/Nusselt (not yet implemented) Integral (between glass) shading systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) Waterloo (Implemented) Exterior shading systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) ISO 15099 (Implemented) Sensitivity studies to compare the results between models

Square Weave Products

Woven, Non-uniform Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Woven shades Complex weaves (not square, not uniform) Bi-color threads Roller shades 	 Material Characterization Angle scan Integrating sphere (maybe) Layer Characterization Angle scan Integrating sphere (maybe) Generalized W6 Radiosity bug screen model to accept any geometry (To be developed) Ray trace (to determine accuracy of using the simple bug screen model for complex, non-uniform weave patterns) 	 Interior systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) Waterloo/Nusselt (not yet implemented) Integral (between glass) systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) Waterloo (??) (Implemented) Exterior systems: ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) ISO 15099 (Implemented) Convective Scalar – LBL (Implemented) ISO 15099 (Implemented) Thermal performance depends on gaps between shades and window frame (top, bottom, left and right)

Non-Woven Planar Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
Non-woven Planar shades • Solid vinyl shade	Material Characterization Angle scan of material 	 Issues: Is material IR transparent Thermal performance depends on gaps between shades and window frame (top, bottom, left and right) Convective scalar may be most appropriate

Drapes

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Drapes Woven material with pleated, non-planar shapes 	 Material Characterization Angle scan Layer Characterization Angle scan W6 Radiosity model (To be developed) – maybe Wright / Waterloo ? 	 Issues: Minimal insulation from material Thermal performance depends on gaps between shades and window frame (top, bottom, left and right) Determine material IR transparency Review existing research

Honeycomb Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Honeycomb shade: Geometry of honeycomb depends on how far the shade is "extended" 	 Material Characterization Measure fabric Layer Characterization W6 Radiosity model (To be implemented) Ray trace 	 Issues: Material can be insulating Thermal performance depends on gaps between shades and window frame (top, bottom, left and right) Determine material IR transparency Review existing research

Other Products

Device Type	Optical Characterization & Calculation Method	Thermal Calculation Method
 Other Products Products that do not fall into previous categories (Koester blind) Complex / arbitrary geometries, etc 	 Material Characterization N/A Layer Characterization Develop BSDF (Ray trace, goniometer, etc) 	Issues:

- Any product that currently not has a specific model in WINDOW6, can be defined by a BSDF
- Retrolux Koester blind.
 - Complicated geometry
 - Can be Raytraced or Measured and stored into BSDF format
 - WINDOW6 reads BSDF

Creating Layer Data

- Venetian Blind Model
 - Specify slat angle, slat width, slat spacing and curvature
- Woven Shade Model
 - Specify thread diameter and thread spacing
- Fritted Glass Model
 - Specify coverage percentage
- BSDF-XML Input
 - Specify XML file

Complex Glazing Test Facility

 Provide objective, comparative data on emerging façade technologies in order to understand the risks, benefits, and costs of using such systems in commercial buildings

• Downloadable from our website:

http://windows.lbl.gov/software/window/6