Program Description

A PC Program

WINDOW 6.1 / THERM 6.1 Research Version User Manual

For Analyzing Window Thermal Performance

Windows & Daylighting Group Building Technologies Program Environmental Energy Technologies Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 USA

© Regents of the University of California

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

LBNL-941 September 2006

WINDOW 6.1 / THERM 6.1 Research Version User Manual

Robin Mitchell, Christian Kohler, Joe Klems, Mike Rubin, and Dariush Arasteh Windows and Daylighting Group Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720 <u>http://windows.lbl.gov/software/software.html</u>

> Charlie Huizenga and Tiefeng Yu Center for Environmental Design Research University of California Berkeley, California

> > Dragan Curcija Carli, Inc Amherst, Massachusetts

> > > September 2006

© Regents of the University of California

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Contents

1. Introduction	1-1
1.1. Overview	1-1
1.2. Complex Glazing Features for WINDOW 6	
1.2.1. Overview of Changes from WINDOW 5	1-2
1.3. Complex Glazing Features for THERM 6	
1.3.2. Overview of Changes from THERM 6	1-2
2. Quick Start	2-1
2.1. Make a Venetian Blind	2-1
2.2. Make the Glazing System with the Venetian Blind	
2.3. Glazing System Results	
2.3.1. Results at Normal Incidence	
2.3.2. Results for Multiple Incident Angles	
2.4. Import the Glazing System into THERM	
2.5. Import the THERM files into the WINDOW Frame Library	
2.6. Create a Window	2-17
3. Installation	3-1
3.1. System Requirements	3-1
3.2. Installation Procedures for WINDOW	3-1
3.2.1. Before Installing WINDOW	
3.2.2. Installing WINDOW	
3.3. Installation Problems	
3.3.1. Not enough disk space	
3.3.2. Previous Version Detected	
3.4. Uninstalling WINDOW	
3.5. Installation Procedures for THERM	
3.5.3. Before Installing THERM	
3.5.4. Installing THERM	
4. WINDOW 6 Detailed Description	4-1
4. 1. Preferences	4-2
4.2. Shading Layer Library	4-6
4.2.1. Shading Layer Library List View	4-7
4.2.2. Shading Layer Library Detailed View	4-8
4.3. Shade Material Library	4-19
4.3.1. Shade Material Library List View	
4.3.2. Shade Material Library Detailed View	
4.4. Glass Library	
4.5. Glazing System Library	
4.5.1. Glazing System Library List View	
4.5.2. Glazing System Library Detailed View	4-30

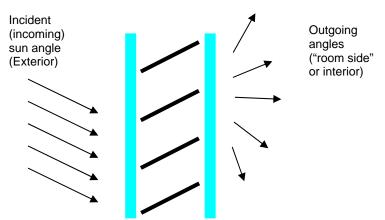
4.6. Calculation Results		-39
4.7. Whole Window Resul	s4-	-45

5. THERM 6 Detailed Description

5-1

5.1. WINDOW 6 Databases with Shading Devices	5-1
5.2. Importing WINDOW 6 Glazing Systems with Interior or Exterior Shading Dev	ices5-3
5.2.1. Insert the Glazing System	5-3
5.2.2. Define the Boundary Conditions	5-5
5.3. Importing WINDOW 6 Glazing Systems with an Integral Shading Device	
5.3.1. Insert the Glazing System	5-9
5.3.2. Define the Boundary Conditions	5-11
5.4. Import the THERM 6 Files into the WINDOW 6 Frame Library	

6. Technical Reference


6-1

6.1. Complex Calculation Methodology Overview	6-1
6.1.1. Matrix Method Calculation Engine	6-1
6.1.2. Venetian Blind Algorithms	6-1
6.1.3. Angular Coordinates (Basis)	6-3
6.1.4. Woven Shade Algorithms	6-5
6.2. ISO 9050 Wavelength Set	6-5
6.3. W6 BTDF Output File Documentation	6-6
6.3.1. W6 Full-Basis (145 angles)	
6.1.2. W6 Half-Basis (73 angles)	6-10
6.1.2. W6 Quarter-Basis (41 angles)	6-12
6.4. Documentation for LBNL BSDF XML spec	6-14
6.4. Standards Files used in WINDOW 6	
6.4.1. W5_NFRC_2003.std	6-21

1.1. Overview

WINDOW 6 and THERM 6 Research Versions are software programs developed at Lawrence Berkeley National Laboratory (LBNL) for use by manufacturers, engineers, educators, students, architects, and others to determine the thermal and solar optical properties of glazing and window systems.

WINDOW 6 and THERM 6 are significant updates to LBNL's WINDOW 5 and THERM 5 computer program because of the added capability to model complex glazing systems, such as windows with shading systems, in particular venetian blinds. Besides a specific model for venetian blinds and diffusing layers, WINDOW 6 also includes the generic ability to model any complex layer if the Transmittance and Reflectance are known as a function of incoming and outgoing angles.

Figure 1-1. Example of the WINDOW 6 modeling capability for venetian blinds.

The algorithms used in these versions of the programs to determine the properties of windows with shading layers are relatively new and should be considered as informative but not definitive.

As such, for windows with shading layers, the results are intended for research purposes only. Pending further validation efforts, results for windows with shading layers should not be used for NFRC certified calculations of design decisions in real buildings.

For further information go to the LBNL website: http://windows.lbl.gov/software

All calculations for products without shading layers are identical to those from WINDOW 5.2.

WINDOW 6 Research Version includes all of the WINDOW 5 capabilities with the addition of shading algorithms from ISO15099 which are incorporated into the program, as well as an extension of those algorithms with the matrix calculation method.

THERM 6 Research Version includes all of the THERM 5 capabilities with the addition of being able to import and model WINDOW 6 glazing systems with shading devices. Those THERM 6 files with shading devices can them be imported into the WINDOW 6 Frame Library and whole windows with shading devices can then be modeled in WINDOW 6.

1.2. Complex Glazing Features for WINDOW 6

1.2.1. Overview of Changes from WINDOW 5

The following list describes changes to the WINDOW 6 Research version, which allows the modeling of complex glazing systems, such as venetian blinds, roller shades, and diffusing glass layers. Some of the more complicated changes are described in detail after this brief list.

Program Settings:

- Preferences:
 - A Matrix Calculation method option has been added for the complex glazing system calculations.

Shading Layer Library:

• A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library.

Glass Library

• It is now possible to define a diffusing layer in the Glass Library, for use in the definition of complex glazing systems.

Glazing System Library

 In the "Layers" section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer.

Frame Library

• The Frame Library can read THERM 6 files that have WINDOW 6 glazing systems with shading devices.

Window Library

• Whole windows can be defined using glazing systems and THERM 6 files with shading devices.

Calculation Results

- WINDOW 6 displays normal incidence results in the Glazing System Library for glazing systems with shadin gdevices.
- In addition, the program now produces detailed angular calculations for complex glazing systems, which can be viewed with an Excel spreadsheet called "MatrixReader.xls", which is included in the installation of WINDOW 6.

1.3. Complex Glazing Features for THERM 6

1.3.2. Overview of Changes from THERM 6

THERM 6 can read databases made in WINDOW 6, and interpret the shading device layers.

This section explains how to construct and calculate a glazing system with a venetian blind in WINDOW, import the glazing system with the blind into a THERM file, and then reimport the calculated THERM file back into WINDOW.

2.1. Make a Venetian Blind

To make a complex glazing layer, in this case a venetian blind, go to the **Shading Layer Library**, either by:

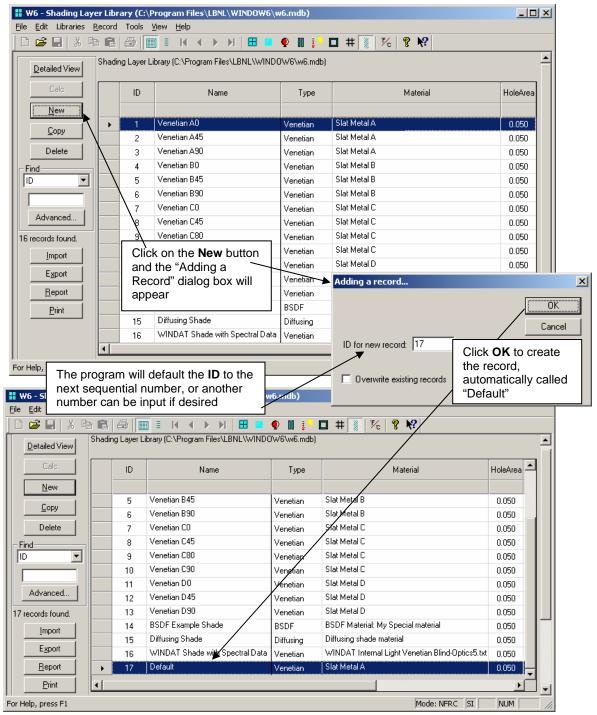
clicking on the Shading Layer Toolbar button

OR

• going to the **Library** menu and selecting the **Shading Layer** choice.

Libraries	
Window	F2
Glazing System	F5
Glass	F3
Gas	F4
Frame	F7
Divider	F8
Environmental Conditions	F6
 Shading Layer 	
Shade Material	

Figure 2-1. Select the Shading Layer choice from the Library menu.


The Shading Layer Library List View will be displayed, as shown below.

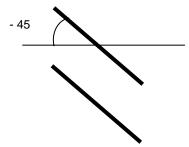
🗅 📂 🖬 🐰 🖣	d R #		🍨 🛛 🛃	🗖 # 🦹 1% 🤋 📢	
Detailed View	Shading Laye	r Library (C:\Program Files\LBNL\WIND))W6\w6.mdb)		
Calc	ID	Name	Туре	Material	HoleArea
New					
Сору	▶ 1	Venetian A0	Venetian	Slat Metal A	0.050
	2	Venetian A45	Venetian	Slat Metal A	0.050
Delete	3	Venetian A90	Venetian	Slat Metal A	0.050
- Find	4	Venetian B0	Venetian	Slat Metal B	0.050
ID 💌	5	Venetian B45	Venetian	Slat Metal B	0.050
	6	Venetian B90	Venetian	Slat Metal B	0.050
	7	7 Venetian CO Venetian Slat Metal C		Slat Metal C	0.050
Advanced	8	Venetian C45	Venetian	Slat Metal C	0.050
6 records found.	9	Venetian C80	Venetian	Slat Metal C	0.050
Import	10	Venetian C90	Venetian	Slat Metal C	0.050
	11	Venetian D0	Venetian	Slat Metal D	0.050
E <u>x</u> port	12	Venetian D45	Venetian	Slat Metal D	0.050
<u>R</u> eport	13	Venetian D90	Venetian	Slat Metal D	0.050
Print	14	BSDF Example Shade	BSDF	BSDF Material: My Special material	0.050
	15	Diffusing Shade	Diffusing	Diffusing shade material	0.050
	16	WINDAT Shade with Spectral Data	Venetian	WINDAT Internal Light Venetian Blind-Optics5.txt	0.050

Figure 2-2. The Shading Layer Library Detail View.

To make a new shading layer in the library, follow the steps below:

- Click the New button
- The program will display the "Adding a Record" dialog box, and default the record **ID** to the next sequential number. This number can be changed if desired.

F igure 2-3. Use New to create a new Shading Layer record.


- While still in List View, with the new record highlighted, either double click on the record or click on the **Detailed View** button to show the detailed view of the record
- In the Shading Layer Library Detailed View, shown below, edit the appropriate fields (for more details about the individual input values in this library, see the Detailed Description section of this document).
 - Change the **Name** from "Default" to something appropriate to what is being defined (in this example "Venetian blind, horizontal, 45 degree tilt).

	ary (C:\Program Files\LBNL\WINDOW6\w6.mdb) ecord Tools <u>V</u> iew <u>H</u> elp	
		I # 🗽 ½ % ? 🕺
List <u>N</u> ew <u>C</u> opy <u>D</u> elete Save	Shading Layer Library ID #: 17 Name: Venetian blind, horizontal, -45 deg tilt Type: Venetian blind, horizontal Material: 30101 Slat Metal A	Change the Name from Default if desired Set Type to "Venetian blind. horizontal"
<u> 3</u> 446	Effective hole area fraction: 0.050	Choose a material from the Material Library.
Input the Slat width, Spacing and Tilt as desired.	Slat width: 22.0 mm Spacing: 18.0 mm spacing	
Thickness is calculated by the program based on slat width and tilt	Tilt: -45 degrees Blind thickness: 15.6 mm Curvature: 0.000 mm # of segments: 5	
	Comment Protected	_
For Help, press F1	Mode: NF	RC SI NUM

Figure 2-4. Use New to create a new Shading Layer record.

- Set the **Type** to "Venetian blind, horizontal" if it isn't already (this will cause the **Venetian Blind** tab to be displayed in the lower section of the library.
- Set the Material to a value from the pull-down list. This pull-down list reflects the entries in the Shading Material Library. The program comes with a few sample sets (see the Detailed Description section in this document for a more detailed explanation of the Shading Material Library). In the sample library supplied with the program, record # 30100 is a venetian blind material with spectral data imported from the WIS program.
- Leave the **Effective hole area fraction** set at the default value of 0.050.

Under the Venetian Blind tab, input the appropriate values for the blind being defined, for Slat width, Spacing, Tilt, Curvature and # of segments. For simplicity, in this example, the Curvature is set to 0 and therefore the # of segments field (the number of segments which will define the curve) is irrelevant. The Blind Thickness field is calculated automatically based on the Tilt value.

F igure 2-5. Venetian blinds at a – 45 degree tilt.

• Click on the List View button and click on the Yes button to Save the changes to the record.

The new venetian blind shading layer is now defined.

2. Quick Start

2.2. Make the Glazing System with the Venetian Blind

To add the venetian blind to a glazing system, go to the Glazing System Library, either by:

- clicking on the Glazing System Toolbar button
- OR
- going to the Library menu and selecting the Glazing System choice.
 - Libraries Window F2 Glazing St E5 Glass E3 F4 Gas Frame F7 Divider E8 Environmental Conditions F6 Shading Layer Shade Material

00

Figure 2-6. Select the Glazing System choice from the Library menu.

In this example, the glazing system to be defined is a double clear IG with a venetian blind on the inside of the glazing system.

To define this glazing system, do the following (starting from the Glazing System Library Detailed View):

- Click the New button to define a new glazing system, set the ID as appropriate, and begin editing the system
- Change the **Name** field from "default" to something appropriate for the glazing system.
- Change the **# Layers** field to "3"
- In this example, the venetian blind will be on the inside of the glazing system, so click on the arrow to the left of the "Glass 3" layer, and change the layer to a "Shade" layer
- For the now defined "Shade 3" layer, click on the double arrows to the right to view the records in the Shading Layer Library.
- Highlight the venetian blind defined in the previous step, and either double click on the highlighted line or click on the **Select** button -- that venetian blind will now be selected for "Shade Layer 3".
- Define the glass layers as desired. If the glass layers and gap widths match the example below, this glazing system will fit inside the sample frame in THERM.

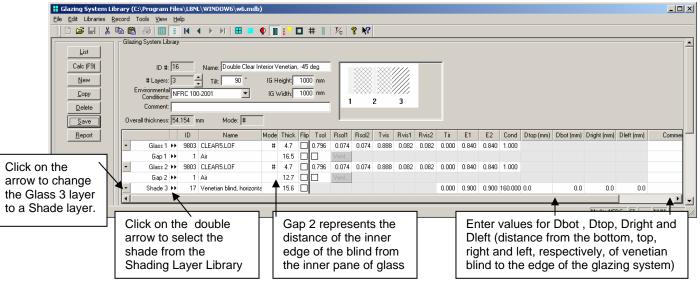
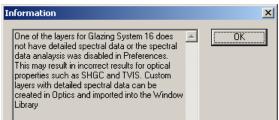


Figure 2-7. Add three layers and define the venetian blind as "Shade Layer 3".

To calculate the results for the glazing system with the integral venetian blind, do the following:

- Go to File/Preferences, and check the settings for "Matrix calculation options" and "Venetian blind calculation methods" as follows (these are the default settings in the program, so they should be correctly set and not require changes):
- Set **Spectral data** to "Condensed spectral data" to save calculation time
- Verify that **Number of visible bands** is set to "5" (the program default)
- Verify that **Number of IR bands** is set to "10" (the program default)
- If detailed angular results are to be viewed in the MatrixReader.xls spreadsheet, in the **Generate full spectrally-averaged matrix for** section, check both the "Solar band" and the "Visible band". This will add a bit of calculation time, but it is not too extreme (several seconds, not minutes).
- Set Angular basis to "W6 quarter-size" to save calculation time
- Under Venetian blind calculation methods, set Solar/Visible range and FIR range to "Uniform Diffuse"

	<u>×</u>	1
	Options Optical Data	
Set Spectral data to "Condensed spectral data" Set Number of visible bands to "5" Set Number of IR bands to "10" For detailed angular results that can be viewed in the MatrixReader.xls spreadsheet, under Generate full spectrally-averaged matrix for, check both "Solar band" and "Visible band"	Unit System □ IP ○ SI □ Use Nominal Heights Glazing system height: 1000.0 mm Nominal window height: 1000.0 mm Nominal window height: 1000.0 mm □ Use Nominal Glass Thickness Display precision: 3 □ Default Frame Absorptance 0.300 □ □ Don't show CR warning messages ✓ Create debug output Matrix calculation options □ Use matrix method for specular systems (glazing systems without shading devices) ◆ Spectral data Condensed spectral data ▼ Number of Visible bands: 5 Number of IB bands: 10 Generate full spectrally-averaged matrix for: ✓ Solar band ✓ Visible band Angular basis W6 quarter-size ✓ Venetian blind calculation methods Solar/Visible range □irectional diffuse ✓ FIR range □irectional diffuse ✓ ✓ WinCOG options Thermal model Scalar convection ✓ OK Cancel Δpply Help	Set Angular basis to "W6 quarter-size" Set both Solar/Visible range and FIR range " to "Directional diffuse" Set Thermal model to "Scalar convection"


Figure 2-8. Make sure the settings in File/Preferences are correct.

In the Glazing System Library Detailed View, click on the Calc button. A dialog box will be displayed showing the calculation steps.

Progress		
Solar Band		
Wavelength 0.70	000 (6/17)	
	Cancel	

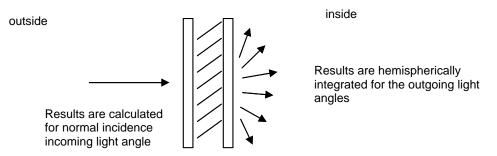
Figure 2-9. A dialog box with the calculation steps will appear during the calcultion.

If the venetian blind material did not have spectral data, which is most likely the case, the program will display the usual warning about not having spectral data for all the layers in the glazing system.

Figure 2-10. A dialog box with a message about the lack of spectral data for one of the layers in the glazing system, in this case the shading layer.

The program will display the results of the glazing system with the shading device in the normal tabs at the bottom of the glazing system. For glazing systems with shading layers, the optical properties are calculated at normal incidence for the incoming angle, and hemispherically integrated for all the outgoing angles. The thermal results are based on the ISO 15099 algorithms for shading systems.

Glazing System Lib	orary (C	:\Program File	es\LBN	L\WINDOW6\w6.md	b)																
ile <u>E</u> dit Libraries <u>R</u> e	ecord `	Tools ⊻iew <u>H</u>	elp																		
🗋 🖻 🔚 🖌 🛙	h 🔒	6	₩	🔹 🕨 🕅 🖽 📒	•	1 <mark>27</mark>	□ #	1½	१ №												
	Glazir	ng System Library	y																		
List																					
Calc (F9)		ID #: 16	5	Name: Double Clear	Interior V	/enetian	, -45 deg					_	-								
New		# Layers: 3		Tilt 90 *		_	1000 mr				///.										
	E										///.										
Copy		Conditions:	FRC 100	0-2001 •	16.1	Width:j	1000 mr	<u>'</u>	1	2	3										
Delete		Comment:							•	-											
Save	Over	rall thickness: 54	4.154 r	nm Mode: #	_																
<u>R</u> eport			ID	Name	Mode	Thick	Flip Ts	l Bsol1	Rsol2	Tvis	Bvis1	Rvis2	Tir	E1	E2	Cond	Dton (mm)	Dhot (mm)	Dright (mm)	Dleft (mm)	Comme
	-	Glass 1 🕨		CLEAR5.LOF	_		0.79		0.074								p ()			2.2	
		Gap1 ↔		Air		16.5		Vent.													
	-	Glass 2 🕨	9803	CLEAR5.LOF	#	4.7	0.79	6 0.074	0.074	0.888	0.082	0.082	0.000	0.840	0.840	1.000					
		Gap 2 🕨	1	Air		12.7		Vent.													
	-	Shade 3 🕨	17	Venetian blind, horizor	nta	15.6							0.000	0.900	0.900	160.000	0.0	0.0	0.0	0.0	
	1			·																	Þ
	Cont	lor of Class Boss	≖ أماك	lar	10.1		D 1 0		e 1												
	Ceni	ter or cliass nest	nus Te	mperature Data Optic	ai Data	Angula	rData U	blor Prope	ties												
		Ufactor		SC SHGO	:	Rel. H	t. Gain	Tvis		Ke	ff	Gap 1	Keff	Gap 2	Keff						
		W/m2·K				W/	m2			W/n	n-K	W/r		W/m							
		2.400	0	.574 0.499		38	30	0.24	5	0.15	72	0.08	55	0.112	24						
Help, press F1																			Mode: NF	RC SI	NUM


Figure 2-11. The glazing system results

Now that results have been calculated for the glazing system, it can be imported into THERM to calculate the frames, as discussed in the next section.

2.3. Glazing System Results

2.3.1. Results at Normal Incidence

For a glazing system with a shading device, the optical properties presented forcomplex glazing systems are calculated at normal incidence for the incoming angle (horizontal to the glazing system) and hemispherically integrated on the outgoing side. This is what is displayed in the "Center of Glass Results" tab in the lower section of the Glazing System Library for SC, SHGC, Tvis as well as the results in the Optical Data tab in that same section. The thermal results (U-value) are calculated using the ISO 15099 thermal models for shading systems.

Figure 2-12. The results in the Glazing System Library are calculated at normal incidence for incoming light and hemispherically integrated for the outgoing light angles.

2.3.2. Results for Multiple Incident Angles

The results of the detailed angular calculation by the "matrix calculation engine" result in a very large number of results, depending on the basis used in the calculation. The WINDOW "standard basis" (set in File/Preferences) is 145 incoming angles of light and 145 outgoing angles of light through the whole glazing system.

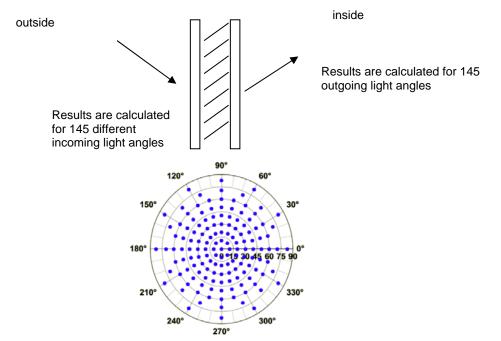


Figure 2-13. The full set of results that WINDOW can calculate are for 145 incoming angles which result in values for 145 outgoing angles. This complete set of results (21,015 values) can be read by the MatrixReader spreadsheet for viewing.

WINDOW writes these results to a CSV (comma separated text) file that can be read by a spreadsheet. Included in the WINDOW installation is an Excel spreadsheet, called **W6MatrixReader.xls**, that reads this CSV file and displays the results in a few different ways. This spreadsheet is a way to prototype the possible results display modes, and we are very interested in feedback about how users would be interested in seeing these results.

The results file that the spreadsheet reads is given the name of the glazing system (there are several other intermediate CSV files that are generated, but they do not contain the final results) and is written into the WINDOW working directory. One of the sample glazing systems in the default database (that is included in the WINDOW installation) is called "Venetian - 40 degrees", and once a matrix calculation is completed on that glazing system, the WINDOW working directory will contain a file called "Venetian - 40 degrees.csv". Open the W6MatrixReader.xls file and when it has opened, click on the Load Matrix button.

When you click the Load Matrix button, a standard Open File dialog box will appear. There are several CSV files that WINDOW writes, but you need to select the one that has the same name as the glazing system just calculated, in this case "Venetian – 40 degrees.csv". results displayed.

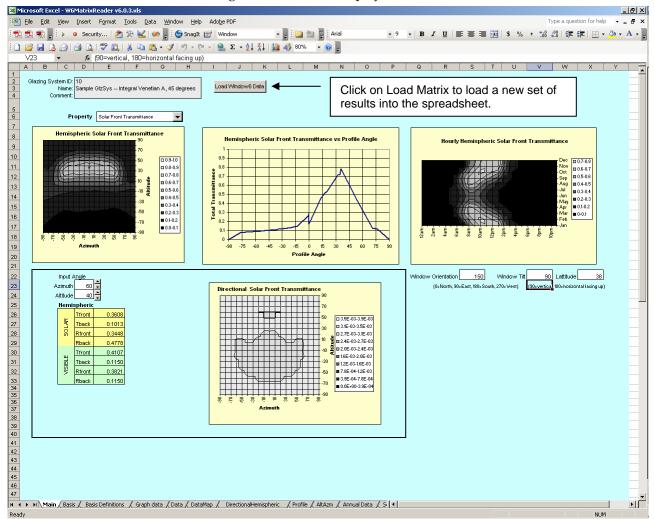


Figure 2-14. Open W6MatrixReader.xls and click the Load Matrix button to load results.

Open		<u>? ×</u>
Look <u>i</u> n:	C WINDOW6	💽 🕝 - 🚺 🔍 🗙 📷 🎞 Tools -
My Recent Documents	Cocumentation Samples 3mm Clear.csv 3mm Low-e air.csv	월 Sample GlzSys BSDF Data.csv 월 Sample GlzSys Diffusing Shade.csv 월 Sample GlzSys Exterior Venetian A, 45 degrees.csv 월 Sample GlzSys Integral Venetian A, 45 degrees.csv
Desktop	편, Clear Diffusing Glass Layer.csv 편, Clear with Diffusing Glass Layer.csv 편, default.csv 편, diff shade system.csv	월 Sample GlzSys Interior Venetian A, 45 degrees.csv 월 Sample GlzSys WINDAT Venetian Spectral Data Exterior.csv 월 Sample GlzSys.csv 월 Single Clear.csv
My Documents	원 Double Clear Air.csv 환 Double Clear Exterior Venetian, 20 deg.csv 환 Double Clear Exterior Venetian, -45 deg.csv 확 Double Clear with Argon.csv	뫸]Triple Clear.csv
My Computer	페 Double Clear, Exterior Venetian, 20 deg.csv 텍 Double Low-e Air.csv 펰 Robin.csv	
My Network Places	File name: Files of type: Designs (*.csv)	

Figure 2-15. Open the CSV file that has the same name as the glazing system modeled.

This file will be loaded into the spreadsheet and the results will be displayed as shown below.

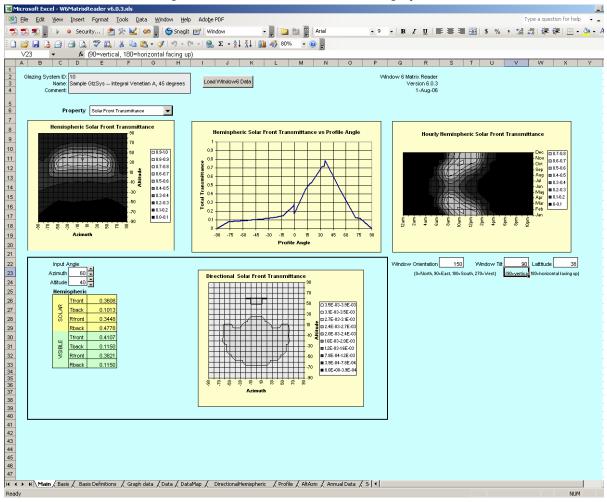


Figure 2-16. The W6MatrixReader will display the results from the opened file.

2.4. Import the Glazing System into THERM

THERM can interpret WINDOW glazing systems with shading devices. THERM will display the shading device as a representative rectangle that is part of the glazing system.

The steps for importing a glazing system into THERM from a WINDOW 5 database are as follows:

- Start the THERM program, and open the file in the WINDOW Samples directory called "sample-sill-NoGlazing.thm".
- Go to the Libraries menu, and click on the Glazing Systems option

Figure 2-17. In THERM, go to the Libraries menu, Glazing Systems option to import the WINDOW glazing system.

- The **Glazing Systems** dialog box will appear.
- Use the Browse button to select the correct WINDOW database, in this case "W6.mdb", and select the appropriate glazing system from the pulldown list, in this case #16, "Double Clear Exterior Venetian, -45 deg" and click the Import button.

Glazing Systems		×					
	ID Name						
Glazing System	16 Double Clear I	nterior Veneti 💌					
# Layers 2		[
Ucenter 0.42	Btu/h-ft2-F	Close					
Thickness 1.020	inches						
Shading layers: Int	erior						
WINDOW Glazing	WINDOW Glazing System Library						
C:\Program Files\LBNL\WINDOW6\ Browse							
Window 6 Database							

Figure 2-18. The Glazing System dialog box for importing a WINDOW glazing system into THERM.

The Insert Glazing System dialog box will appear. All the normal input values should be applied, and in addition, there are two new fields, Site line to interior shade edge and Site line to exterior shade edge. In this case, the venetian blind is an exterior blind, so input a value for Site line to exterior shade edge, such as 6 mm.

Insert Glazing System	×
Orientation Up	OK
Cross Section Type Sill	Cancel
CR cavity height 1000 mm	
Sight line to bottom of glass 11.1125 mm	
Spacer height 11.1125 mm	
Edge of Glass Dimension 63.5 mm	Input a value for Site
Glazing system height 152.4 mm	line to interior
Site line to interior shade edge 6 mm	- shade edge, in this
Site line to exterior shade edge 0 mm	example, "6" mm.
Use nominal glass thickness	
Use CR Model for Window Glazing System	ns
⑦ Default ○ Custom Gap 1 Keff 0.08549 Width 16.5	W/m-K mm
Spacer	
 Draw spacer Single spacer for multiple glazings 	
Material Fiberglass (PE Resin)	
Boundary Conditions Use U-factor values Use SHGC values	
Exterior Boundary Condition	Interior Boundary Condition
Use existing BC from library (select below)	Use convection plus enclosure radiation
NFRC 100-2001 Exterior	

Figure 2-19. The Insert Glazing System dialog box which specifies input parameters about the glazing system.

The glazing system will be imported into the THERM file, with a hatched rectangle on the outside of the glazing system to represent the exterior venetian blind. The hatch marks are not intended to show the angle or spacing of the venetian blind. The bottom of the blind is the specified distance from the sight line, in this case, 6 mm.

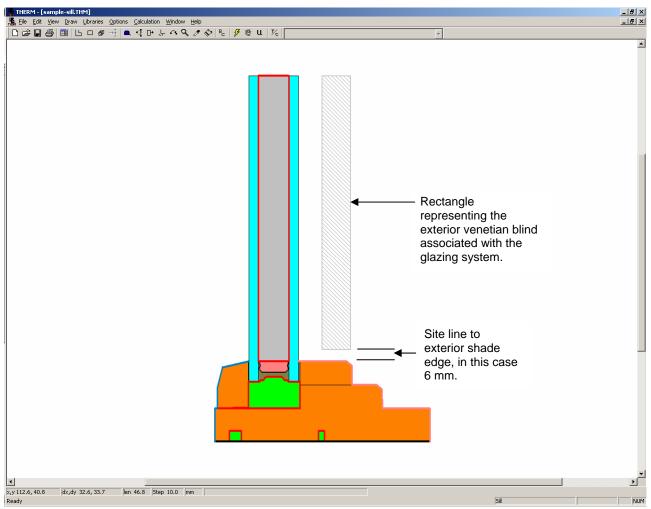


Figure 2-20. The THERM file with the glazing system and venetian blind imported.

 Because there is a 6 mm segment of the glazing system that does not have the venetian blind on the interior, that segment of the boundary conditions will be defined separately. Therefore it is necessary to insert a point on the glazing system which will then generate a separate segment in the boundary conditions.

- In **Options/Preferences**, **Drawing Options** tab, check the "Allow Editing of IG polygons".
- Click on the exterior glass layer and insert a point 6 mm up from the sight line.

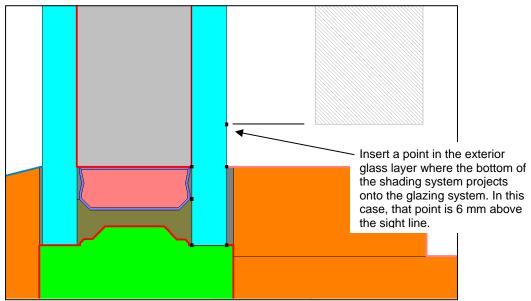


Figure 2-21. Insert a point in the glass layer where the bottom of the venetian blind intersects the glass.

- Generate the Boundary Conditions
- In THERM, the Boundary Condition Type dialog box has an additional input at the bottom, to specify a Shading system modifier, which comes with the glazing system from WINDOW. In general, the program should default this modifier to the glazing system that has the shading device. If not, the glazing system with the shading device can be selected from the pulldown list. In this example, the glazing system is "Glazing System ID: 16". This boundary condition should be applied to the exterior glass layer where the venetian blind is next to it, but not to the 6 mm below the venetian blind and the sight line, which should have Shading system modifier set to "None".

Boundary Condition Type	×	
Boundary Condition sample-sill:Double Clear Interior Venetian, -4! U-Factor Surface Edge Temperature 21.0 C Hc 2.55 W/m2-K Radiation Model AutoEnclosure Emissivity 0.567 Shading system modifier Interior (Glazing System ID:16)	Cancel Boundary Condition Library Library	Shading system modifier, which is associated with the glazing system, is added to the Boundary Condition Type. This is used to model the effect of interior and exterior shading devices in THERM.

Figure 2-22. Set the Shading system modifier to the glazing system with the shading device.

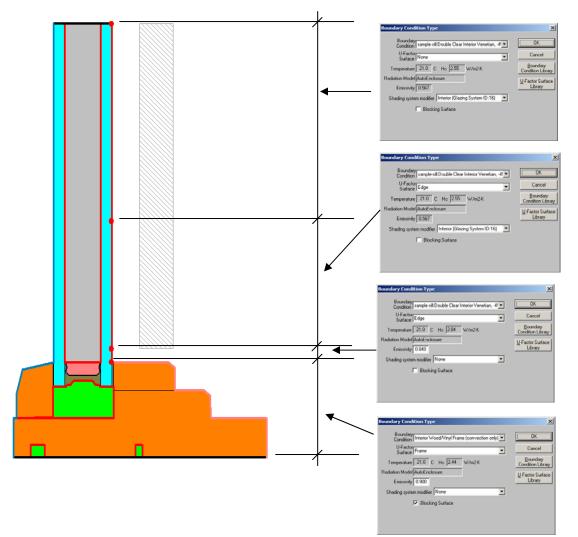


Figure 2-23. Set the **Shading system modifier** appropriately for each boundary condition segment.

• Save the file, simulate it, and then make similar files for the head and jambs.

2.5. Import the THERM files into the WINDOW Frame Library

When all the frame cross sections have been modeled, they can be imported into the WINDOW Frame Library in the normal fashion. The figure below shows the THERM sample frames included in the default W6.mdb file, imported into the WINDOW Frame Library.

	Program Fi ecord Tool	iles\LBNL\WINDOW6\w6.mdb) s <u>V</u> iew <u>H</u> elp									_ 🗆
0 🗃 🖬 %	h R 4	3 🔳 E M A 🕨 M 🗄 🖪	• II i	<mark>- 🗖</mark> ‡	‡ 🐰 🏹	🤋 💦					
Detailed View	Frame Librar,	y (C:\Program Files\LBNL\WINDOW6\w6.n	ndb)								
Update	ID	Name	Source	Туре	Frame Uvalue	Edge Uvalue	Edge Correlation	Glazing Thickness	Pfd	Abs	Color
New					W/m2-K	W/m2-K		mm	mm		
Copy	1	Al w/break	ASHRAE	N/A	5.680	N/A	Class1	N/A	57.2	0.90	
	2	Al flush	ASHRAE	N/A	3.970	N/A	Class1	N/A	57.2	0.90	
Delete	3	Wood	ASHRAE	N/A	2.270	N/A	Class1	N/A	69.8	0.90	
Find	4	Vinyl	ASHRAE	N/A	1.700	N/A	Class1	N/A	69.8	0.90	
ID 💌	5	sample-sill.THM	Therm	Sill	2.019	2.452	N/A	25.9	42.9	0.50	
	6	sample-jamb.THM	Therm	Sill	2.018	2.452	N/A	25.9	42.9	0.50	
	7	sample-head.THM	Therm	Sill	2.257	3.000	N/A	25.9	42.9	0.50	
Advanced	8	sample-head-InteriorVentianA-45.THM	Therm	Head	2.081	2.085	N/A	25.9	42.9	0.30	
17 records found.	9	sample-jamb-InteriorVentianA-45.THM	Therm	Sill	2.075	2.081	N/A	25.9	42.9	0.30	
Import	10	sample-sill-InteriorVentianA-45.THM	Therm	Sill	2.076	2.081	N/A	25.9	42.9	0.30	
	11	sample-head-IntegralVentianA-45.THM	Therm	Sill	2.036	2.867	N/A	25.9	42.9	0.30	
E <u>x</u> port	12	sample-jamb-IntegralVentianA-45.THM	Therm	Sill	2.049	2.871	N/A	25.9	42.9	0.30	
<u>R</u> eport	13	sample-sill-IntegralVentianA-45.THM	Therm	Sill	2.049	2.871	N/A	25.9	42.9	0.30	
Print	14	sample-head-exteriorVentianA-45.THM	Therm	Sill	2.021	2.242	N/A	25.9	42.9	0.30	
<u></u>	15	sample-jamb-ExteriorVentianA-45.THM	Therm	Sill	2.014	2.238	N/A	25.9	42.9	0.30	
	16	sample-sill-ExteriorVentianA-45.THM	Therm	Sill	2.015	2.238	N/A	25.9	42.9	0.30	
	▶ 17	sample-sill-InteriorVenetion45.THM	Therm	Sill	2.057	2.821	N/A	26.5	42.9	0.30	
r Help, press F1								Mode: I	NFRC SI		

Figure 2-24. Import the THERM files into the WINDOW Frame Library.

2.6. Create a Window

The steps to create a whole window with a shading system is the same as creating a normal window.

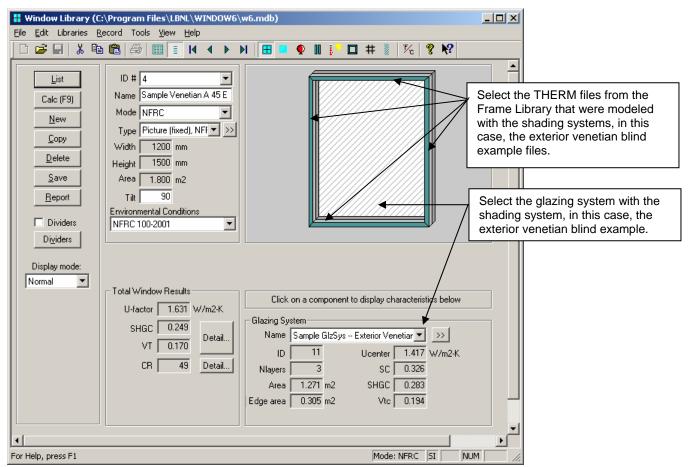


Figure 2-25. To create a whole window in WINDOW, go to the Window Library and reference the glazing system and frame cross sections that have the shading systems associated with them.

This section explains how to install WINDOW and THERM. Note that WINDOW 6.1 and THERM 6.1 can be installed on the same computer as WINDOW 5.2 and THERM 5.2, and they will not interfere with each other.

3.1. System Requirements

WINDOW and THERM require the following minimum computer requirements:

- Pentium class or better.
- At least 32 MB of random access memory (RAM). For optimal operation, 64 MB or more of RAM is preferrable.
- Microsoft Windows XPTM, Windows 2000TM, Windows 98TM, Windows METM, or Windows NTTM. (The program WILL NOT run with Windows 3.1TM, Windows NT 3.51TM or Windows 95TM).
- Hard disk drive with at least 40 MB of available disk space
- Printer supported by Microsoft Windows (serial, parallel, or shared over a network).

3.2. Installation Procedures for WINDOW

3.2.1. Before Installing WINDOW

Close all programs before installing WINDOW and uninstall and previous versions of the WINDOW program before starting the installation of this version. However, WINDOW 5 can remain installed – both versions can be installed on the same machine and will not interfere with each other.

In order to install the program with the Microsoft NT (4.0), 2000, and XP, **you must be Administrator** on your machine. To check if you are Administrator, do the following:

- Go to Start, Settings, Control Panel, Users and Passwords.
- Find the current username (yours) and look in the group column. It should say: "Administrators"
- If the current username does NOT say "Administrators", contact your IP department to become Administrator, or to have someone with Administrator privileges install the program on the machine.

3.2.2. Installing WINDOW

Put the program installation CD in the appropriate drive or copy the installation file to the computer hard drive.

Run:

WINDOW0setup.exe

An **Installshield Wizard** window will appear saying that the installation program preparing the installation. Wait for this window to disappear, and then proceed to the next step. To cancel the installation, click in the **Cancel** button.

Preparing Setup Please wait while the InstallShi	eld Wizard menares the setur
Please wait while the installshi	ead Wizard prepares the setup. WindowS Research Version Setup is preparing the InstallShield Wizard, which will guide you through the rest of the setup process. Please wait.
Install Shield	Cancel

Figure 3-1. The InstallShield Wizard window.

Window6.	0 - InstallShield Wizard
į	Setup will now rename your old database, so that it will not be overwritten. Renaming C:\Program Files\LBNL\WINDOW6\w6.mdb_to C:\Program Files\LBNL\WINDOW6\w6 Pre-Version-6.00.19.mdb
	ОК
	Question
	Rename failed. Your existing W6.MDB will be overwritten. Would you like to continue anway?
	<u>Yes</u> <u>N</u> o

Figure 3-2. Under some circumstances the program may look for and try to rename an older database.

The WINDOW Welcome window will appear. Click the **Next** button to proceed, or cancel the installation by clicking on the **Cancel** button.

Welcome to the InstallShield Wizard for Window6 Research Version (6.00.30) The InstallShield Wizard will install Window6 Research Version (6.00.30) on your computer. To continue, click Next.	Window6 Research Version - Insta	llShield Wizard	×
	Window6 Research Version - Insta	Welcome to the InstallShield Wizard for Window6 Research Version (6.00.30) The InstallShield Wizard will install Window6 Research Version (6.00.30) on your computer. To	×
InstallShield < Back Next> Cancel	InetallShield	(Back Next)	

Figure 3-3. The Welcome window.

The **License Agreement** window will appear. After reading and agreeing to the terms of the license, click on **Yes** button to proceed with the installation. Click the **Back** button to go to the previous screen, or cancel the installation by clicking on the **No** button.

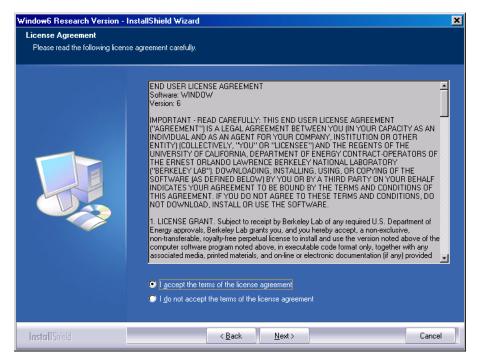


Figure 3-4. The License Agreement window.

The **Customer Information** window will appear. Type the appropriate information into the fields, and click the **Next** button to proceed, or cancel the installation by clicking on the **Cancel** button.

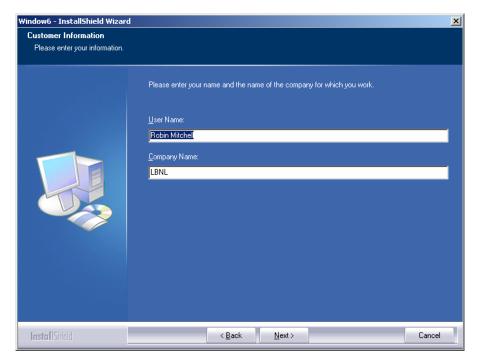
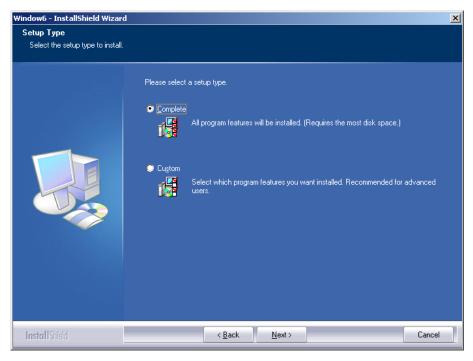



Figure 3-5. The Customer Information window.

Figure 3-6. The WINDOW Setup Type window – choose Complete Installation.

Complete Installation

If the "Complete Installation" option is chosen (it is the default choice), the program will automatically be installed in C:\Program Files\LBNL\WINDOW. NOTE: It is important to keep this directory structure in order for the WINDOW installation to be compatible with the WINDOW 5 installation, which can exist concurrently with WINDOW (WINDOW 5 does not need to be uninstalled).

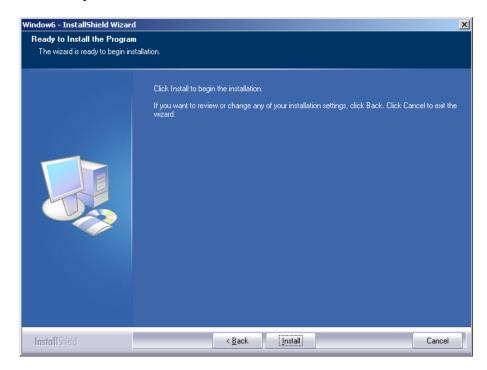
Custom Installation

The Complete Installation choice is recommended in order to use the default paths for the program location. However, if Custom Installation is chosen, the installation will provide a screen where the installation location can be changed from the default. Extreme caution is advised if this structure is changed.

The **Choose Destination Location** window will appear. The default folder for the program is C:\Program Files\LBNL\WINDOW, and this can be changed by clicking the "Change" button. Click the **Next** button to proceed. Cancel the installation by clicking on the **Cancel** button.

Window6 Research Version - InstallShield V	Wizard	×
Choose Destination Location Select folder where setup will install files.		
	Install Window6 Research Version (6.00.30) to: C:\Program Files\LBNL	<u>C</u> hange
InstallShield	< Back Next >	Cancel

Figure 3-7. The WINDOW Destination Folder window.


The Change Folder window will appear, and a new path for the program location can be specified.

Choose Folder
Please select the installation folder.
Path:
C:\Program Files\LBNL
Directories:
Copy of Optics5 Copy of RESEN5 Copy of RESEN5 Copy of WINDOW5-RobinTes Copy of WINDOW5-Robin
OK Cancel

Figure 3-8. The selected installation settings are displayed in the Start Copying Files window.

Window6 Research Version - I	nstallShield Wizard	×
Select Features		
Select the features setup will in	istall.	
	Select the features you want to install, and deselect the features you do not want to install.	
InstallShield	< <u>B</u> ack <u>N</u> ext > Canc	el

When the Complete or Custom installation settings have been specified, the "Ready to Install the Program" window will appear. Click "Install" to begin the installation, "Back" to return to the previous installation window, or "Cancel" to stop the installation.

The installation program will install WINDOW, and show a bar with the completion status in the **Setup Status** window. The installation can be cancelled by clicking on the **Cancel** button.

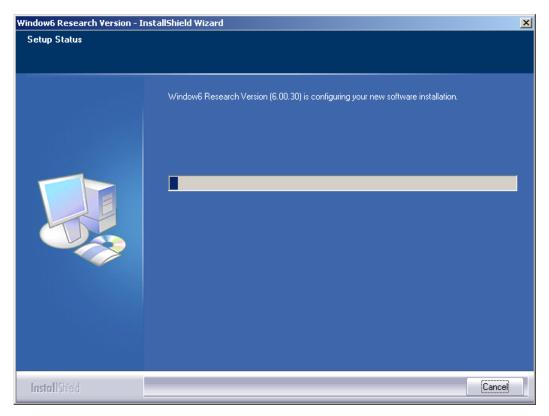


Figure 3-9. WINDOW is being installed.

When the installation is complete, the **Installation Wizard Complete** window will appear. Click on the **Finish** button to finalize the installation.

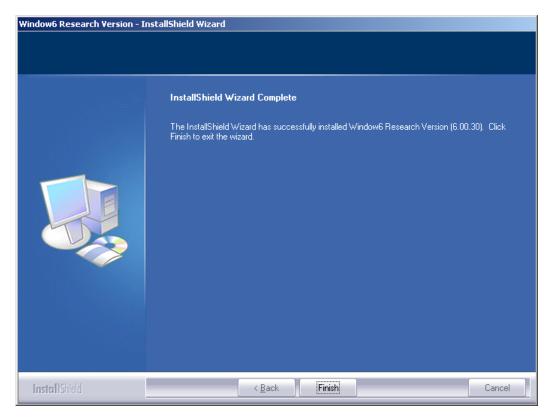
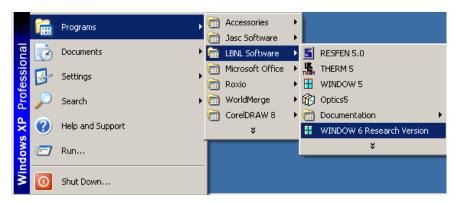



Figure 3-10. Click on the Finish button to complete the installation.

The program can be started from the Start button, Programs, LBNL Software, WINDOW Research Version, as shown below.

Figure 3-11. Start the program from the Start button.

3.3. Installation Problems

This section discusses problems that may be encountered during installation.

3.3.1. Not enough disk space

If the installation program detects that there is not enough disk space, a screen showing how much is needed will appear.

			disk space.		\mathbb{C}
	mes do not have eno ou can remove files fi				sll
	cal drives, or select d				
Volume	Disk Size	Available	Required	Differences	
⊐ <mark>C:</mark>	1027MB	36MB	42MB	-5643KB	
D:	4000MB	117MB	OKB	117MB	
■E:	3098MB	1158MB	8988KB	1150MB	
IF:	549MB	44MB	0KB	44MB	
⊋ I:	8675MB	1380MB	0KB	1380MB	
2 0:	8675MB	1380MB	0KB	1380MB	
⊋ K:	0KB	OKB	0KB	OKB	
₽L:	2499MB	1807MB	OKB	1807MB	-

Figure 3-12. Window showing necessary disk space for WINDOW installation

3.3.2. Previous Version Detected

The installation will detect if WINDOW has been previously installed and will update it without requiring that it be uninstalled before the new installation can proceed (see Section 3.4, "Uninstalling WINDOW").

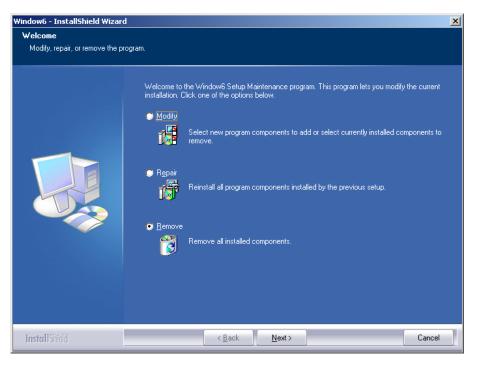


Figure 3-13. Remove the previous version before installing a newer version.

3.4. Uninstalling WINDOW

To uninstall WINDOW, either run the original installation setup.exe which will display the **Program Maintenance** window (Figure 3-11) and click on the **Remove** option, or open the Microsoft WindowsTM Control Panel.

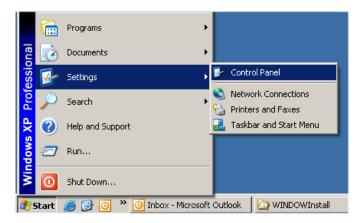
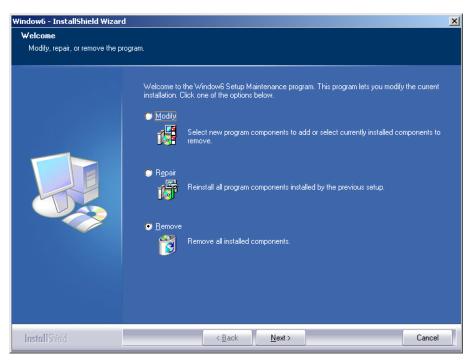


Figure 3-14. To uninstall WINDOW, run Control Panel

Click on the Add/Remove Programs icon in the Microsoft WindowsTM Control Panel.

😼 Control Panel								
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites	<u>T</u> ools	Help						
🕞 Back 🔻 🎅 👻 🏂 Search 👘 Folders 🔛 ד								
Address 🔂 Control Panel								🕶 🔁 Go
Control Panel	*	Ġ,	Ń	ō	i	2	P	
Switch to Category View		Accessibility Options	Add Hardware	Add or Remove Programs	Administrative Tools	Automatic Updates	Date and Time	
See Also	\$	<u>s</u>	N	à	ŝ	V	1	
🍓 Windows Update		Display	Folder Options	Fonts	Game Controllers	Internet Options	Keyboard	
Help and Support			٢		_			
		Mail	Mouse	Network Connections	Network Setup Wizard	Phone and Modem	Portable Media Devices	
			_	~	_	~	~	<u> </u>


Figure 3-15. Click on the Add/Remove Programs icon.

In the Add/Remove Programs Properties dialog box, under the Install/Uninstall tab, select the WINDOW 5 Beta 1 program, and click the Add/Remove button.

🐞 Add or Ren	nove Programs		_ 🗆 ×
5	Currently installed programs:	up <u>d</u> ates <u>S</u> ort by: Name	•
C <u>h</u> ange or Remove Programs	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Size	42.53MB
	KESFEN 3.1	Size	11.44MB
- 1	KESFEN 5.0	Size	62.37MB
Add <u>N</u> ew Programs	Retrospect 7.0	Size	21.38MB
- rogi and	Retrospect Express HD 1.0	Size	23.29MB
5	🜏 Roxio Easy Media Creator 7	Size	1,184.00MB
Add/Remove Windows	🎭 Symantec Client Security	Size	60.87MB
Components	THERMS	Size	4.02MB
	🔀 USB Storage Adapter FX (SM1)		
Set Pr <u>o</u> gram	🔁 Window5	Size	2,711.00MB
Access and Defaults	# Window6	Size	3,046.00MB
	Click here for support information.		frequently
		Last Used On	9/16/2005
	To change this program or remove it from your computer, click Change/Rem	ove. Char	nge/Remove
	🔀 Windows Installer 3.1 (KB893803)		
	🔀 Windows XP Service Pack 2		
	🗐 WinZip	Size	3.03MB
	kg WorldMerge 4.3	Size	3.47MB 🖵

Figure 3-16. Select the WINDOW 5 Beta 1 program and click the Add/Remove button

The **Welcome** window will appear. Click the **Remove** radio button, and then the **Next** button to proceed, or click the **Back** button to go back to the previous step. To cancel the program removal click on the **Cancel** button.

Figure 3-17. *Click on the Remove radio button, and then click on the Next button.*

The **Confirm File Deletion** window will appear to verify that you want to remove the program. Click the **OK** button to remove the program, or click the **Cancel** button to cancel the program removal.

Window6 - InstallShield Wizard		×
Do you want to completely remove the sel	lected application and all of its cor	mponents?
(<u>Y</u> es	No	

Figure 3-18. Click on the OK button to confirm the removal of the program.

The **Setup Status** window will appear to show the progress of the program removal. To cancel the program removal click on the **Cancel** button.

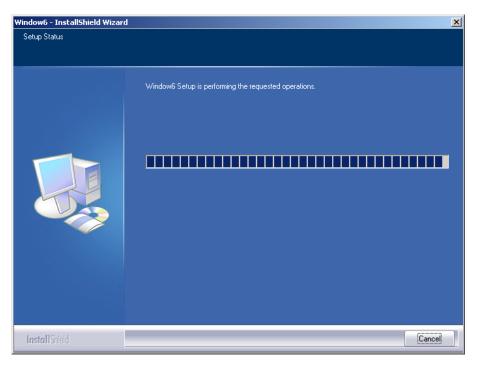


Figure 3-19. The progress of the program removal is displayed in the Uninstalling WINDOW 5 Beta 1 window.

When the removal is complete the **InstallShield Wizard Completed** window will appear. Click the **Finish** button to complete the procedure.

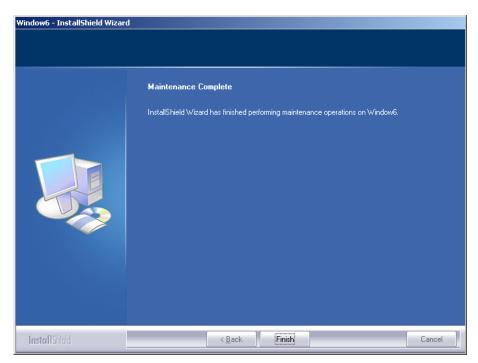


Figure 3-20. Click the Finish button to complete the program removal.

3.5. Installation Procedures for THERM

3.5.3. Before Installing THERM

Close all programs before installing THERM and uninstall and previous versions of the THERM program before starting the installation of this version. However, THERM 5 can remain installed – both versions can be installed on the same machine and will not interfere with each other.

In order to install the program with the Microsoft NT (4.0), 2000, and XP, **you must be Administrator** on your machine. To check if you are Administrator, do the following:

- Go to Start, Settings, Control Panel, Users and Passwords.
- Find the current username (yours) and look in the group column. It should say: "Administrators"
- If the current username does NOT say "Administrators", contact your IP department to become Administrator, or to have someone with Administrator privileges install the program on the machine.

3.5.4. Installing THERM

Put the program installation CD in the appropriate drive or copy the installation file to the computer hard drive.

Run:

THERM0setup.exe

An **Installshield Wizard** window will appear saying that the installation program preparing the installation. Wait for this window to disappear, and then proceed to the next step. To cancel the installation, click in the **Cancel** button.

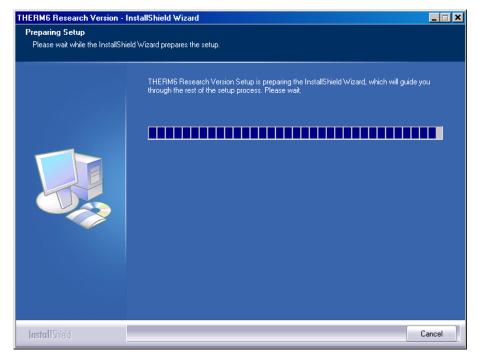


Figure 3-21. The InstallShield Wizard THERM.

THERM6	Research Version - InstallShield Wizard
٩	Setup will now rename your old Material.lib, so that it will not be overwritten. Renaming C:\Program Files\LBNL\THERM6\material.lib_to C:\Program Files\LBNL\THERM6\material-PRE-6.0.02.lib
	ОК
	Question 🔀
	Rename failed. Your existing Material lib will be overwritten.

Figure 3-22. Under some circumstances the program may look for and try to rename older libraries.

<u>N</u>o

Yes

The THERM Welcome window will appear. Click the **Next** button to proceed, or cancel the installation by clicking on the **Cancel** button.

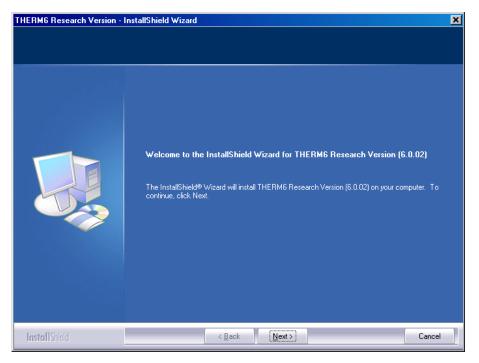


Figure 3-23. The Welcome window.

The **License Agreement** window will appear. After reading and agreeing to the terms of the license, click on **Yes** button to proceed with the installation. Click the **Back** button to go to the previous screen, or cancel the installation by clicking on the **No** button.

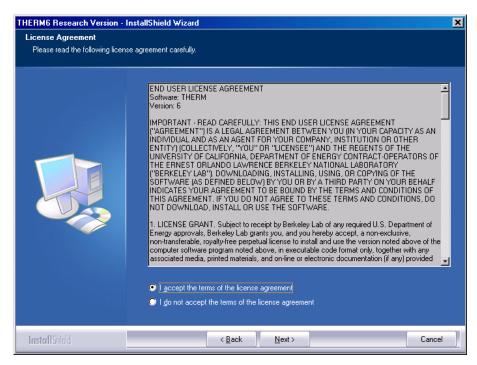


Figure 3-24. The License Agreement window.

 WindowG - InstallShield Wizard
 X

 Setup Type
 Select the setup type to install.

 Please select a setup type.
 © complete

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Image: Complete Select the setup type.

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Image: Complete Select the most disk space.)

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete Select the setup type.
 Select the setup type.

 Image: Complete type.
 Select the s

The Setup Type window will appear with the installation choices.

Figure 3-25. The Setup Type window.

Complete Installation

If the "Complete Installation" option is chosen (it is the default choice), the program will automatically be installed in C:\Program Files\LBNL\THERM. NOTE: It is important to keep this directory structure in order for the THERM installation to be compatible with the Optics5 installation.

Custom Installation

The Complete Installation choice is recommended in order to use the default paths for the program location. However, if Custom Installation is chosen, the installation will provide a screen where the installation location can be changed from the default. Extreme caution is advised if this structure is changed.

The **Choose Destination Location** window will appear. The default folder for the program is C:\Program Files\LBNL\THERM, and this can be changed by clicking the "Change" button. Click the **Next** button to proceed. Cancel the installation by clicking on the **Cancel** button.

THERM6 Research Version - InstallShield	₩izard	×
Choose Destination Location		
Select folder where setup will install files.		
	Install THERM6 Research Version (6.0.02) to: C:\Program Files\LBNL	Change
Install Shield	< <u>B</u> ack	Cancel

Figure 3-26. The THERM Destination Folder window.

The Change Folder window will appear, and a new path for the program location can be specified.

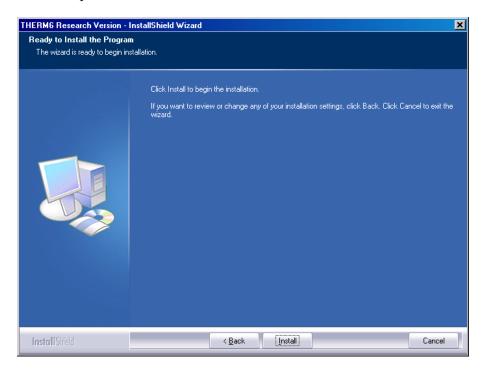

Choose Folder	×
Please select the installation folder.	
Path:	
C:\Program Files\LBNL	1
Directories:	
THERMS	
🗄 🔂 Workshop	
⊡ Logitech ⊡ Microsoft ActiveSync	
microsoft frontpage	
ov fund	
OK Cancel	

Figure 3-27. The selected installation settings are displayed in the Start Copying Files window.

The Select Components window will appear, and all the components should be checked, then click the Next button.

THERM6 Research Version -	InstallShield Wizard	×
Select Components		
Select the components setup	will install.	
	Select the components you want to install, and deselect the components you do not want to install.	_
InstallShield	< Back Next > Cancel	

When the Complete or Custom installation settings have been specified, the "Ready to Install the Program" window will appear. Click "Install" to begin the installation, "Back" to return to the previous installation window, or "Cancel" to stop the installation.

The installation program will install THERM, and show a bar with the completion status in the **Setup Status** window. The installation can be cancelled by clicking on the **Cancel** button.

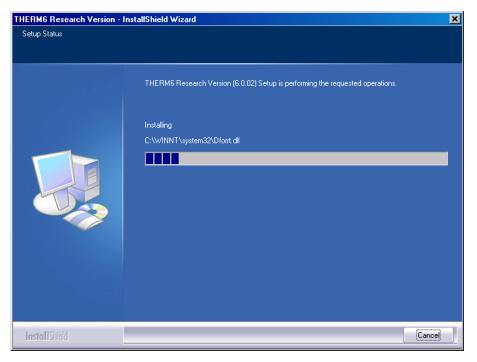


Figure 3-28. THERM is being installed.

When the installation is complete, the **Installation Wizard Complete** window will appear. Click on the **Finish** button to finalize the installation.

Figure 3-29. Click on the Finish button to complete the installation.

The program can be started from the Start button, Programs, LBNL Software, THERM, as shown below.

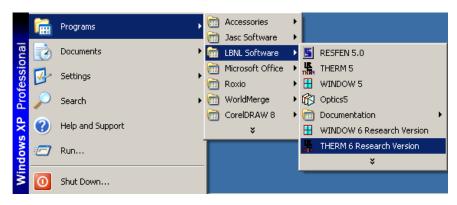


Figure 3-30. Start the program from the Start button.

This section documents in detail each part of the program that has changed from WINDOW 5.2 in order to model complex glazing systems. Refer to the WINDOW 5 documentation for details of program features that have not changed. A summary of the changes include:

- Added options in Preferences for complex glazing calculations
- Shading Layer Library added
- Shade Material Library added
- Shading layer added as an option in the Glazing System Library

4.1. Preferences

The **File/Preferences** menu brings up a dialog box with two tabs. Under the **Options** tabs, two new sections have been added with settings for complex glazing calculations:

- Matrix calculation options
- Venetian blind calculation methods
- WinCOG Options

Options Optical Data Unit System C IP C SI Use Nominal Heights Glazing system height: 1000.0 mm Nominal window height: 1000.0 mm	
Glazing system height: 1000.0 mm	
Use Nominal Glass Thickness Display precision: 3 Default Frame Absorptance []_300 □ Don't show CR warning messages ☑ Create debug output Matrix calculation options □ Use matrix method for specular systems (glazing systems without shading devices) Spectral data Condensed spectral data Number of IR bands: 10 Generate full spectrally-averaged matrix for: Is Solar band Visible band Angular basis W6 quarter-size Venetian blind calculation methods Solar/Visible range Directional diffuse VinCOG options Convection model Calculation standard ISO 15099 OK Cancel Apply	

Figure 4-1. There is a new section with many input choices for complex glazing calculations in the Preferences dialog box.

Matrix Calculation Options

There are several options in this section for complex glazings such as venetian blinds.

ram to use the matrix calculation engine, usually
ram to use the matrix calculation engine, usually
, for glazing systems without shading devices. Not this box is checked, the program will use the the results may be different from WINDOW5, I for calculations of systems without shading
erent options for the type of spectral data to use in choices ONLY effect calculations using the matrix azing systems. These choices do not apply to calculation method, such as glazing systems Use matrix method for specular systems is be used for glazing systems without shading 1 data.
pectral data for a matrix calculation means that the ectral data for each glass layer and shading layers t in long calculation times for shading layers. Use ilts for the Color Properties tab (although the color lex glazings).
a reduced set of spectral data wavelengths that data values for the glass layers and shading layers documented in the technical appendix of this accurate results for the Color Properties tab y disabled for complex glazings).
ection allows values to be input in the following risible bands" and "Number of IR bands". This is a uick results. In the future, a "smart condensing" place this.
ce is selected in the " Spectral Data " pulldown list, e value for the number of wavelengths to be used s wavelengths of 380 nanometers to 780 upled evenly across the range. Range: 5 to 500.
ce is selected in the " Spectral Data " pulldown list, e value for the number of wavelengths to be used h is defined as wavelengths of 780 nanometers to e sampled evenly across the range. Range: 5 to
VINDOW6 will display the resulting optical at normal incidence for the incoming angle hemispherically integrated on the outgoing side.

This is what is displayed in the "Center of Glass Results" tab in the lower section of the Glazing System Library for SC, SHGC, Tvis as well as the results in the Optical Data tab in that same section.

The two check boxes in this section will cause the program to generate results for all the angles in the basis used for the calcuation (145 incoming and 145 outgoing angles for the WINDOW 6 Full Basis, for example), rather than just the normal incidence hemispherically integrated results. The full matrix of results is needed for the matrix reader to give complete results. *Checking these boxes will add somewhat to calculation time, but it is not significant.* **Default:** unchecked.

Angular basis The choices in this pulldown list define the set of angles used by the matrix method calculation. There are currently three choices in the pulldown list:

- W6 standard basis: 145 incoming and 145 outoing angles
- W6 half-size: 73 incoming and outgoing angles
- W6 quarter-size: 41 incoming and outgoing angles

The number of angles that the matrix calculation engine calculates makes a significant impact on calculation speed, which is why the smaller basis choices have been included. The impact on the results of the number of angles used in the calculations will depend on the properties of the shading device, for example the angle of venetian blind slats. The matrix reader can display results from any of these basis choices, as long as the "Generate full Spectrally-averaged Matrix for" checkboxes (defined above) are checked. **Default:** W6 quarter-size.

Venetian blind calculation methods

Solar/Visible range	This pulldown for the calculation methods for venetian blinds in the solar (which includes near IR) / visible range has the following choices (Default: Directional diffuse):
	 Uniform diffuse: uniform diffuse means that a uniform distribution of radiance across all outgoing directions for a given incident direction.
	 Directional diffuse: directional diffuse means that there is a "beam" incident radiation source that produces diffuse transmitted and reflected radiance. This method takes into account individual contributions – radiosities of all parts (segments) of both slat surfaces which are visible at a certain outgoing diection. This approach provides better angular distribution of the diffuse radiation.
FIR range	This pulldown for the calculation methods for venetian blinds in the solar/visible range has the following choices (Default: Directional diffuse):
	 Uniform diffuse: uniform diffuse means that a uniform distribution of radiance across all outgoing directions for a given incident direction.
	• Directional diffuse: directional diffuse means that there is a "beam" incident radiation source that produces diffuse transmitted and reflected radiance. This method takes into account individual contributions – radiosities of all parts (segments) of both slat surfaces which are visible at a certain outgoing diection. This approach provides better angular distribution of the diffuse radiation.

• ISO 15099: This model is as described in 7.3.2.7 in ISO 15099

WinCOG Options

Convection Model This pulldown specifies the thermal model that will be used in the calculations for complex glazing systems. **Default:** Scalar convection.

- **ISO 15099:** The thermal model for shading systems as described is ISO 15099.
- **Glazing cavity:** Models the spaces between the shade and the glass as regular glazing cavities, and ignores the thermal conductance of the shading layer .
- Scalar convection: This is a two-state model for the convective effect of the shade on the adjacent glazing system.

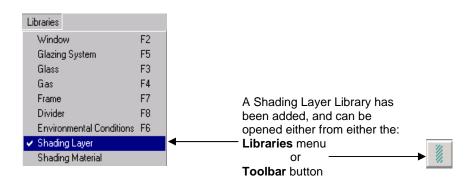
If this model is chosen, a value for "Convective Opacity" will appear on the Shading Layer Library.

If the "Convective Opacity" is set to 0, there is no effect on convection from the shade, i.e, air can flow freely through it (as if the shade wasn't there). If the "Convective Opacity" is set to 1.0, the shading system acts as a perfectly sealed layer, so that no air can flow through the shading system. For example, for system with a single glass layer and a shading system, if "Convective Opacity" = 1.0, the thermal model treats this system as if it were a double layer sealed glazing system. If the "Convective Opacity" = 0, the thermal model treats this system as if the shade wasn't there for convection.

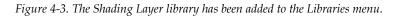
H Window Library (C:\Program Files\LBNL\WINDOW6\w6.mdb)	×
Shading Layer Library List New Copy D # D # D # 10 # 11 # 12 0 12 0 11 # 12 0 11 # 12 0 11 # 12 0 11 # 12 0 11 # 12 0 11 # 12 0 11 # 12 0 12 0 11 # 12 0 12 0 13 0 degrees 14 0 segments: 15	 "Convective opacity" is displayed if Thermal Model = "Scalar convection" in Preferences
For Help, press F1 Mode: NFRC SI NUM	

LBNL recommends setting the "Convective Opacity" to 0 for most shading devices.

Standard


Figure 4-2. If Thermal Model = Scalar convection the "Convection opacity" input appears on the Shading Layer Library screen . Calculation

This pulldown specifies the calculation standard:


- ISO 15099
- EN673

Default: ISO 15099.

4.2. Shading Layer Library

A Shading Layer Library has been added to the WINDOW6 Libraries.

The following can be modeled using the Shading Layer Library:

- Horizontal Venetian Blinds
- Diffusing Materials
- Woven Shades
- Fritted Glass

4.2.1. Shading Layer Library List View

The Shading Layer Library List View shows the records in the library. There are several example records in the WINDOW 6 database (W6.mdb) that is included in the installation. These records include venetian blind examples from ISO 15099 ("Venetian A0" to "Venetian D90" with the slat angle and slat material incorporated into the name of the Shading Layer), as well as an example of a BSDF file, a diffusing layer being defined for the shading layer, and a ventian blind with spectral data (the WINDAT example).

III W6 - Shading Laye File Edit Libraries Re		rogram Files\LBNL\WINDOW /iew Help	/6\w6.mdb)				<u>- 0 ×</u>
				P 🗖 # 👔 ½ 🤋 📢			
Detailed View	Shading Layer Li	brary (C:\Program Files\LBNL\WI	INDOW6\w6.m	ndb)			<u>^</u>
Calc	ID	Name	Туре	Material	HoleArea	Comment	
New							
	▶ 1	Venetian A0	Venetian	Slat Metal A	0.050		
<u> </u>	2	Venetian A45	Venetian	Slat Metal A	0.050		
Delete	3	Venetian A90	Venetian	Slat Metal A	0.050		
- Find	4	Venetian B0	Venetian	Slat Metal B	0.050		
ID 🔻	5	Venetian B45	Venetian	Slat Metal B	0.050		
	6	Venetian B90	Venetian	Slat Metal B	0.050		
	7	Venetian CO	Venetian	Slat Metal C	0.050		
Advanced	8	Venetian C45	Venetian	Slat Metal C	0.050		_ []
16 records found.	9	Venetian C80	Venetian	Slat Metal C	0.050		_ []
	10	Venetian C90	Venetian	Slat Metal C	0.050		_ []
Import	11	Venetian D0	Venetian	Slat Metal D	0.050		_ []
E <u>xp</u> ort	12	Venetian D45	Venetian	Slat Metal D	0.050		_ []
<u>R</u> eport	13	Venetian D90	Venetian	Slat Metal D	0.050		
Print	14	BSDF Example Shade	BTDF	BSDF Material: My Special material	0.050		
<u></u>	15	Diffusing Shade	Diffusing	Diffusing shade material	0.050		
	16	WINDAT Shade with Spectral D	Venetian	WINDAT Internal Light Venetian Blir	0.050		
or Help, press F1					Mode: 1	NFRC SI NUM	

Figure 4-4. The Shading Layer Library List View.

Buttons

The buttons on the left hand side of the List View have the following functions:

Detailed View	goes to the detailed view of the record, where the input values can be edited.
New	Used to make a new record, based on a default record.
Сору	Used to copy an existing record (including name and all associated input values) into a new record.
Delete	Used to delete the highlighted record(s).
Find	Used to find a record based on the field selected from the pulldown list, and a value typed into the input box.
Advanced	Used to access a more advanced method of searching the list
Import	Currently disabled.
Export	Used to export records from the Shading Layer Library to either another WINDOW 6 database or to a comma-separated text file.
Report	Used to create a report containing a summary of the records in the List View.
Print	Used to print a report which contains a list of all the records in the library.

4.2.2. Shading Layer Library Detailed View

The Shading Layer library currently allows the definition of three types of shading devices, which can be selected from the Type pulldown list:

- Venetian blind, horizontal
- Homogeneous diffusing shade
- Shade with BTDF data

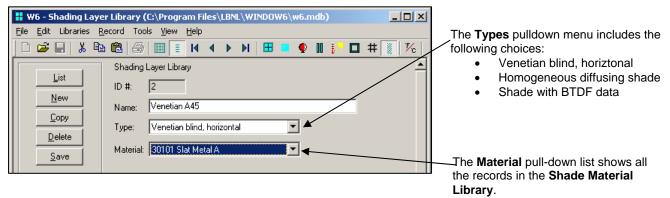


Figure 4-5. The Shading Layer Library Detailed View for Horizontal Venetian Blinds.

The **Shading Layer Library** screen changes depending on the choice for the **Type** field. The values for the upper half of the screen are as follows:

Buttons

List View	Goes to the list view of the record, where are the records in the library are displayed.
New	Used to make a new record, based on a default record.
Сору	Used to copy an existing record (including name and all associated input values) into a new record.
Delete	Used to delete the highlighted record(s).
Save	<i>Not currently implemented.</i> Save a record either using the Record/Save menu choice, or clicking on List, at which point the program will ask if the record should be saved.

Shading Layer Library Input

ID	The unique ID associated with each Shading Layer record.
Name	The name of the Shading Layer .
Туре	Type of Shading Layer , from the following list:
	• Venetian blind, horiztonal: Use this for the classic horizontal slat Venetian blind.
	 Homogeneous diffusing shade: Use this choice for any perfectly diffusing layer that does not have an open weave construction
	 Shade with BSDF data: Use this for any shading layer that has bi-directional scattering distribution function (BSDF) data from either modeling (such as with a ray tracing method) or measurments.
Material	This is a pull-down list that shows the records in the Shade Material Library . The record chosen will determine the optical and thermal properties of the material.

Depending on the Thermal Model specified in Preferences, either "Effective hole area fraction" or "Convective opacity" will appear :

The effective hole area is a parameter which defines the openness area of a shading layer and is used in the WINDOW 6 heat transfer algorithms (from ISO 15099) to quantify convective heat transfer through the shading layer. Determining this parameter and understanding its impact on shading layer heat transfer is a topic under study. Default: At this point, a default value of 0.5 is recommended for all shading layers.
If the "Convective Opacity" is set to 0, there is no effect on convection from the shade, i.e, air can flow freely through it (as if the shade wasn't there). If the "Convective Opacity" is set to 1.0, the shading system acts as a perfectly sealed layer, so that no air can flow through the shading system. For example, for system with a single glass layer and a shading system, if "Convective Opacity" = 1.0, the thermal model treats this system as if it were a double layer sealed glazing system. If the "Convective Opacity" = 0, the thermal model treats this system as if the shade wasn't there for convection.
LBNL recommends setting the "Convective Opacity" to 0 for most shading devices.
This button can be used to generate a file containing the results of a matrix engine calculation for this layer. The program will ask for a filename and location to save the file to. The file will be a CSV (comma separated text) file that can be imported into a spreadsheet program.

The rest of the input values in this library are dependent on the **Type** selected above, and are discussed individually in the following section.

4.2.2.1. Venetian Blind, Horizontal

There are several examples of venetian blinds in the W6.mdb file that is included in the WINDOW 6 installation set. These examples are from ISO 15099, and include 4 different materials (see the **Shade Material Library** section for a description), at several different angles. At this time, each different slat angle must be modeled as a separate record in the **Shading Layer Library**. So for example, there are three entries for venetian blinds made of **Slat Material** "A" (an opaque white material), one for each slat tilt of 0° (horizontal), 45°, and 90° (closed).

🔡 W6 - Shading Laye	er Library (C:\Program Files\LBNL\WINDOW6\w6.md	b) <u> </u>	
<u>File E</u> dit Libraries <u>F</u>	ecord Tools <u>V</u> iew <u>H</u> elp		
📙 🗁 🖼 🖌 🖻) 🛍 🍜 🎟 🔳 🙌 🖌 🔺 🕨 🗏 🗮 🖉 🌗	🛃 🗖 # 💹 🌾 🧣	
List New Copy Delete Save	Shading Layer Library ID #: 2 Name: Venetian A45 Type: Venetian blind, horizontal Material: 30101 Slat Metal A Effective hole area fraction: 0.050 Venetian Blind Slat width: 16.0 mm Spacing: 12.0 mm	Matrix Calc	For Venetian Blinds, additional input about the blind geometry is required.
For Help, press F1	Mode: Ni	FRC SI NUM	

Figure 4-6. The ge ometry definition for a horizontal Venetian blind.

Venetian Blind Tab (for defining venetian blind geometry)

Slat width	Width of the slat. Units: millimeters (SI), inches (IP).
Spacing	Spacing of the slats. Units: millimeters (SI), inches (IP).
Tilt	Tilt of the slat. A different record must be created in the Shading Layer Library for every tilt that is to be modeled. Units: degrees from horizontal, can be either positive or negative.

- 0 = slats horizontal
- 90 = slats vertical (blinds closed)
- 45 = slats tilted down at the outside, up at the inside
- -45 = slats tilted up at the outside, and down at the inside

Blind thickenss	this thickness is calculated by the program based on the input for Slat width and Tilt. Units: millimeters (SI), inches (IP).
Curvature	The interior radius of the curvature of the venetian blind slat. Units: millimeters (SI), inches (IP).
<i># of segments</i>	if the slat is curved, the program will determine that curve by dividing it into an equal number of segments. The number of segments to determine that curve is entered here.
Comment	Comment about the Shading Layer, optional input.

4.2.2.2. Homogeneous Diffusing Shade:

For shading layer of Type "Homogeneous diffusing shade", no geometry needs to be defined. It is just necessary to reference the appropriate material in the Shade Material library, which should represent a perfectly Lambertian diffusing material.

	ary (C:\Program Files\LBNL\WINDOW6\w6 diff glass crash.mdb)
	ecord Tools View Help 🛍 🚭 🏢 🔳 📢 🔺 🕨 🙌 🖽 💻 🍨 💵 👬 🗖 # 🎆 1 🏷 🎖 😢
	Shading Layer Library
List	ID #: 15
	Name: Diffusing shade material
<u> </u>	Type: Homogeneous diffusing shade
Save	Material: 31001 Diffusing shade material
	Effective hole area fraction: 0.050
	Comment
	-
	Protected
For Help, press F1	Mode: NFRC SI NUM

Figure 4-7. Homogeneous diffusing blinds do not have a geometric definition, just a reference to the Shade Material Library.

Homogeneous Diffusing Shade Input

Туре	Set type to Homogeneous diffusing shade
Material	Set Material to a records in the Shade Material Library that is defined for a
	homogeneous perfectly diffusing shade.

4.2.2.3. Shade with BSDF Data

WINDOW 6 can read a bi-directional scattering distribution function (BSDF) data file (generated, for example, with a ray-tracing program) that has been put into the XML file format as defined in the Technical Reference section of this manual.

Shading Layer Library (C:\Program Files\LBNL\WINDOW6\w6.mdb)	_ 🗆 🗙
<u>File Edit Libraries Record Tools View H</u> elp	
🗋 🗅 🚅 🗐 👗 🛍 🕮 🗐 🔠 🗉 H 🔺 🕨 N 🗄 💻 🌒 🖩 🐉 🌾 😵 🛠	
List ID #: 14 New ID #: 14 Name: BSDF Example Shade Copy Delete Material: 31001 BSDF Material: My Special mat > BSFD File: NBSDFexample.xml Effective hole area fraction: 0.050 Comment	
For Help, press F1 Mode: NFRC SI NUM	1.

Figure 4-8. The Shading Layer Library for Shade with BSDF data.

BSDF Input

Туре	Set type to Shade with BSDF data
Material	At this time, WINDOW 6 is not reading the material header information in the BDSF XML file. So the Tir, and Front and Back Emissivities for the BSDF data need to be defined in the Shade Material Library and then that material must be referenced from this Material pulldown. See the Shade Material Library section for an example.
BSDF File	The BSDF flle field will appear if Type = "Shade with BSDF data". Use the Browse button to specify the BSDF file, which must be in the XML format as defined in the Technical Reference section of this manual.
	At this time, the BSDF data file cannot have a complete set of spectral data. There should be just one set of data which represents the visible band and another that represents the near infrared (IR). See the Release Notes for more details.

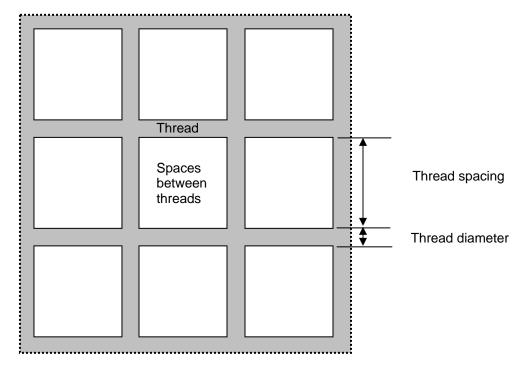
4.2.2.4. Woven Shade

The woven shade model is based on defining the optical and geometric properties of the thread weave in a the fabric of a woven shade.

In the Material Library, the refelctance of the thread is defined, and then in the Shading Layer Library, the geometry of the weave is defined.

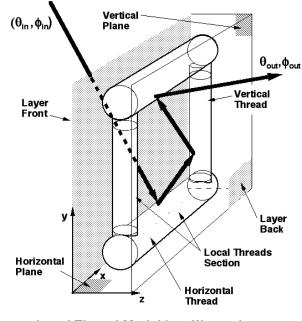
Shading Layer Library (C:\Program Files\LBNL\WINDOW6\w6.mdb)	_ 🗆 🗙
<u>File E</u> dit Libraries <u>R</u> ecord Tools <u>V</u> iew <u>H</u> elp	
D 😅 🖬 X 🗈 🛍 🗁 🎟 🗉 M 🔺 🕨 N 🎛 = 🍳 🖩 👯 🔲 🐺	ć 💡 📢
List Name: Woven Shade Copy Delete Voven Shade Save Material: 31003 Light Thread Effective hole area fraction: 0.050 Matrix Calc Convective opacity: 1.000 Woven Shade Thread diameter: 20 mm Thread diameter: 20 mm Shade thickness: 4.0 mm Comment Endet Protected Endet	
For Help, press F1 Mode: NFRC SI	JUM //

Figure 4-9. The Shading Layer Library for Woven Shade.


Woven Shade Input

Туре	Set type to Woven Shade
Material	Select a material from the pulldown list which represents the reflectance of the thread. This material must be defined in the Material List before it will be available in this pulldown list.

Convective Opacity Set this value to 0.


Woven Shade Geometry

Thread diameter	This value is the diameter of an individual thread in the fabric of the woven shade.
Thread spacing	This value is the spacing between threads in the weave of the fabric of the woven shade.
Shade thickness	This value is the thickness of the fabric of the woven shade.

Woven material

Figure 4-10. Woven shade geometry definitions.

Local Thread Model in a Woven Layer

Figure 4-11. Woven shade modeling technique.

4.2.2.5. Fritted Glass

Fritted glass can be modeled by defining a fritted glass layer in the Shading Layer Library.

The properties of the fritted glass must be measured in a spectrophotometer, with 100% frit coverage on a substrate. The substrate used to measure the frit is specified when defining the fritted glass in WINDOW in the Shading Layer Library. The percentage of frit coverage is input, and WINDOW will calculate the optical properties of the frit percentage specified.

🚦 Sha	ading Layer Lib	rar y (C: \Program	Files\LBNL	WINDOW	¥6\w6.ma	ib)				_ 🗆 🗵
		tecord Tools ⊻iew	v <u>H</u> elp							
	🛎 🔜 👗 🖻		∎ ₩ ◀	$ \mathbf{F} = \mathbf{H}$	H	9 II		• #	: 🦹 🏌	१ №
		Shading Layer Lib	orary							
-	List	ID #: 19	_							
	New	Name: Fritted	Glass 50%	Coverage	on Bronze			-		
	<u>C</u> opy	Type: Fritted			•	1				
	<u>D</u> elete	,	-			-				
	<u>S</u> ave	Material: 31004	Frit Thickne	88	-]				
-										
		Effective hole are	ea fraction: 🛛	0.050				Matrix	(Calc	
		Fritted glass								
		Glass substrate	103 CLEA					-		
		Frit coverage		%				<u> </u>		
		Fill Coverage	Tf	∼ ТЬ	Rf		RЬ			
		Solar	0.200	0.200	0.200		.200			
		Specular:	0.400	0.400	0.100).100			
		Diffuse:	10.400	J0.400	10.100	ļ	. 100			
		_ Visible		0.000						
		Specular:	0.200	0.200	0.200).200			
		Diffuse:	0.400	0.400	0.100).100			
		Comment						_		
		Protected								
For Help	p, press F1						Mode	e: NFRC	SI I	

Figure 4-12. The Shading Layer Library for Fritted Glass.

Туре	Set Type to "Fritted Glass"
Material	Not used by the program

Fritted Glass Input

Glass Substrate This pulldown list shows all the records in the Glass Library. Select the glass layer that was used as the substrate when the frit was measured. This substrate should not be changed from the measured substrate – if it is, the calculated results from WINDOW will not be valid.

Frit Coverage The percent of the substrate that is covered in the frit. The original measurement to obtain the optical properties of the frit is based on 100% frit coverage, and with that information, WINDOW can recalculate the optical properties of the frit at any frit coverage specified.

Solar Specular Properties

Tf Front transmittance

- Tb Back transmittance.
- Rf Front reflectance
- Rb Back reflectance

Solar Diffuse Properties

tance.
ance.
nce

Rb Back reflectance

Visible Specular Properties

Tf	Front transmittance.
Tb	Back transmittance.
Rf	Front reflectance
Rb	Back reflectance

Visible Diffuse Properties

Tf	Front transmittance.
Tb	Back transmittance.
Rf	Front reflectance
Rb	Back reflectance

4.2.2.6. Shade with Spectral Data for a Venetian Blind

One of the examples in the example W6.mdb file shipped with WINDOW 6, is for a shading layer that represents a venetian blind with spectral data. The spectral data was exported from the WIS program, which is discussed in more detail in the Shade Material Library examples.

🖁 W6 - Shading Layer Library (C:\Program Files\LBNL\WINDOW6\w6.mdb)	- 🗆 ×
<u>Eile E</u> dit Libraries <u>R</u> ecord Tools <u>V</u> iew <u>H</u> elp	
□ 😅 🖬 🌡 🛍 🕮 ﷺ 🔳 📢 🔺 🕨 או 🖽 = 🌒 🖩 🐉 🗖 # 👔 兆	🤋 💦
List Shading Layer Library D #: 16 Name: WINDAT Shade with Spectral Data Copy Delete Save Material: Save Effective hole area fraction: 0.050 Matrix Calc Venetian Blind Slat width: Slat width: 16.0 Stat width: 16.0 Stat width: 16.0 Shind thickness: 11.3 Mit of segments: 5 Comment Stat width: Protected Frotected	
For Help, press F1 Mode: NFRC SI M	

Figure 4-13. The Shading Layer Library for Shade with BSDF data.

Spectral Data Input

Туре	Set type to Venetian blind , horizontal , because the spectral data in the shade material is from measurements of a venetian blind.
Material	In this example, the Material field references the record in the Shade Material Library that contains the spectral data for the venetian blind. (See the Shade Material Library example later in this section for more details about this example material).
BSDF File	The BSDF file field will appear if Type = "Shade with BSDF data". Use the Browse button to specify the BSDF file, which must be in the XML format as defined in the Technical Reference section of this manual.
	At this time, the BSDF data file cannot have a complete set of spectral data. There should be just one set of data which represents the visible band and another that represents the near infrared (IR). See the Release Notes for more details.

Venetian Blind Tab (for defining venetian blind geometry)

Slat width Width of the slat. **Units:** millimeters (SI), inches (IP).

Spacing	Spacing of the slats. Units: millimeters (SI), inches (IP).
Tilt	Tilt of the slat. A different record must be created in the Shading Layer Library for every tilt that is to be modeled. This will probably be streamlined in future versions of the program. Units: degrees from horizontal.
Blind thickenss	this thickness is calculated by the program based on the input for Slat width and Tilt. Units: millimeters (SI), inches (IP).
Curvature	The interior radius of the curvature of the venetian blind slat. Units: millimeters (SI), inches (IP).
<i># of segments</i>	if the slat is curved, the program will determine that curve by dividing it into an equal number of segments. The number of segments to determine that curve is entered here.
Comment	Comment about the Shading Layer, optional input.

4.3. Shade Material Library

The **Shade Material Library** is where the optical and thermal properties are defined for shading device materials, which are then referenced from the **Shading Layer Library**.

Libraries <u>R</u> ecord Tools	<u>V</u> iew <u>I</u>	
Window	F2	
Glazing System	F5	
Glass	F3	
Gas	F4	A Shade Material Library has
Frame	F7	been added, and can be
Divider	F8	opened from the Libraries
Environmental Conditions	F6	menu. There is currently not a
Shading Layer		Toolbar button for this library
Shading Material		e ,

Figure 4-14. The Shade Material Library has been added.

4.3.1. Shade Material Library List View

The Shade Material Library List View shows the records in the library.

—		ry (C:\Program Files\LBNL\WINDOW6\w6	i.mdb)			<u>_ 0 ×</u>
File Edit Libraries R	-) III 📴 # 🐰 ½ % % №			
		aterial Library (C:\Program Files\LBNL\WINDOV				_
Calc	1	ID Name	ProductName	Manufacturer	Source	Mode Color
New						
	• 30	1101 Slat Metal A	Opaque white colored slat material	ISO 15099	User	
<u><u>C</u>opy</u>	30	1102 Slat Metal B	Opaque pastel colored slat material	ISO 15099	User	
Delete	30	103 Slat Metal C	Opaque light-dark colored slat material	ISO 15099	User	
- Find	30	104 Slat Metal D	Translucent white colored slat material	ISO 15099	User	
ID 💌	31	000 WINDAT Internal Light Venetian Blind-Opti	ics5.txt Opaque light-colored slat material	WINDAT Spectral Data	IGDB User vUser	
	31	001 BSDF Material: My Special material	Example	LBNL		
	31	002 Diffusing shade material	Example	LBNL	User	
Advanced			1			
7 records found.						
Import						
Export						
<u>R</u> eport						
<u>P</u> rint	•					<u> </u>
For Help, press F1				Mo	ode: NFRC SI	

Figure 4-15. The Shade Material Layer Library List View.

Example Records

There are several example records in the W6.mdb file that is part of the WINDOW 6 installation, which are:

- Slat Metal A: A material from the ISO 15099 examples that represents the slats of an opaque whitecolored metal slat material for a venetian blind.
- Slat Metal B: A material from the ISO 15099 examples that represents the slats of an opaque pastelcolored metal slat material for a venetian blind.
- Slat Metal C: A material from the ISO 15099 examples that represents the slats of a ventian blind material that are light on one side and dark on the other.
- Slat Metal D: A material from the ISO 15099 examples that represents the slats of a translucent white-colored metal slat material for a venetian blind.

- WINDAT Internal Light Venetian Blind: A spectral data file of a light venetian blind exported from the WINDAT program, imported as a text file into Optics5, saved into an Optics5 User Database, and then imported into the Shade Material Library.
- BSDF Material:
- Diffusing Shade Material: An example of a diffusing shade material that does not have spectral data, only averaged optical properties data.
- Thread Material: In order to define the thread material for a woven shade, input the properties of the thread into the Material Library. The Thickness input on this screen is not used as the thread thickness – this value is defined in the Shading Layer Library.

Buttons

The buttons on the left hand side of the List View have the following functions:

Detailed View	goes to the detailed view of the record, where the input values can be edited.
New	Used to make a new record, based on a default record.
Сору	Used to copy an existing record (including name and all associated input values) into a new record.
Delete	Used to delete the highlighted record(s).
Find	Used to find a record based on the field selected from the pulldown list, and a value typed into the input box.
Advanced	Used to access a more advanced method of searching the list
Import	Use to import spectral data for the material if it is available. The data must have been imported into the Optics5 program as a text file, saved into the Optics5 user database, and then imported using the choice of "Optics User Database" on the import dialog box.
Export	Used to export records to either another WINDOW 6 database or to a comma-separated text file.
Report	Used to create a report containing a summary of the records in the List View.
Print	Used to print a report which contains a list of all the records in the library.

Column Headings

See the description in the **Shade Material Library Detailed View** section for definitions for most of the column headings. Listed here are columns not included in that description.

Source	Source of the optical data. Current options are:			
	 Optics: Indicates that the data was imported from the Optics5 database. These records will have the spectral data information from the Optics5 database. 			
	 User: Indicates that the data was created when the user copyied an existing record into a new record. User defined records will not have associated spectral data values. 			
Mode	An identifier to determine if the layer is approved by NFRC. Only records with "#" in this field can be used for NFRC simulations. This field is currently not relevant, but may be used in the future if complex glazings are approved for use with NFRC certified simulations.			

4.3.2. Shade Material Library Detailed View

The **Shade Material Library Detailed View** is where the thermal and optical detailed properties for a material can be entered.

	ial Library (C:\Program Files\LBNL\WINDOW6\w ecord Tools <u>V</u> iew Help	6.mdb)
		P 🛚 📴 # 🖁 ½ 🤋 😢
Uptics 5 New Copy Delete Save	Shade Material ID #: 30101 Thickness: 0.024 inches Name: Slat Metal A Product Opaque white colored slat mater Manufacturer: ISO 15099 Solar Trans (Tsol): 0.000 Reflect., Front (Rsol1): 0.700 Reflect., Back (Rsol2): 0.700 Visible Trans (Tvis): 0.000 Reflect., Front (Rvis1): 0.700 Reflect., Back (Rvis2): 0.700 IR Trans (Trif): 0.000 Emis., Front (Emis1) 0.900 Emis., Back (Emis2) 0.900 Conductivity: 92.446 Btu/h-ft-F Color:	
For Help, press F1		Mode: NFRC IP NUM

Figure 4-16. The Shade Material Layer Library Detailed View.

The properties of the slat or other shade material are defined in detail in this library, based on spectrophotometric measurements. If spectral data was imported into this library for a material, the values in the **Shade Material Detailed View** are spectrally averaged properties calculated by the program, in the same manner as for glass layers with spectral data.

NOTE: If there is not spectral data for the shade material, WINDOW 6 cannot calculate the UV results (displayed in the Glazing System Library Optical Data tab, UV section), such as Tdw-K, Tdw-ISO, Tuv.

Shade Material Input

The optical properties defined for each Shade Material entry are listed below:

	5
ID	The unique ID associated with this record. For records whose Source is "IGDB User",
	this ID is assigned in the Optics5 User Database. For records whose Source is "User",
	this ID is assigned automatically by WINDOW but can be overwritten by the user as
	long as it is unique.
Thickness	The thickness of the Shade Material. Units: mm (SI); inches (IP).
Name	The name of the shade material. If the record was imported from the Optics5 User Database, this name will automatically come from that database.

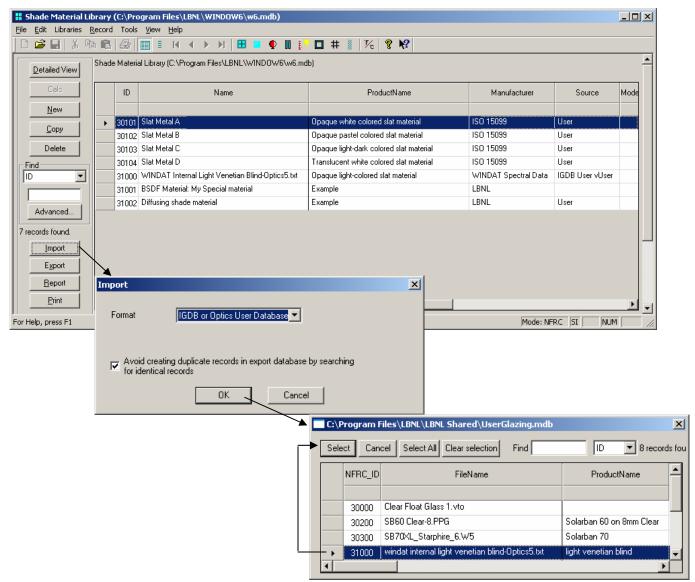
Product	A text field that can be used to specify the product name. If the record was imported from the Optics5 User Database, this name will automatically come from that database.
Manufacturer	The name of the shade material manufacturer. If the record was imported from the Optics5 User Database, this name will automatically come from that database.

Solar

of the shade material.
he shade material, exterior-facing side.
he shade material, interior-facing side.

Visible

Trans (Tvis)	Visible transmittance of the shade material.
Reflect., Front (Rvis1)	Visible reflectance of the shade material, exterior-facing side.
Reflect., Back (Rvis2)	Visible reflectance of the shade material, interior-facing side.
IR	
Trans (Tir)	Thermal infrared (longwave) transmittance of the shade material.
Emis., Front emis1	Infrared (longwave) emittance of the shade material, exterior-facing side
Emis., Back emis2	Infrared (longwave) emittance of the shade material, interior-facing side
Conductivity	Conductance of shade material. Units: W/m-K (SI); Btu/h-ft-ºF (IP)
Color	A graphic representation of the color of the shade material.


DiffusingAll entries in the Shade Material Library are considered to be IR diffusing layers.CommentText box for entry of comments.

Spectral Data for Shade Materials

If spectral data is available for Shade Materials (as in the WINDAT example below), it must be imported into the Optics5 program, saved into an Optics5 User Database. Once in an Optics5 User Database, it can imported into the Shade Material Library, as discussed below.

Steps for importing spectral data from an Optics5 User Database:

- From the List View of the Shade Material Library, click on the Import button.
- In the Import dialog box, set Format to "IGDB or Optics User Database" and click OK. (The Optics User Database that the program will open is set in the File / Preferences menu, Optical Data tab).
- A dialog box showing the records in the Optics User Database will display. Select the desired records and click the **Select** button.
- The selected records will be added to the **Shade Material Library**.

Figure 4-17. Importing spectral data into the Shade Material Library.

In the **Detailed View**, the optical properties displayed are spectrally averaged values calculated from the spectral data.

Η W6 - Shade Materi	al Library (C:\Program Files\LBNL\WINDOW6\w	v6.mdb)	<u>- D ×</u>
<u>File E</u> dit Libraries <u>R</u>	ecord Tools <u>V</u> iew <u>H</u> elp		
🗋 🗅 🚅 🔚 🖌 🖻	🛍 🗁 🖩 🔳 🔳 🖊 🔺 🕨 🕅 🗮 🔲 🍕	🗣 🖩 🛃 🗖 # 🐰 ½	१ №
List Optics 5 New Copy Delete Save	Shade Material ID #: 31000 Thickness: 0.059 inches Name: WINDAT Internal Light Venetian Product Opaque light-colored slat materi Manufacturer: WINDAT Spectral Data Solar Trans (Tsol): 0.000 Reflect., Front (Rsol): 0.544 Visible Trans (Tvis): 0.000 Reflect., Back (Rsol2): 0.544 Visible Trans (Tvis): 0.000 Reflect., Front (Rvis1): 0.469 Reflect., Back (Rvis2): 0.469 IR Trans (Trif): 0.000 Emis., Front (Emis1): 0.900 Emis., Back (Emis2): 0.900 Conductivity: 92.446 Btu/h-ft-F Color:		
For Help, press F1		Mode: NFRC IP NUM	

Figure 4-18. The Detailed View of the Shade Material Library displays the average values for optical properties calculated from the imported spectral data..

BSDF Data for Shade Materials

BSDF data is referenced from the **Shading Layer Library**, but at this time, a record corresponding to that BSDF data also needs to be made in the **Shade Material Library**. This is needed in order to define values for Tir and Front and Back emissivities, because WINDOW 6 is not reading that part of the XML file header.

BSDF data can be generated using a ray tracing program, a modeling program, or measurements.

In the example W6.mdb file that is included in the WINDOW 6 installation, there is an example BSDF file that is referenced from the Shade Layer Library (see that section of this manual for more details) and also an entry for that same BSDF file in the Shade Material Library, as shown below.

Only the IR (infrared) properties need to be entered into this record.

W6 - Shade Material Library (C:\Program Files\LBNL\WINDOW6 File Edit Libraries <u>Record</u> Tools <u>View H</u> elp	i\w6.mdb)
□ 😅 🖬 👗 🛍 📇 🔠 🔳 🖬 🖌 🔺 🕨 🖽 🚥	🍨 🖩 📴 # 🐰 ½ 🤋 😢
Shade Material Dptics 5 Name: BSDF Material: My Special mate Name: BSDF Material: My Special mate Product Example Copy Manufacturer: LBNL Delete Solar Save Trans (T sol): Reflect., Back (Rsol2): Visible Visible Trans (T vis): Reflect., Front (Rvis1): Reflect., Front (Rvis1): Reflect., Back (Rvis2): IIR Trans (Tir): 0.500 Emis., Front (Emis1) 0.900 Emis., Back (Emis2) 0.900 Conductivity: 0.578 Btu/h-ft-F Color: Comment: Used with BSDF Shade Layer #14	S
For Help, press F1	Mode: NFRC IP NUM

Figure 4-19. The Shade Material Layer Library Detailed View of a record that is used with a BDSF file referenced in the Shade Layer Library.

Diffusing Shade Materials

This material is defined for Lambertian perfectly diffusing materials referenced din the **Shade Layer Library**. The W6.mdb included in the WINDOW6 installation includes an example of this type of data, as shown below.

🖁 W6 - Shade Material Library (C:\Program Files\LBNL\WINDOW6	6\w6.mdb)	<u>- 🗆 ×</u>
<u>File Edit Libraries Record Tools View Help</u>		
🗋 😂 🖬 👗 🖻 🛍 🎒 🏢 🔳 🖊 🔺 🕨 州 🎛 📕	🗣 🖩 📴 🛱 🐰 🔀	🤋 🍂
Shade Material ID #: 31002 Thickness: 0.073 ID #: 31002 Name: Diffusing shade material Product Example Copy Manufacturer: Delete Solar Save Reflect., Front (Rsol1): Reflect., Back (Rsol2): 0.300 Reflect., Back (Rsol2): 0.300 Visible Trans (Tvis): 0.400 Reflect., Back (Rvis2): 0.200 IR Trans (Tvis): 0.200 IR Trans (Tir): 0.000 Emis., Front (Emis1) 0.840 Emis., Back (Emis2) 0.840 Conductivity: 0.520 Btu/h-ft-F Color:	25	
For Help, press F1	Mode: NFRC IP NUM	

Figure 4-20. The Shade Material Layer Library Detailed View of a record that is defined for a diffusing layer in the Shade Layer Library.

Woven Shade Material

The Material Library is used to define the thread properties for a woven shade material. All the values should be defined. However, the **Thickness** input in this screen is not used for either the thread diamter or the shade thickness – these are both defined in the Shading Layer Library. If a **Thickness** value is entered in the Material Library for a material used in a woven shade, that thickness is ignored by the program.

Figure 4-21. The Shade Material Layer Library Detailed View of a record that is defined for a woven shade in the Shade Layer Library.

4.4. Glass Library

The Glass Library now allows diffusing layers to be defined, by checking the Diffusing box in the detailed view. Defining a perfectly diffusing glass layer differs from defining a perfectly diffusing Shade Material in that the diffusing glass layer will be treated thermally as a piece of glass, as part of an IG, or with single glazing.

			s\LBNL\WINDOW6\w6.n	idb)														1×
ile <u>E</u> dit Libraries <u>R</u>	ecord	Tools	⊻iew <u>H</u> elp															
🗅 🚅 🔙 X 🖻	B	🖶		🎛 🧧 🌒 💵 🛃 🗖	# 🐰 🍢	% № ?												
		9932	SOLARE3t.LOF	Solar El	Pilkington North	IGDB v11.4	#	3.175	0.477	0.075	0.123	0.596	0.075	0.100	0.000	0.840	0.15	
Delete		9933	SOLARE4.LOF	Solar El	Pilkington North	IGDB v11.4	#	3.912	0.475	0.076	0.121	0.611	0.074	0.101	0.000	0.840	0.15	
Find		9934	SOLARE5.LOF	Solar El	Pilkington North	IGDB v11.4	#	4.699	0.471	0.077	0.119	0.612	0.077	0.107	0.000	0.840	0.16	
ID 💌		9935	SOLARE6.LOF	Solar El	Pilkington North	IGDB v11.4	#	5.664	0.456	0.074	0.113	0.607	0.074	0.097	0.000	0.840	0.16	
		9936	Activ2.lof	Activ on Clear	Pilkington North	IGDB v11.4	#	2.235	0.818	0.123	0.119	0.842	0.149	0.147	0.000	0.833	0.84	
		9937	Activ3.lof	Activ on Clear	Pilkington North	IGDB v11.4	#	2.997	0.801	0.122	0.117	0.838	0.149	0.146	0.000	0.833	0.84	
Advanced		9938	Activ3t.lof	Activ on Clear	Pilkington North	IGDB v11.4	#	3.175	0.797	0.126	0.121	0.835	0.154	0.152	0.000	0.833	0.84	
1756 records found.		9939	Activ4.lof	Activ I on Clear	Pilkington North	IGDB v11.4	#	3.912	0.786	0.120	0.115	0.835	0.148	0.146	0.000	0.833	0.84	
Import		9940	Activ5.lof	Activ on Clear	Pilkington North	IGDB v11.4	#	4.699	0.769	0.118	0.112	0.835	0.145	0.143	0.000	0.833	0.84	
		9941	Activ6.lof	Activ I on Clear	Pilkington North	IGDB v11.4	#	5.639	0.747	0.120	0.112	0.825	0.151	0.147	0.000	0.833	0.84	
Export		9989	ArcticBlue6m.LOF	Arctic Blue	Pilkington North	IGDB v13.9	#	5.918	0.328	0.049	0.049	0.526	0.057	0.057	0.000	0.840	0.84	
<u>R</u> eport		9990	Secl9lam.lof	Solar El laminate	Pilkington North	IGDB v12.1	#	8.484	0.413	0.063	0.121	0.583	0.074	0.099	0.000	0.840	0.15	-
Print	+	9991	Diffusing Glass Example		Generic	User		3.048	0.500	0.300	0.300	0.400	0.200	0.200	0.000	0.840	0.8	
				-														1
NFRC only	•																	
or Help, press F1													Mod	e: NFRO	SI SI	NL	M	17

Figure 4-22. Glass Library allows diffusing layers.

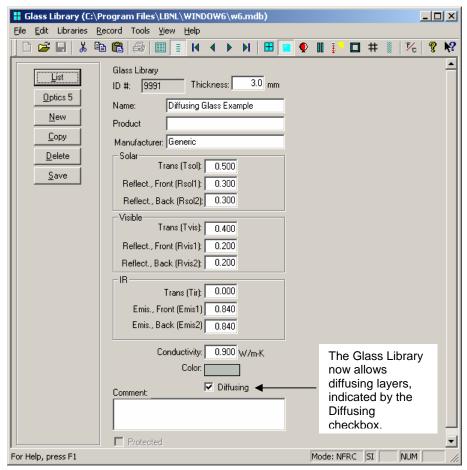


Figure 4-23. Glass Library Detailed View for Diffusing Layers.

4.5. Glazing System Library

The Glazing System Library is where the shading systems are added to the glazing system. There are three example glazing systems with venetian blinds (interior, integral to the IG, and exterior) all at 45°, as well as a glazing system examples for BSDF files and diffusing layers.

4.5.1. Glazing System Library List View

The Glazing System Library List View shows the records in the library.

) 🗃 🖬 X 🖻	8 8	🛄 🗄 H 4 🕨 H 🗏 🖬 🔮 🚺 🛔	7	# 🐰	$ V_{\rm c} $	🤋 🕅									
Detailed View	Files\LBNL'	WINDOW6\w6-AllShadeExamples.mdb)													
Calc	ID	Name	# of Layers	Mode	Tilt	Environmental Conditions	Keff	Overall Thickness	Uval	SHGC	SC	Tvis	RHG	Tdw-ISO	
New							Btu/h-ft-F	inches	Btu/h-ft2-F				Btu/h-ft2		
Copy	▶ 1	Single Clear	1	#	90	NFRC 100-2001	N/A	0.120	1.041	0.860	0.989	0.899	211.0	0.842	
	2	Double Clear Air	2	#	90	NFRC 100-2001	0.037	0.922	0.476	0.704	0.809	0.786	168.8	0.690	
Delete	3	Double Low-e Air	2	#	90	NFRC 100-2001	0.017	0.850	0.292	0.470	0.540	0.696	111.8	0.548	
Find	4	Double Clear with Argon	2	#	90	NFRC 100-2001	0.035	0.740	0.454	0.764	0.878	0.814	182.3	0.738	
ID 💌	5	Triple Clear	3	#	90	NFRC 100-2001	0.046	1.675	0.307	0.617	0.709	0.703	146.6	0.601	
	6	3mm Low-e air	2	#	90	NFRC 100-2001	0.030	1.000	0.314	0.500	0.574	0.721	117.9	0.549	
	7	3mm Clear	2	#	90	NFRC 100-2001	0.029	1.021	0.341	0.686	0.788	0.741	161.8	0.635	
Advanced	8	Sample GizSys	2	#	90	NFRC 100-2001	0.029	1.021	0.341	0.686	0.788	0.741	161.8	0.635	
5 records found.	9	Sample GlzSys Interior Venetian A, 45 degrees	3	#	90	NFRC 100-2001	0.055	1.966	0.301	0.376	0.432	0.224	90.1	-1.000	
Import	10	Sample GlzSys Integral Venetian A, 45 degrees	3	#	90	NFRC 100-2001	0.053	1.021	0.490	0.292	0.336	0.210	74.1	-1.000	
Import	11	Sample GlzSys Exterior Venetian A, 45 degrees	3	#	90	NFRC 100-2001	0.049	1.966	0.253	0.196	0.225	0.193	48.5	-1.000	
Export	12	Sample GlzSys WINDAT Venetian Spectral Data	3	#	90	NFRC 100-2001	0.055	1.966	0.282	0.140	0.161	0.112	36.0	-1.000	
<u>R</u> eport	13	Sample GlzSys BSDF Data	3	#	90	NFRC 100-2001	0.035	1.717	0.235	0.357	0.411	0.350	85.6	-1.000	
Print	14	Sample GlzSys Diffusing Shade	3	#	90	NFRC 100-2001	0.038	1.336	0.295	0.314	0.361	0.279	76.7	-1.000	
	15	Clear Diffusing Glass Laver	2		90	NFRC 100-2001	0.025	0.476	0.557	0.419	0.481	0.348	104.3	-1.000	

Figure 4-24. The Glazing System Layer Library List View.

The buttons on the left hand side of the List View have the following functions:

	0
Detailed View	Goes to the detailed view of the record, where the input values can be edited.
New	Used to make a new record, based on a default record.
Сору	Used to copy an existing record (including name and all associated input values) into a new record.
Delete	Used to delete the highlighted record(s).
Find	Used to find a record based on the field selected from the pulldown list, and a value typed into the input box.
Advanced	Used to access a more advanced method of searching the list
Import	Used to import Glazing System Library records from another WINDOW 6 database.
Export	Used to export Glazing System records to either another WINDOW 6 database, a comma separated "CSV" file, or a WINDOW 4.1 file. (Keep in mind that WINDOW 4.1 will not be able to interpret a file with a glazing system that has a shading device).
Report	Used to create a report containing a summary of the records in the List View or in the Detailed View.
Print	Used to print a report which contains a list of all the records in the library.

4.5.2. Glazing System Library Detailed View

The Glazing System now allows two different types of layers, which are accessed using the pulldown arrow to the left of the layer definition:

- Glass: when this option is selected, the double arrows to the right of the label will open a view into the Glass Library, where a glass layer can be selected.
- Shading: when this option is selected, the double arrows to the right of the label will open a view into the Shading Layer Library, where a shade layer can be selected.

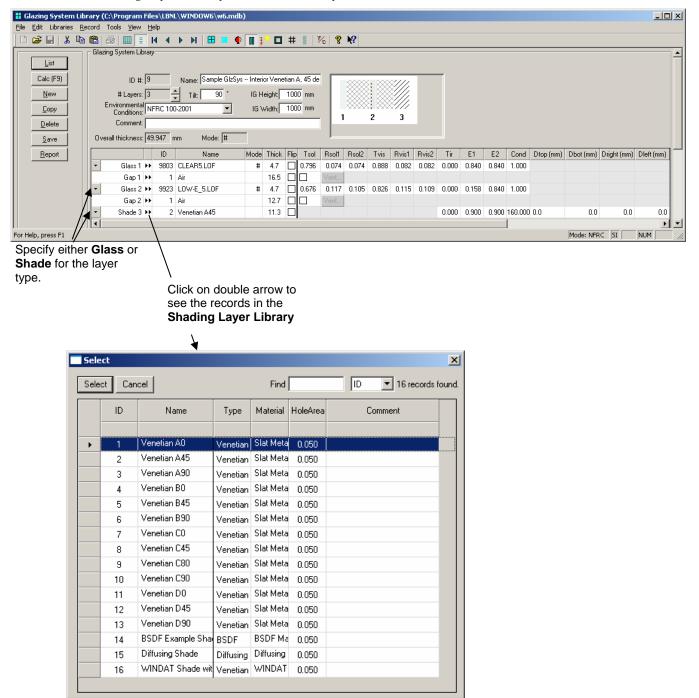
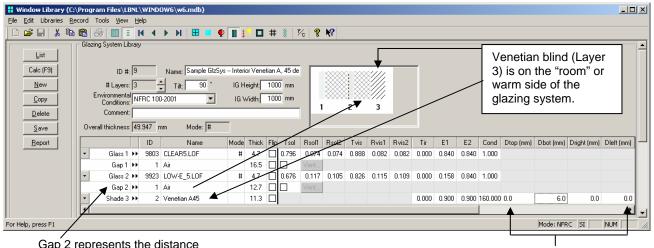


Figure 4-25. Specify the shading layer in the glazing system

4.5.2.1.Glazing System with Venetian Blind Shading System

Glazing systems can have shading systems in three positions with respect to the glass layers:


- **Interior shading system:** this is a shading system that is on the interior or "room" side of the glazing system
- **Integral shading system:** this is a shading layer that is between the glass layers in a glazing system, i.e., inside the IG
- Exterior shading system: this is a shading layer that is on the "exterior" side of the glazing system.

The following is a discussion of modeling venetian blinds in these three positions.

Interior Venetian Blind

An interior venetian blind is defined as being on the "room" or warm side of the glazing system. For this type of venetian blind, the following must be defined:

- Slat Material Properties: defined in the Shade Material Library
- Slat geometry: defined in the Shading Layer Library
- Slat relationship to glazing system: defined in the Glazing System Library. Input required is:
 - Distance from the interior glass layer to the venetian blind (Gap 2 in the diagram below)
 - Distance from the frame to the top (Dtop), bottom (Dbot), left (Dleft) and right (Dright) of the venetian blind. *These distances are NOT used to place the shading device in the THERM file.*

Gap 2 represents the distance from the interior glass layer (Layer 2) to the ventian blind (Layer 3).

Dtop, Dbot, Dright, Dleft define the venetian blind relative to the glazing area for interior and exterior venetian blinds.

Figure 4-26. Define a glazing system with an interior venetian blind.

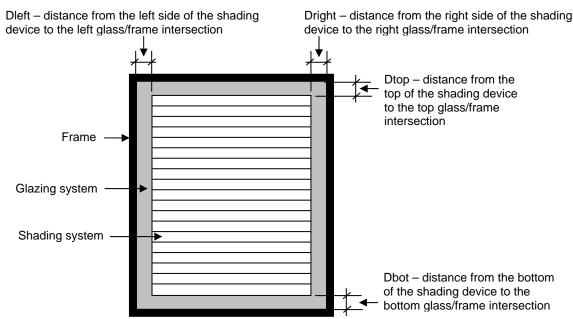
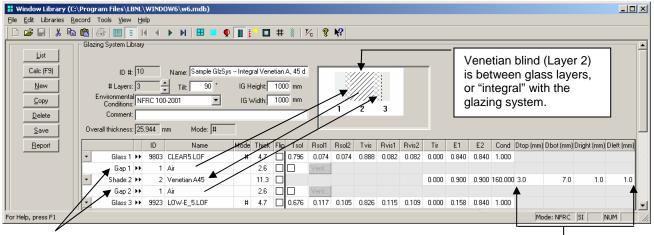



Figure 4-27. Define a Dtop, Dbot, Dleft and Dright for an interior venetian blind.

Integral Venetian Blind

An integral venetian blind is defined as being between two glass layers in a glazing system. For this type of venetian blind, the following must be defined:

- Slat Material Properties: defined in the Shade Material Library
- **Slat geometry:** defined in the Shading Layer Library
- Slat relationship to glazing system: defined in the Glazing System Library. Input required is:
 - Distance from the venetian blind to the interior surfaces of the enclosing glass layers
 - Distance from the *spacer* to the top (Dtop), bottom (Dbot), left (Dleft) and right (Dright) of the venetian blind. *These distances ARE used to place the shading device in the THERM file.*

Gaps 1 and 2 define the distance of the venetian blind from the interior surfaces of the enclosing glass layers.

Dtop, Dbot, Dright, Dleft define the venetian blind relative to the *spacer line* for integral venetian blinds.

Figure 4-28. Define a glazing system with an integral venetian blind

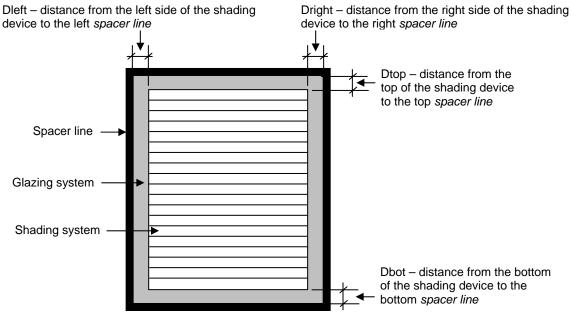
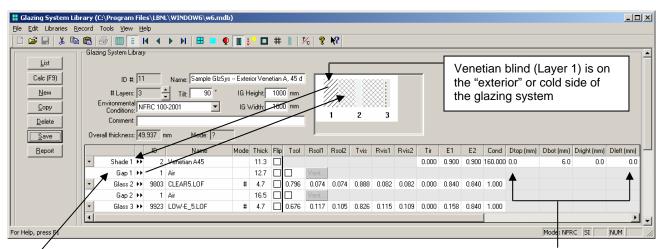



Figure 4-29. Define a glazing system with an integral venetian blind.

Exterior Venetian Blind


An exterior venetian blind is defined as being on the "exterior" or cold side of the glazing system. For this type of venetian blind, the following must be defined:

- Slat Material Properties: defined in the Shade Material Library
- Slat geometry: defined in the Shading Layer Library
- Slat relationship to glazing system: defined in the Glazing System Library. Input required is:
 - Distance from the exterior glass layer to the venetian blind (Gap 1 in the diagram below)
 - Distance from the frame to the top (Dtop), bottom (Dbot), left (Dleft) and right (Dright) of the venetian blind. *These distances are NOT used to place the shading device in the THERM file.*

Gap 1 represents the distance from the interior glass layer (Layer 2) to the ventian blind (Layer 3). Dtop, Dbot, Dright, Dleft define the venetian blind relative to the glazing area for interior and exterior venetian blinds.

Figure 4-30. Define a glazing system with an exterior venetian blind

Figure 4-31. Define a Dtop, Dbot, Dleft and Dright defined for an exterior venetian blind.

4.5.2.2. Glazing System with Shading Layer that has Spectral Data for Shade Material (WINDAT Example)

If spectral data has been imported into the Shade Material Library and used in the Shading Layer Library, that shading layer can be used in a glazing system, and the spectral data will be included in the calculation. The example below shows the glazing system from the sample database (W6.mdb) which has a Shading Layer with spectral data defined as an exterior shading device (Layer 1). (However, this shading device could be used in any layer in the glazing system). Dtop, Dbot, Dright and Dleft are defined in the normal manner.

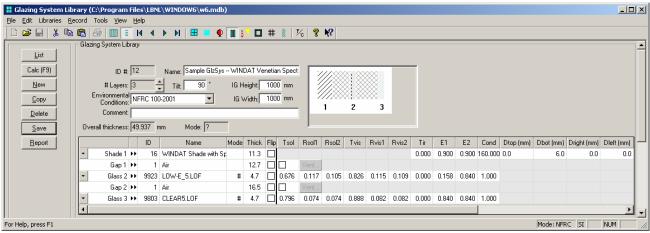


Figure 4-32. Define a glazing system with a shading layer that has spectral data

4.5.2.3. Glazing System with Shading Layer that has BSDF file reference

If a BSDF file has been used in the Shading Layer Library, that shading layer can be used in a glazing system, and the BSDF data will be used in the calculation. The example below shows the glazing system from the sample database (W6.mdb) which has a Shading Layer defined with BSDF data as an exterior shading device (Layer 1). (However, this shading device could be used in any layer in the glazing system). Dtop, Dbot, Dright and Dleft are defined in the normal manner.

🗃 🔚 🖌 🖻			🕨 🕨 🔠 📕 🍨	I III i	7 🗖 -	# 🖇	N 8	N ?											
	Glazing System Libra							-											
List																			
Calc (F9)	ID #: 1	3	Name: Sample GizSys	BSD	FData			4,00000		××	-	1							
New	# Layers: 3		Tile 90 *	IG H	leight:	1000 mr	n }	/		\approx									
Сору	Environmental Conditions:			IG \	/idth:	1000 mr	n 3	/		\sim									
Delete	Comment:							1	2	3									
Save	Overall thickness: 4	3.623 n	nm Mode: ?																
<u>S</u> ave <u>R</u> eport	Overall thickness: 4	3.623 n	nm Mode: ? Name	Mode	Thick	Flip Ts	ol Rsol1	Rsol2	Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Dtop (mm)	Dbot (mm)	Dright (mm)	Dieft (mm)
	Overall thickness: 4	ID	,	Mode	Thick 5.0	Flip Ts	ol Rsol1	Rsol2	Tvis	Rvis1	Rvis2			E2 0.900			Dbot (mm) 6.0	Dright (mm) 0.0	
	,	ID 14	, Name	Mode		Flip Ts	DI Rsol1	Rsol2	Tvis	Rvis1	Rvis2								
	Shade 1 ►	ID 14	Name BSDF Example Shade	Mode #	5.0		Vent					0.500	0.900	0.900	1.000				
	▼ Shade 1 ► Gap 1 ►	ID 14 1 9923	Name BSDF Example Shade Air		5.0 12.7		Vent					0.500	0.900	0.900	1.000				
	Shade 1 Gap 1 Glass 2 Gap 2	ID 14 9923 1	Name BSDF Example Shade Air LOW-E_5.LOF		5.0 12.7 4.7 16.5		Vent 6 0.117 Vent		0.826	0.115	0.109	0.500 0.000	0.900 0.158	0.900 0.840	1.000				Dieft (mm) 0.0

Figure 4-33. Define a glazing system with a shading layer that has a BSDF file reference.

4.5.2.4. Glazing System with Diffusing Shade Layer

If a diffusing shade material has been defined in the Shade Material Library and used in the Shading Layer Library, that diffuse shading layer can be used in a glazing system. The example below shows the glazing system from the sample database (W6.mdb) which has a diffusing shading layer used as an exterior shading device (Layer 1). (However, this shading device could be used in any layer in the glazing system). Dtop, Dbot, Dright and Dleft are defined in the normal manner.

🚦 Glazing System Lib	orary (C:\Program	Files\LBN	L\WINDOW6\w6.n	n db)														_ 0	×
<u>File E</u> dit Libraries <u>R</u> e	ecord Tools ⊻iew	Help																	
🗋 🗅 🚅 📰 🖌 🖻	n 🛍 🗁 💷 📑	•	▶ N 🗄 📒	• 🔟 🗗	□ #	🏽 K	6 😵 K	2											
	Glazing System Li	brary																	
List Calc (F9)	ID #		Name: Sample Giz					: :::::	××		-								
New	# Layers		Tilt 90 *	IG Hei	ght: 1000	mm			×× -										
Сору	Environmenta Conditions	NFRC 10		lG Wi	dth: 1000	mm			~~~										
Delete	Comment					_	1	2	3										
	Overall thickness	-	nm Mode: #																
Save		. 100.020 1	inin mode. j#																
<u>R</u> eport		ID	Name	Mode 1	Fhick Flip	Tsol	Rsol1 R:	ol2 Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Dtop (mm)	Dbot (mm)	Dright (mm)	Dleft (mm)	
	 Shade 1 	➡ 15	Diffusing Shade		2.0						0.000	0.840	0.840	0.900	0.0	6.0	0.0	0.0	
	Gap 1	▶ 1	Air		6.0		Vent												
	▼ Glass 2	▶ 9923	LOW-E_5.LOF	#	4.7	0.676	0.117 0.	105 0.82	0.115	0.109	0.000	0.158	0.840	1.000					
	Gap 2	▶ 1	Air		16.5 🔲 [Vent												
	Glass 3	▶ 9803	CLEAR5.LOF	#	4.7	0.796	0.074 0.	074 0.88	0.082	0.082	0.000	0.840	0.840	1.000					
	•																	►	-1
For Help, press F1																Mode: NFR	IC SI	NUM	11.

Figure 4-34. Define a glazing system with a shading layer that has a diffusing material

4.5.2.5. Glazing System with Diffusing Layer from the Glass Library

A glass layer that has been defined as "diffusing" in the Glass Library can be used as a layer in the glazing system. The example below shows the glazing system from the sample database (W6.mdb) which has a diffusing glass layer used on the exterior (Layer 1) of a two layer glazing system. (However, this glass layer could be used as any layer in the glazing system). Dtop, Dbot, Dright and Dleft are not defined in this case, because the layer is defined as a glass layer.

🚦 Glazing System Librar	r y (C:∖Prog ram f	iles\LBN	L\WINDOW6\w6.mdb])														
<u>File Edit</u> Libraries <u>R</u> ecor	rd Tools <u>V</u> iew	Help																
🗋 🖆 🔚 👗 🖻 🛱	3 🕹 🎹 🔳	▲	🕨 🕨 🔠 📕 🔮		7 🗖	# 🐰 🗌	K₀ 💡	N?										
	Glazing System Libr	ary																_
List																		
Calc (F9)	ID #:	15	Name: Clear Diffusin	g Glass	Layer			-	~~~			-						
New	# Layers:		÷ Til: 90 *			1000 mm		- 1										
								- 1	× .									
	Environmental Conditions:	NERC 10	0-2001	IG V	Width:	1000 mm		1	2									
Delete	Comment:								-									
Save	Overall thickness:	12.096	nm Mode:]														
<u>R</u> eport		ID	Name	Mode	Thick	Flip Tsol	Rsol1	Rsol2	Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Comment		
	 Glass 1 [9991	Diffusing Glass Example		3.0	0.500	0.300	0.300	0.400	0.200	0.200	0.000	0.840	0.840	0.900			
	Gap 1	•• 1	Air		6.0		Vent											
	 Glass 2 I 	• 102	CLEAR_3.DAT	#	3.0	0.834	0.075	0.075	0.899	0.083	0.083	0.000	0.840	0.840	1.000			
																		-
For Help, press F1																Mode:	NFRC SI	NUM ///

Figure 4-35. Define a glazing system with a diffusing layer from the Glass Library

4.5.2.6. Glazing System with Woven Shade Layer

To define a woven shade, the following must be defined:

- **Thread Material Properties:** defined in the Shade Material Library
- Woven fabric geometry: defined in the Shading Layer Library
- Shade relationship to glazing system: defined in the Glazing System Library. Input required is:
 - Distance from the glass layer to the woven shade

Glazing System Library (C:\Program Files\LBNL\WIND File <u>Edit</u> Libraries <u>R</u> ecord Tools <u>Vi</u> ew <u>H</u> elp	0W6\w6.mdb)												
	🗄 📔 🌒 📗	₽ ₽ ₽ ₽	8 K ?	N ?									
Glazing System Library		· · · · ·	« ·o •	•-									▲
List													
Calc (F9) ID #: 19 Name	le GlzSys Interior W	/oven Shade											
New # Layers: 3 Till	90 * IG	Height 1000	mm										
Copy Environmental NFRC 100-2001		i Width: 1000	mm										
Delete Comment:		,	1	2	1	3							
Save Overall thickness: 39.233 mm	Mode: #												
				D 10 T 1	0.14	D : 0 T		50	0.1	Di ()		D:11/	DI GC D
Beport ID ID Glass 1 ▶ 9803 CLEAR		le Thick Flip ‡ 4,7 □		Rsol2 Tvis		Rvis2 Tir		E2	Cond	Dtop (mm)	Dbot (mm)	Dright (mm)	Dielt (mm)
Glass 1 → 9803 CLEAF Gap 1 → 1 Air	10.LUF #	‡ 4.7 □ 1 16.5 □ [0.074 0.888	0.082	0.082 0.0	JU U.84U	0.840	1.000				
Glass 2 → 9923 LOW-	5.LOF #			0.105 0.826	0.115	0.100 0.0	0 0 150	0.040	1.000				
Gap 2 >> 1 Air	_0.LOF +	12.7		0.100 0.020	0.115	0.103 0.0	0.136	0.040	1.000				
	n Shade - Light	0.6	vent			0.0	0.900	0.900	0.127	0.0	6.0	0.0	0.0
	ronado Eigni					0.0	0.500	0.000	0.121	0.0	0.0	0.0	0.0
	- 1	1	1	_									
Center of Glass Results Temperatu	re Data Optical Data	Angular Data	Color Propert	ies									
Ufactor SC	SHGC	Rel. Ht. Gain	Tvis	K	eff	Gap 1 Keff	Gap 2	Keff					
W/m2-K		W/m2		W/	m-K	W/m-K	W/m	-K					
0.740 0.550	0.478	352	0.000	0.0	365	0.0394	0.025	52					
For Help, press F1											Mode: NFR	C SI	

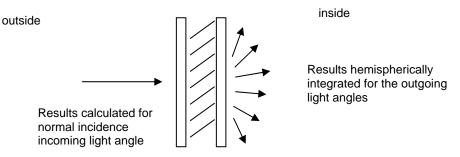
Figure 4-36. Define a glazing system with a diffusing layer from the Glass Library

4.5.2.7. Glazing System with Fritted Glass Layer

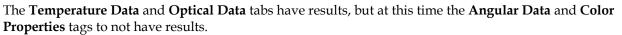
An interior venetian blind is defined as being on the "room" or warm side of the glazing system. For this type of venetian blind, the following must be defined:

	brary (C:\Program Files		₩6\w6.mdb)																	×
	Record Tools View Hel																			
🗅 🚅 🖬 👗 🖻	a 🛍 🗁 🎹 🔳 🕨	(🖽 🖉 🍨 💵	📴 🗖 🕇	# 🐰	™c	🤋 N?													
	Glazing System Library																			
List																				
Calc (F9)	ID #: 20	Name:	Sample GizSys Ir	nterior Woven	Shade	e	12		×.	-	_									
New	# Layers: 2	Tilt	90 * II	G Height 1	000 n	nm	- 2		8											
Сору	Environmental Conditions:	RC 100-2001	• 1	IG Width: 1	000 n	nm	- 2	~~~~~	×1											
Delete	Comment				_		1		2											
Save	Overall thickness: 24.	234 mm 1	/lode: #																	
<u>R</u> eport		ID	Name		Mode	Thick	Flip Tso	I Rsol1	Rsol2	Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Dtop (mm)	Dbot (mm)	Dright (m	
	▼ Shade 1 ▶▶	19 Fritted GI	ass 50% Coverag	ge on Clear		3.0							0.000	0.900	0.900	0.127	0.0	0.0	0	
	Gap1 🙌	1 Air				16.5		Vent												
	Glass 2 ↔	9923 LOW-E_5	5.LOF		#	4.7	0.67	6 0.117	0.105	0.826	0.115	0.109	0.000	0.158	0.840	1.000				
	•																		Þ	
	Center of Glass Result	ts Temperature	Data Optical Dal	ita Angular D	ata	Color Pr	operties													
	Ufactor	SC	SHGC	Rel. Ht. G	ìain		Tvis	K	.eff											
	W/m2-K			W/m2	2			W.	/m-K	1										
	?	?	?	?			?		?											
																				•
For Help, press F1																Ιv	lode: NFRC	SI N	UM	1

Figure 4-37. Define a glazing system with a diffusing layer from the Glass Library


4.6. Calculation Results

WINDOW 6 produces two different sets of results for the glazing system (not the whole window):


- **Results calculated at normal incidence:** these are the results displayed in the Glazing System Library results section (see the discussion below in Section 4.6.1)
- Results calculated for many incoming and outgoing angles: these are the results displayed in the Matrix Reader (see the discussion below in Section 4.6.2)

4.6.1. Glazing System Results

For a glazing system with a shading device, the optical properties of complex glazing systems are calculated at normal incidence for the incoming angle (horizontal to the glazing system) and hemispherically integrated on the outgoing side. This is what is displayed in the "Center of Glass Results" tab in the lower section of the **Glazing System Library** for SC, SHGC, Tvis as well as the results in the **Optical Data** tab in that same section. The thermal results (U-value) are calculated using the ISO 15099 method for shading systems, Section 7.4.2.2.

Figure 4-38. The results in the Glazing System Library are calculated at normal incidence for incoming light and hemispherically integrated for the outgoing light angles.

			L\WINDOW6\w6.md	b)															
<u>File E</u> dit Libraries <u>R</u> e	ecord Tools ⊻iew j	Help																	
🗋 🗁 🔚 🖌 🖻	🛍 😂 🔳 🔳	I	🕨 🕨 🔠 🔛 🍨		7 🗖	# 🐰	1×0	!?											
	Glazing System Libra	iy																	
List																			
Calc (F9)	ID #: 3		Name: Venetian - 40 d	egrees				~~~~	~~~~	~~~~		1							
New	# Layers: 3		Tilt 90 *	IG H	leight:	1000 m	m		***										
Сору	Environmental Conditions:	SHBAE /I	NEBC VE	IG \	, vidth:	1000 m	m	- 2000	***										
Delete	Conditions:						_	1	2	3									
	Overall thickness: 3	2.400	m Mode:	1				-	_										
Save	Uverali (nickness: jo		,					1	1								1		
<u>R</u> eport		ID	Name	Mode					Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Dtop	Dbot	Dright	Dleft
			CLEAR_3.DAT		3.0	0.8		5 0.075	0.899	0.083	0.083	0.000	0.840	0.840	0.900				
	Gap 1 >>		Air Venetian Blind - Windat		12.7		Vent.					0.000	0.000	0.000	1 000		0.0	0.0	0.0
	Gap 2 H				1.0 12.7		Vent.					0.000	0.900	0.900	1.000	0.0	0.0	0.0	0.0
	· · · · · · · · · · · · · · · · ·		CLEAR 3.DAT		3.0			6 0.075	0.899	0.083	0.083	0.000	0.840	0.840	0.900				
		04001	022010.0001		0.0		0.01	0.010	0.000	0.000	0.000	0.000	1	0.040	0.000				
													4						
	Contra (Char Bar					- 1													
	Center or diass nes	uits Tem	nperature Data Optical	Uata	Angula	r Vata	olor Prope	rties											
	Ufactor	S	C SHGC		Rel. H	. Gain	Tvi	:	Ke	ff	Gap 1	Keff	Gap 2	Keff					
	W/m2-K				W/	m2			W/n	n-K	W/n	ъ-К	W/m	·К					
	1.943	0.2	225 0.192		15	58	0.00)	0.08	305	0.07	43	0.081	4					
													_						
		The p	rogram will c	alcu	late	the	optica	l and	ther	mal									
	p p	prope	rties of the gl	azir	ng s	yster	n inclu	Iding	the s	shad	ing				_				
or Help, press F1					-			2			-				Mo	ode: NFR	IC SI		

Figure 4-39. *The program will display glazing system results including the shading system.*

4.6.2. Matrix Calculation Results

If the "Generate full spectrally-averaged matrix for Solar Band and Visible Band" checkboxes are checked in Preferences, WINDOW 6 will generate results for glazing systems with shading devices that include results at all the incoming and outgoing angles defined in the basis.

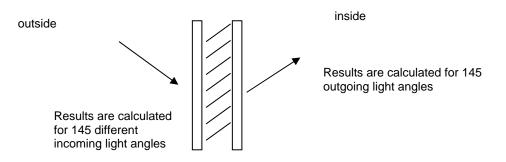


Figure 4-40. The full set of results that WINDOW 6 can calculate are for 145 incoming angles which result in values for 145 outgoing angles. This complete set of results (21,015 values) can be read by the MatrixReader spreadsheet for viewing.

The files containing these results are CSV (comma separated value) text file and are created for every calculated glazing system, and have the name of the glazing system with a CSV extension. The files are located in the program working directory (the default directory being C:\Program Files\LBNL\WINDOW6). The contents of these files can be displayed in the "MatrixReader.xls" spreadsheet provided with the program (and explained in detail later in this section).

To view the detailed angular results in the CSV files, do the following:

- Open the W6MatrixReader.xls spreadsheet with the Microsoft Excel program
- Click on the Load Matrix button, open the file with the desired glazing system name (such as "Venetian - 90 degrees.csv"

The data will be displayed as shown below.

The results shown below are from a glazing system constructed of a double glazed IG (clear 3 mm glass) with a Venetian blind between the panes, with the blind slat tilt set to 40 degrees.

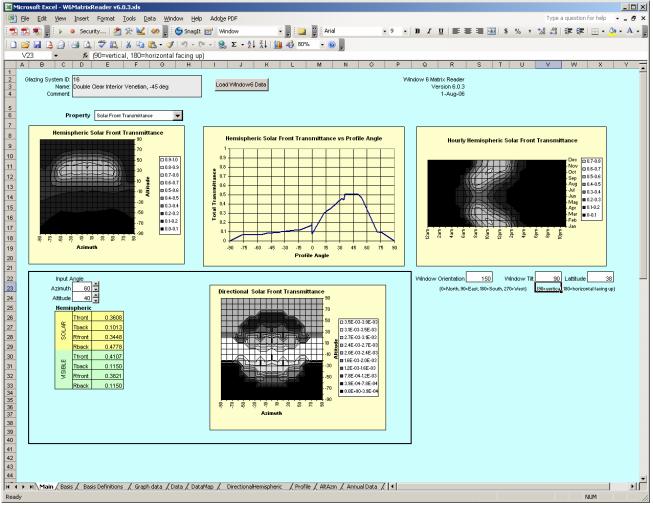
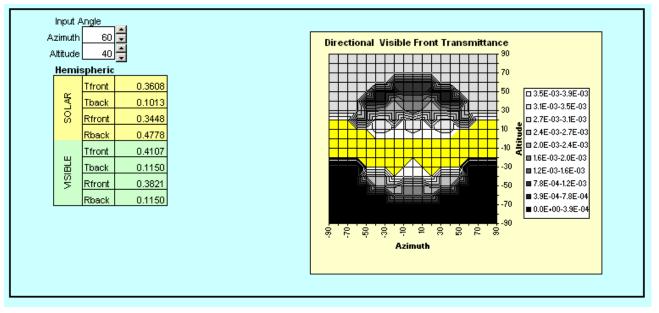
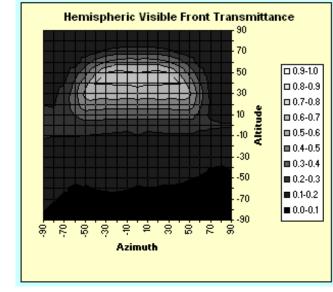



Figure 4-41. The results displayed by the W6MatricReader.xls file.

Each section of the results spreadsheet is explained in the following section.

4.6.3. Tabular Results


Figure 4-42. The tabular results from the complex glazing calculation.

The combination of Azimuth and Altitude represents an angle of a ray of light relative to the glazing system.

The pulldown list listing the front and back transmittance and reflectance for solar and visible wavelengths controls the display of the "polar" graphs. "Front" represents what is being reflected or transmitted into the room. "Back" represents what is being reflected or transmitted on the outside. (Back transmittance is not a very useful piece of data).

Hemispheric

This represents the all the solar radiation, both direct and diffuse, that is either reflected or transmitted for the front and the back of the glazing system.

4.6.4. Hemispheric Visible Front Transmittance

Figure 4-43. The visible front transmittance results from the complex glazing calculation.

4.6.5. Solar Front Transmittance vs Profile Angle

The spreadsheet translates the incoming thetas and phis into profile angles, and this graph plots hemispheric transmittance or reflectance for front or back, against the profile angle.

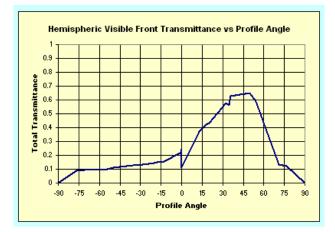


Figure 4-44. The solar front transmittance plotted against the profile angle of the system from the complex glazing calculation.

4.6.6. Hourly Hemispheric Visible Front Transmittance

The spreadsheet calculates a combination of altitude and azimuth values for each hour of the day and day of the year for the sun position of a given latitude (in this case Latitude of 38 degrees), against hemispheric transmittance or reflectance for front or back.

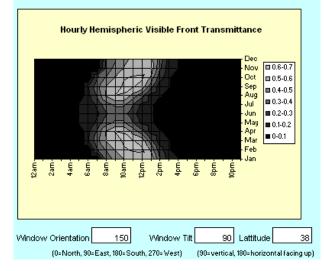


Figure 4-45. The hourly solar front transmittance for each hour of the day over each month of the year.

4.7. Whole Window Results

THERM 6 can read WINDOW 6 glazing systems that contain shading devices, and model them appropriately (see the next section of this manual for a detailed description of THERM 6). When these THERM 6 files with shading devices have been calculated, they can be imported into the THERM 6 Frame library, and then a whole window can be constructed using the glazing system associated with the THERM 6 files, in the normal fashion.

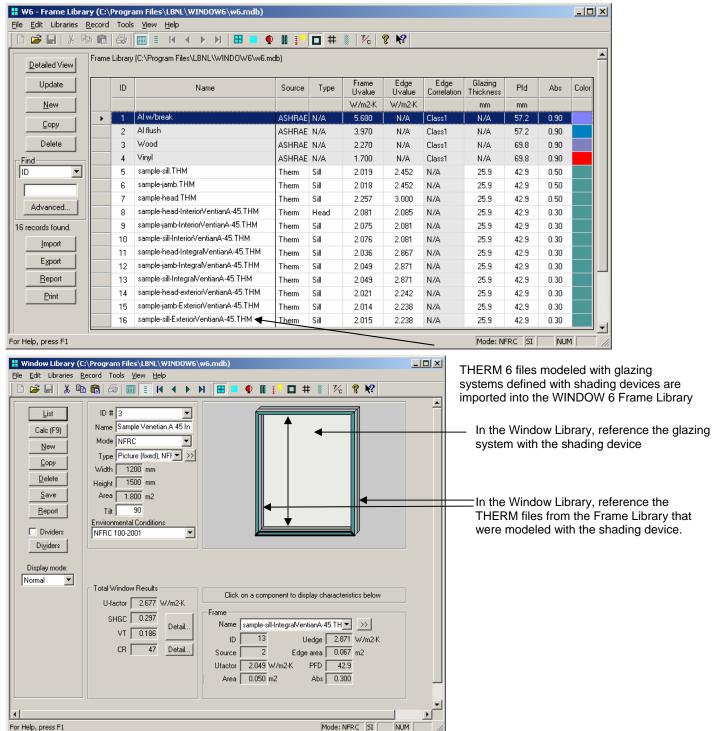


Figure 4-46. The hourly visible back transmittance for each hour of the day over each month of the year.

This section documents in detail each section of the program that has changed from the THERM 5 version. Refer to the THERM 5 documentation for details of program features that have not changed.

5.1. WINDOW 6 Databases with Shading Devices

THERM 6 can read WINDOW 6 databases and interpret the glazing systems that have shading devices. The program will import the shading device and draw a rectangle to represent the shading device.

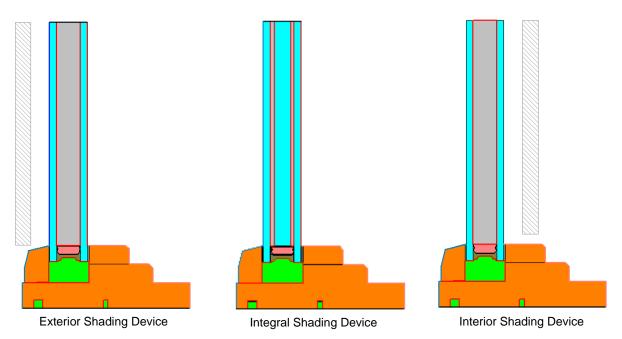

🔡 Window Library (C:\Progra	am Files\LBNL\	WINDOW6/w	v6-GlzSysThic	kness.	mdb)																×
Eile Edit Libraries Record 1	Tools ⊻iew <u>H</u> e	lp.																			
🗋 🖻 🔚 👗 🖻 🛍 🤞	5 💷 🗉 k	• • • •	I 🗄 🔟 🥊		1	#	1	6 💡	N ?												
Glazir	ng System Library																				
List																					
Calc (F9)	ID #: 9	Name	: Sample GizSy	s Intei	ior Vene	tian A	v, 45 de				~////		-								
New	# Layers: 3	 म् ग	, - <u>90</u> *	IG H	leight:	39	inche	s			<i>∭.</i>										
E	nvironmental NF		•]		width:		inche			: ::::	\$///										
Delete	Conditions:						-	1		2	3										
	· · · · ·			_																	
<u>Save</u> Over	all thickness: 1.9	166 inches	Mode: #					· ·													
<u>R</u> eport		ID	Name	Mode	Thick	Flip	Tsol	Rsol1	Rsol2	Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Dtop (in.)	Dbot (in.)	Dright (in.)	Dleft (in.)	
· ·	Glass 1 🕨	9803 CLEA	R5.LOF	#	0.185	_	0.796	0.074	0.074	0.888	0.082	0.082	0.000	0.840	0.840	0.578					
	Gap 1 🕨	1 Air			0.650	_		Vent													
-	Glass 2 🕨	9923 LOW-	E_5.LOF	#	0.186	_	0.676	0.117	0.105	0.826	0.115	0.109	0.000	0.158	0.840	0.578					
	Gap 2 🕨	1 Air			0.500	_		Vent													
•	Shade 3 🕨	2 Venet	ian A45		0.445								0.000	0.900	0.900	92.446	0.000	0.000	0.000	0.000	
																				•	
Cent	er of Glass Resul	ts Temperati	re Data Dotic	IData	Angula	r Data	a Ì Colo	Propert	ies												
		- I remported			Angola	r b dic	1 000	riopon	1001												
	Ufactor	SC	SHGC		Rel. Ht	. Gair	n 🗌	T vis		Ke	ff	Gap 1	Keff	Gap 2	Keff						
	Btu/h-ft2-F				Btu/	h-ft2				Btu/h	i-ft-F	Btu/h	n-ft-F	Btu/h-	ft-F						
	0.3069	0.3476	0.3024		73	.2		0.1665	5	0.05	58	0.02	278	0.064	2						
For Help, press F1																		Mode: NFR	CIP	NUM	

Figure 5-1. A WINDOW 6 glazing system defined with an interior shading system, in this case a venetian blind.

Shading devices are modeled in THERM 6 in slightly different ways, depending on the type of shading devices:

- Exterior and Interior Shading Devices: The shading systems are displayed in the program as a layer associated with the glazing system, located in the proper position relative to the glazing system and the frame, and of the correct thickness. However, the layer is not editable and not actually modeled as a layer. The thermal impact of the shading systems are modeled by applying a "shading system modifier" (derived automatically from the WINDOW 6 glazing system results) to the boundary condition of the boundaries next to the shading devices.
- Integral Shading Devices: these are modeled as an additional "layer" with some algorithm modifications.

THERM displays the shading devices associated with the imported glazing systems as shown below. The hatched rectangles representing the exterior and interior shading devices are for reference, and cannot be edited.

Figure 5-2. Three types of shading systems imported with the WINDOW 6 glazing system into THERM: exterior shade, integral shade (between glass layers), and interior shade.

5.2. Importing WINDOW 6 Glazing Systems with Interior or Exterior Shading Devices

Importing WINDOW 6 glazing systems into THERM 6 differs slightly for each type of shading device, interior, exterior and integral. Interior and exterior are similar to each other in their modeling procedure, and integral (a shading device between glass layers) is quite different. The following section describes each in detail.

After a shading device has been defined in the WINDOW 6 glazing system, it can be imported into THERM 6. This procedure is identical to importing a glazing system without a shading device.

5.2.1. Insert the Glazing System

The steps are briefly listed below, and described in detail in the sections for each shading device type:

- Draw the frame elements
- Go to the Libraries menu and select Glazing Systems
- From the Glazing Systems dialog box, select the desired WINDOW 6 database and the Glazing System from that database
- Set the appropriate values in the Insert Glazing System dialog box

Insert Glazing System	<
Orientation Up	
Cross Section Type Sill Cancel	
CR cavity height 39.3701 inches	
Sight line to bottom of glass 0.4375 inches	
Spacer height 0.4375 inches	
Edge of Glass Dimension 2.5 inches	
Glazing system height 6 Two new fields:	٦
Site line to interior shade edge 0 inches - Site line to interior shade edge	
Site line to exterior shade edge	
☑ Use nominal glass thickness	-
Use CR Model for Window Glazing Systems	
Gap Properties © Default © Custom Gap 1 Keff 0.02660 Btu/h-ft-F Width 0.65 inches	
Spacer	
Draw spacer Single spacer for multiple glazings	
Material	
Boundary Conditions © Use U-factor values © Use SHGC values	
Exterior Boundary Condition	
Use convection plus blackbody radiation	
Interior (20 tilt) Aluminum Frame (convection only)	
]

Figure 5-3. Input the correct values into the Insert Glazing System dialog box.

There are two new fields in the **Insert Glazing System** dialog box for shading devices:

- Site line to interior shade edge: Input this value if the shading device is on the room side of the glazing system, This value is input on this screen, and NOT taken from the WINDOW 6 shading device input of Dbot or Dtop. This value can be negative if the edge of the shading device is below the sight line.
- Site line to exterior shade edge: Input this value if the shading device is on the outside (exterior) of the glazing system. This value is input on this screen, and NOT taken from the WINDOW 6 shading device input of Dbot or Dtop. This value can be negative if the edge of the shading device is below the sight line.

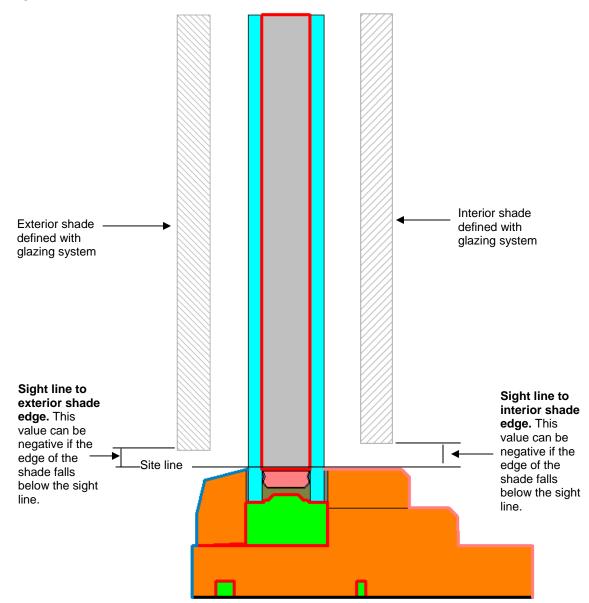
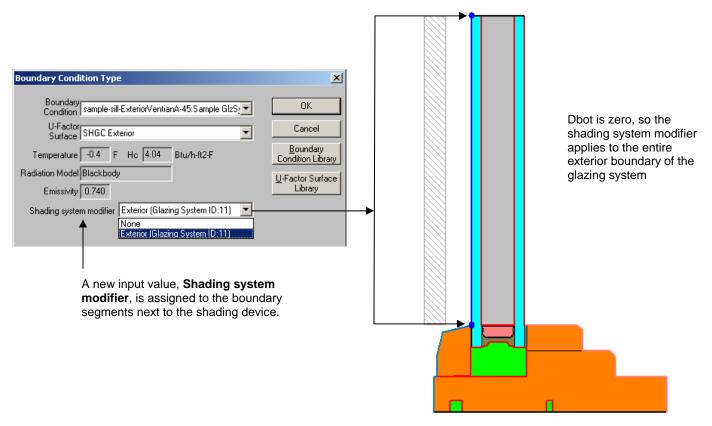


Figure 5-4. Input the distance from the sight line to the edge of the shading device for either an interior or exterior shading device.


• The glazing system will be imported and the shading device displayed as a hatched rectangle.

5.2.2. Define the Boundary Conditions

The boundary conditions for interior and exterior shading systems require applying a "shading system modifier" to the boundary segments that are next to a shading system. These modifiers come into THERM 6 automatically when the glazing system is imported, so most of the time the program should automatically apply these to the glazing system. The only time it is necessary to change the defaults is if the shading system is above or below the sight line of the frame. For those cases, the boundary segments must be broken into sections that are next to the shading system and those that are not, for a given boundary condition type.

This is explained in detail below for an exterior shading system, but the same principles would apply to an interior shading system.

- When the glazing system has been inserted and the frame is complete, generate the boundary conditions in the normal fashion.
- The Boundary Condition Type dialog box has a new input value "Shading system modifier" which will have choices for glazing systems that have shading systems associated with them, with the glazing system ID, as well as a "None" choice for boundary conditions without shading systems next to them.
- If the Dbot, Dtop, Dright and Dleft values are zero, then the default boundary conditions assigned by THERM 6 for the glazing system will be correct

Figure 5-5. Assign the shading modifier to the boundary segments next to the shading device.

If the Dbot, Dtop, Dright and Dleft values are not zero (they can be positive or negative), then the boundary segments next to the shading device must be broken into multiple segments at the point where the projection of the shading device would intersect the boundary segment. Then different Shading sytem modifier values can be assigned to each segment.

- In the figure below, the exterior shading device edge is above the sight line, so some of the glazing system should have a boundary condition with the Shading system modifier set to "None". Therefore, it is necessary to insert a point on the outer glass layer surface before assigning the boundary conditions. To to this, first go to Options/Preferences, Drawing Options tab, and check the "Allow Editing of IG polygons".
- Click on the exterior glass layer and insert a point 6 mm up from the sight line.

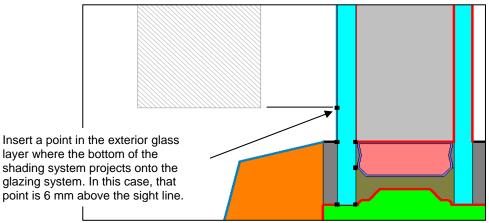


Figure 5-6. Insert a point in the glass layer where the bottom of the venetian blind intersects the glass.

Then generate the boundary conditions and assign the **Shading system modifiers** appropriately.

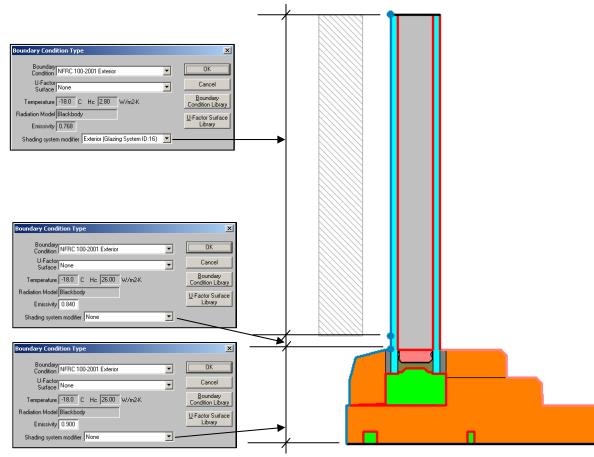


Figure 5-7. Set the Shading system modifier appropriately for each boundary condition segment.

• If the Dbot, Dtop, Dright or Dleft values are negative, the shading device will extend below the sight line and the appropriate frame boundary segments would need to have the **Shading system modifiers** applied.

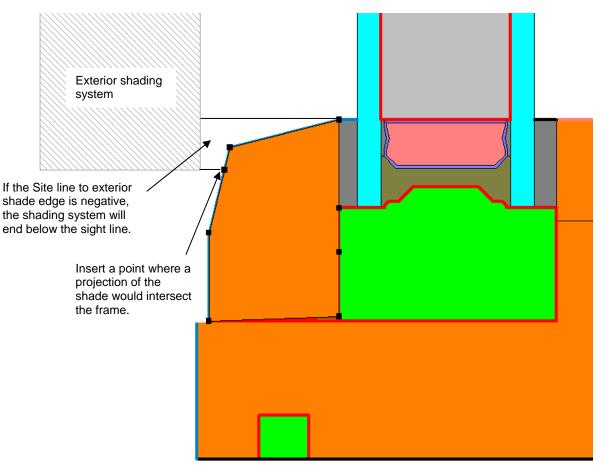


Figure 5-8. Insert a point in the frame where the projection of the shading system intersects it.

• Generate the boundary conditions and assign the shading system modifier to the glazing system and the section of the frame next to the shading system.

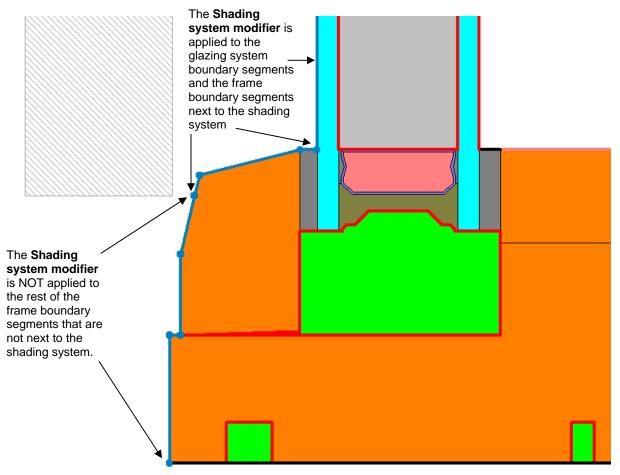


Figure 5-9. Assign the Shading system modifier to all boundary segments next to the shading system.

5.3. Importing WINDOW 6 Glazing Systems with an Integral Shading Device

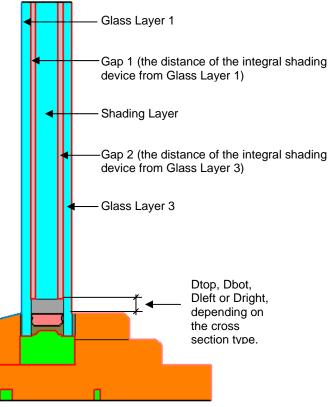
After an integral shading device has been defined in a WINDOW 6 glazing system, it can be imported into THERM 6. This procedure is identical to importing a glazing system without a shading device.

5.3.1. Insert the Glazing System

The steps are briefly listed below, and described in detail in the sections for each shading device type:

- Draw the frame elements
- Go to the Libraries menu and select Glazing Systems
- From the **Glazing Systems** dialog box, select the desired WINDOW database and Glazing System from that database
- Set the appropriate values in the Insert Glazing System dialog box. The two fields used for interior and exterior shading systems (Site line to interior shade edge and Site line to exterior shade edge do not apply to integral shading systems).

Insert Glazing System	X
Orientation Up	
Cross Section Type Sill	Cancel
	Carlos
CR cavity height 39.3701 inches	
Sight line to bottom of glass 0.4375 inches	
Spacer height 0.4375 inches	
Edge of Glass Dimension 2.5 inches	
Glazing system height 6 inches	These fields do not apply to an
Site line to interior shade edge 0 inches	integral shading device – THERM will
Site line to exterior shade edge 0.25 inches	ignore the values that are input here.
Use nominal glass thickness	
Use CR Model for Window Glazing Systems	
Gap Properties	
💿 Default 🔿 Custom Gap <u>1 💌</u>	
Keff 0.02660 Btu	ı/h-ft-F
Width 0.65 inc	hes
Spacer	
Draw spacer	
Single spacer for multiple glazings	
Material	
- Boundary Conditions	
Use U-factor values	
O Use SHGC values	
Exterior Boundary Condition	Interior Boundary Condition
Use convection plus blackbody radiation	Use convection plus enclosure radiation
	Interior (20 tilt) Aluminum Frame (convection only)


Figure 5-10. Input the correct values into the Insert Glazing System dialog box.

- For integral shading devices, THERM uses the the following values from the WINDOW 6 glazing system definition to determine the distance of the venetian blind from the spacer:
 - Dtop for head
 - Dbot (for sill)
 - The average of Dright and Dleft for jambs

					🕨 🕅 🔠 📕 🍯		<u>~ L +</u>		n X	NY I											
	List Calc (F9) <u>N</u> ew <u>C</u> opy <u>D</u> elete	- Gla	izing System Library ID #: 10 # Layers: 3 Environmental Conditions: [N] Comment:		Name: Sample Gizs	IG H	leight:	n A, 45 d 39 inche 39 inche	s	1	2	3		u tł	sed ne eo	to d dge	efine of th	left an e the d e inte spacer	istanc gral sl		
Ē	<u>S</u> ave	0	verall thickness: 1.1)21 ir	nches Mode: 🛱													¥	↓ I	↓	↓
L											-			T 1			.			D 1 1 4 C 3	Dieft (in.)
L	<u>R</u> eport			ID	Name	Mode	Thick Fli	p Tsol	Rsol1	Rsol2	Tvis	Rvis1	Hvis2	Tir	E1	E2	Cond	Dtop (in.)	Dbot (in.)	Dright (in.)	Diert (in. j
L	<u>R</u> eport	·	Glass 1 🕨		Name CLEAR5.LOF			p Tsol] 0.796	Rsol1 0.074	Rsol2 0.074	T vis 0.888	Rvis1 0.082		0.000	E1 0.840		0.578	Dtop (in.)	Dbot (in.)	Dright (in.)	Diert (in.)
	<u>R</u> eport	•	Glass 1 ↔ Gap 1 ↔	9803			0.185											Dtop (in.)	Dbot (in.)	Uright (in.)	Diert (in.)
	<u>R</u> eport	•		9803 1	CLEAR5.LOF		0.185	0.796	0.074					0.000	0.840	0.840			Dbot (in.)		,
	<u>R</u> eport	•	Gap 1 🕨	9803 1 2	CLEAR5.LOF Air		0.185 0.103 0.445 0.445	0.796	0.074					0.000	0.840	0.840	0.578				0.004
	<u>R</u> eport	•	Gap1 ↔ Shade 2 ↔	9803 1 2 1	CLEAR5.LOF Air Venetian A45	#	0.185 0.103 0.445 0.103] 0.796] 🗆]	0.074 Vent	0.074	0.888	0.082		0.000	0.840 0.900	0.840 0.900	0.578 92.446				,

Figure 5-11. The distance from the edge of the shading devic eto the spacer is defined by Dtop, Dbot, Dright or Dlef (depending on the type of cross section) for an integral shading device.

 The glazing system will be imported and the integral shading device will be displayed as a set of layers, representing the gaps on either side of the shading device as well as the shading device itself.

Figure 5-12. THERM will automatically import the glazing system with the shading system edge the specified distance from the spacer, based on Dtop, Dbot, Dleft or Dright.

5.3.2. Define the Boundary Conditions

• For a glazing system with an integral shading device, boundary conditions in THERM 6 are defined in the normal way, and the Shading system modifiers are set to "None" on all boundary segments.

5.4. Import the THERM 6 Files into the WINDOW 6 Frame Library

When all the frame cross sections have been modeled in THERM 6 with shading devices, the files can be imported into the WINDOW 6 Frame Library and used to create a whole window with a shading system, using the normal procedures.

This section documents in detail each section of the program that has changed from the WINDOW 5 version. Refer to the WINDOW 5 documentation for details of program features that have not changed.

6.1. Complex Calculation Methodology Overview

The calculation methodologies in WINDOW 6 for complex glazings are a combination of several procedures, depending on the type of glazing system.

- Matrix Method Calculation Engine
- Angular Basis:
- Venetian Blind Algorithms

6.1.1. Matrix Method Calculation Engine

The properties of system containing layers are built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer by layer absorptances. This is a mathematical method for deriving the overall system transmittance matrix of a set of layers including all the effects of multiple interreflections between layers, from the optical properties of the individual layers.

6.1.2. Venetian Blind Algorithms

The calculation of thermal and optical properties for venetian blinds are based on ISO 15099. The venetian blind is assumed to be a layer in a glazing system, which has similar characteristics to other layers in the glazing system, ie, heat is exchanged between layers by convection, conduction and radiation, and the layer absorbs, reflects and transmits solar radiation. However, venetian blinds in particular, because they are composed of slats, can be partly transmitting of solar radiation as well as thermal (long wave) radiation. The venetian blind is also permeable by air, either through the blind, or around the perimeter.

WINDOW 6 calculates the solar (defined as including the ultraviolet, visible and near infra-red wavelengths) properties (transmittance and reflectance for both the front and back of the blind) for a set of incident (incoming) and outgoing radiation angles (defined by the angular basis, as described below). The results of these calculations are matrices of numbers -- Bi-Directional Transmittance Distribution Functions (BTDF) for front and back transmittance, and Bi-Directional Reflectance Distribution Functions (BRDF) for front and back reflectance. These calculations are done for discrete wavelengths whose spacing depends on the quality of the spectral data available.

These matrices are then used in the calculation of the overall glazing system solar optical properties using the matrix method calculation engine, described above. The venetian blind is treated as a layer in the glazing system, with both specular and diffuse transmission and reflection properties, as oppsoed to the "simple" transparent (glass) layers, which are assumed to have purely specular properties.

The far infra-red (FIR) properties of the venetian blind (transmittance, and emissivity at the front and back of the blind) are also calculated in a single band representing the entire far infra-red range from 2.5 micrometers to 50 micrometers (µm)

Information needed to model venetian blinds include:

- Slat Geometry: This information includes width of the slat, distance between slats, slat tilt angle, radius of slat curvature and number of slat segments in the curvature.
- Slat Optical Properties: This information includes solar properties (front reflectance, back reflectance, transmittance) and far infra-red properties (front emissivity, back emissivity and Transmittance)
- **Angle Coordinates (Basis):** the angle definitions as defined by the basis. This includes defining all the incoming and outgoing angles (which must be the same for each layer in the glazing system).

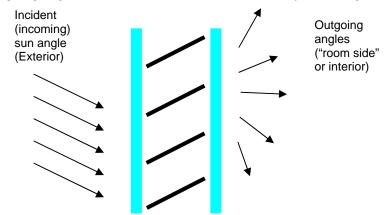
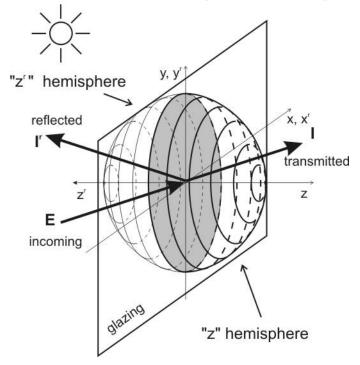



Figure 6-1. Incoming and outgoing light angles are modeled based on the angular "basis" specified.

6.1.3. Angular Coordinates (Basis)

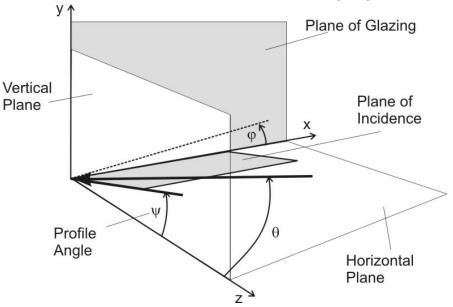

To determine the angular basis for the calculations, a hemisphere is divide into ptaches.

Figure 6-2.Two hemispheres are defined for the incoming and outgoing (or transmitted) angles, each with their corresponding coordinate systems.

The basis are the angles for the center of each patch, so that the basis defines the center and size of the patch. By default in WINDOW 6, the incoming and outgoing angles have to be the same. There are three basis defined for WINDOW 6 (specified in File/Preferences):

- W6 Standard Basis: the full 145 incoming and 145 outoing angles
- W6 Half-size: 73 incoming and outgoing angles
- W6 Quarter-size: 41 incoming and outgoing angles.

The angles are defined as pairs of Theta and Phi, as shown in the following diagram.

Figure 6-3. The angles are defined by pairs of Theta and Phi.

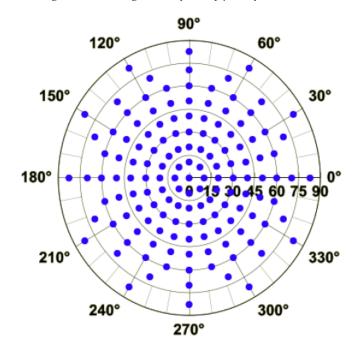


Figure 6-4. The "W6 Standard Basis, which consists of 145 angles.

6.1.4. Woven Shade Algorithms

6.2. ISO 9050 Wavelength Set

Name: iso 9050.wvl

Description: wavelength set from iso9050:2003 very similarr to optics.wvl, by Christian Nov 2005

Wavelength Units: Microns

0.300	0.480	0.76	2	22
0.305	0.490	0.77	2.05	23
0.31	0.500	0.78	2.1	24
0.315	0.510	0.79	2.15	25
0.32	0.520	0.8	2.2	26
0.325	0.530	0.85	2.25	27
0.330	0.540	0.9	2.3	28
0.335	0.550	0.95	2.35	29
0.340	0.56	1	2.4	30
0.345	0.57	1.05	2.45	31
0.350	0.58	1.1	2.5	32
0.355	0.59	1.15	5	33
0.36	0.6	1.2	6	34
0.365	0.61	1.25	7	35
0.37	0.62	1.3	8	36
0.375	0.63	1.35	9	37
0.38	0.64	1.4	10	38
0.385	0.65	1.45	11	39
0.39	0.66	1.5	12	40
0.395	0.67	1.55	13	
0.4	0.68	1.6	14	
0.41	0.69	1.65	15	
0.42	0.7	1.7	16	
0.43	0.71	1.75	17	
0.44	0.72	1.8	18	
0.45	0.73	1.85	19	
0.46	0.74	1.9	20	
0.47	0.75	1.95	21	

Figure 6-5. The Shading Layer library has been added to the Libraries menu.

6.3. W6 BTDF Output File Documentation

The W6 BTDF output file supports 3 different basis definitions:

- 0 = W6 Full-Basis
- 1 = W6 Half-Basis
- 2 = W6 Quarter-Basis

The basis definitions are described in the following sections

The data written with phi varying most rapidly. The first phi is 0° and phis are distributed evenly, so that nPhis=4 would mean 0°, 90°, 180°, 270°. Tables are provided at the end of this document with the full definition of each basis.

The file is a CSV text file with the following format:

Line 1:

GlazingSystemID, GlazingSystemName, NglazingLayers, BaisisID, Comment

Line 2: "Solar Tf"

Line 3 to Line 3+(nAngles-1)

Tfsol(in1, out1), Tfsol (in2, out1), Tfsol (in3, out1)... Tfsol (inN, out1) Tfsol (in1, out2), Tfsol (in2, out2), Tfsol (in3, out2)... Tfsol (inN, out2)

Tfsol (in1, outN), Tfsol (in2, outN), Tfsol (in3, outN)... Tfsol (inN, outN)

"Solar Tb"

Tbsol(in1, out1), Tbsol (in2, out1), Tbsol (in3, out1)... Tbsol (inN, out1) Tbsol (in1, out2), Tbsol (in2, out2), Tbsol (in3, out2)... Tbsol (inN, out2)

Tbsol (in1, outN), Tbsol (in2, outN), Tbsol (in3, outN)... Tbsol (inN, outN)

"Solar Rf"

Rfsol(in1, out1), Rfsol (in2, out1), Rfsol (in3, out1)... Rfsol (inN, out1) Rfsol (in1, out2), Rfsol (in2, out2), Rfsol (in3, out2)... Rfsol (inN, out2)

Rfsol (in1, outN), Rfsol (in2, outN), Rfsol (in3, outN)... Rfsol (inN, outN)

"Solar Rb"

Rbsol(in1, out1), Rbsol (in2, out1), Rbsol (in3, out1)... Rbsol (inN, out1) Rbsol (in1, out2), Rbsol (in2, out2), Rbsol (in3, out2)... Rbsol (inN, out2)

Rbsol (in1, outN), Rbsol (in2, outN), Rbsol (in3, outN)... Rbsol (inN, outN)

Repeats for: Tfvis Tbvis Rfvis Rbvi

6.3.1. W6 Full-Basis (145 angles)

Theta	bound	nPhis
0	5	1
10	15	8
20	25	16
30	35	20
40	45	24
50	55	24
60	65	24
70	75	16
82.5	90	12

Angle indices for W6 Full Basis

Ally		
n	Theta	Phi
1	0	0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	10	0
3	10	45
4	10	90
5	10	135
6	10	180
7	10	225 270
8	10	270
9	10	315
10	20	0
11	20	22.5
12	20 20	22.5 45
13	20 20 20	67.5
14	20	90
15	20	112.5
16	20	135
17	20	157.5
18	20	180
19 20	20 20	202.5 225
20	20	225
21	20	247.5
21 22 23	20	247.5 270
23	20	292.5
24	20 20 20	315
25	20	337.5
26	30	0
27	30	18
28	30	36
29	30	54
30	30	54 72 90 108
31	30	90
32	30	108
33	30	126
34	30	144

25	20	400
35	30	162
n	Theta	Phi
36	30	180
37	30	198
38	30	216
39	30	234
40	30	234 252 270
41	30	270
42	30	288
43	30	306
44	30	324
		342
45	30	
46	40	0
47	40	15
48	40	30
49	40	45
50	40	60
51	40	75
52	40	90
53	40	105
54	40	120
55	40	135
56	40	150
57	40	165
58	40	180
59	40	195
	40	210
60		i
61	40	225
62	40	240
63	40	255
64	40	270
65	40	285
66	40	300
67	40	315
68	40	330
69	40	345
70	50	0
n	Theta	Phi
71	50	15
72	50	30
73	50	45
73	50	43 60
75	50	75
76	50	90
77	50	105
78	50	120
79	50	135

		-
80	50	150
81	50	165
82	50	180
02	50	
83	50	195
0.4		210 225 240
84	50	210
85	50	225
		220
86	50	240
87	50	255
		200
88	50	270
		205
89	50	255 270 285
90	50	300
		300 315 330
91	50	315
92	50	330
52		000
93	50	345
94	60	
94	00	0
95	60	15
		15 30
96	60	30
97	60	45
98	60	60
99	60	75
		75
100	60	90
	<u></u>	
101	60	105
102	60	120
102	00	120
103	60	135
104	60	150
104	60	150
104		
104 105	60	165
104 105 n	60 Theta	165 Phi
104 105 n	60 Theta	165 Phi
104 105 n 106	60 Theta 60	165 Phi 180
104 105 n 106 107	60 Theta 60 60	165 Phi 180
104 105 n 106 107	60 Theta 60 60	165 Phi 180
104 105 n 106 107 108	60 Theta 60 60 60	165 Phi 180
104 105 n 106 107 108	60 Theta 60 60 60 60	165 Phi 180
104 105 106 107 108 109	60 Theta 60 60 60 60	165 Phi 180
104 105 106 107 108 109 110	60 Theta 60 60 60 60 60	165 Phi 180 195 210 225 240
104 105 106 107 108 109	60 Theta 60 60 60 60	165 Phi 180 195 210 225 240
104 105 106 107 108 109 110 111	60 Theta 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255
104 105 106 107 108 109 110 111 112	60 Theta 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270
104 105 106 107 108 109 110 111 112	60 Theta 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270
104 105 106 107 108 109 110 111 112 113	60 Theta 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285
104 105 106 107 108 109 110 111 112 113 114	60 Theta 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270
104 105 106 107 108 109 110 111 112 113 114	60 Theta 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300
104 105 106 107 108 109 110 111 112 113 114 115	60 Theta 60 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300 315
104 105 106 107 108 109 110 111 112 113 114	60 Theta 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300
104 105 106 107 108 109 110 111 112 113 114 115 116	60 Theta 60 60 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300 315 330
104 105 106 107 108 109 110 111 112 113 114 115 116 117	60 Theta 60 60 60 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300 315
104 105 106 107 108 109 110 111 112 113 114 115 116 117	60 Theta 60 60 60 60 60 60 60 60 60 60 60	165 Phi 180 195 210 225 240 255 270 285 300 315 330
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	60 Theta 60 60 60 60 60 60 60 60 60 60 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 120	60 Theta 60 60 60 60 60 60 60 60 60 60 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	60 Theta 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5 90
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123	60 Theta 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5 90 112.5
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	60 Theta 60 60 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5 90 112.5 135
104 105 n 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123	60 Theta 60 60 60 60 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70	165 Phi 180 195 210 225 240 255 270 285 300 315 330 345 0 22.5 45 67.5 90 112.5

126 70 180 127 70 202.5 128 70 247.5 129 70 247.5 130 70 270 131 70 292.5 132 70 315 133 70 337.5 134 82.5 00 135 82.5 30 136 82.5 60 137 82.5 120 138 82.5 120 139 82.5 150
128 70 225 129 70 247.5 130 70 270 131 70 292.5 132 70 315 133 70 337.5 134 82.5 00 135 82.5 30 136 82.5 60 137 82.5 120
129 70 247.5 130 70 270 131 70 292.5 132 70 315 133 70 337.5 134 82.5 00 135 82.5 30 136 82.5 60 137 82.5 120
130 70 270 131 70 292.5 132 70 315 133 70 337.5 134 82.5 00 135 82.5 30 136 82.5 60 137 82.5 120
131 70 292.5 132 70 315 133 70 337.5 134 82.5 0 135 82.5 30 136 82.5 60 137 82.5 90 138 82.5 120
132 70 315 133 70 337.5 134 82.5 0 135 82.5 30 136 82.5 60 137 82.5 90 138 82.5 120
133 70 337.5 134 82.5 0 135 82.5 30 136 82.5 60 137 82.5 90 138 82.5 120
134 82.5 0 135 82.5 30 136 82.5 60 137 82.5 90 138 82.5 120
135 82.5 30 136 82.5 60 137 82.5 90 138 82.5 120
136 82.5 60 137 82.5 90 138 82.5 120
137 82.5 90 138 82.5 120
138 82.5 120
139 82.5 150
140 82.5 180
141 82.5 210
142 82.5 240
143 82.5 270
144 82.5 300
145 82.5 330

6.3.2. W6 Half-Basis (73 angles)

Theta	bound	nPhis
0	6.5	1
13	19.5	8
26	32.5	12
39	46.5	16
54	61.5	20
69	76.5	12
83.25	90	4

Angle indices for W6 Half Basis

n	Theta	Phi
1	0	0
2	13	0 45
3	13	45
4	13	90
5	13 13 13 13 13 13 13 13 13 26 26 26 26	135
6	13	180 225 270 315 0
7	13	225
8	13	270
9	13	315
10	26	0
11	26	30
12	26	60
13	26	90
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16	26 26 26 26	120 150
15	26	150
16	26	180

]
17	26	210
18	26	240
17 18 19	26	210 240 270 300 330
20	26	300
21	26	330
22	39	0
23	26 26 26 26 39 39	22.5
20 21 22 23 24 25 26 27 28 29	39	22.5 45 67.5 90 112.5 135 157.5 180
25	39	67.5
26	39	90
27	39	112.5
28	39	135
29	39	157.5
30	30	180
31	30	202.5
22	20	202.5
32	29	225
33	39	247.5
30 31 32 33 34 35	39 39 39 39 39 39 39 39 39 39	202.5 225 247.5 270 292.5
35	39	292.5
36	39	315
37	39	337.5
38 39 nT h	39 54 54	0 18
39	54	18
nTh	eta F	Phi
40	54	36
	E 4	54
41	54	J-
41	54 54	72
41 42 43	54 54 54	72 90
41 42 43 44	54 54 54 54	72 90 108
41 42 43 44 45	54 54 54 54 54	72 90 108 126
41 42 43 44 45 46	54 54 54 54 54 54	72 90 108 126 144
46	54 54 54 54 54 54 54	72 90 108 126 144 162
46 47	54 54 54 54 54 54 54 54	36 54 72 90 108 126 144 162 180
46 47 48	54 54 54 54 54 54 54 54	180
46 47 48	54 54 54 54 54 54 54 54 54	180
46 47 48 49 50	eta F 54 54 54 54 54 54 54 54 54 54 54	180 198 216
46 47 48 49 50 51	54	180 198 216 234
46 47 48 49 50 51 51 52	54 54	180 198 216 234 252
46 47 48 49 50 51 52 53	54 54 54	180 198 216 234 252 270
46 47 48 49 50 51 52 53 54	54 54 54 54	180 198 216 234 252 270 288
46 47 48 50 51 52 53 54 55	54 54 54 54 54	180 198 216 234 252 270 288 306
46 47 48 50 51 52 53 53 54 55 56	54 54 54 54 54 54	180 198 216 234 252 270 288 306 324
46 47 48 50 51 52 53 54 55 55 56 57	54 54 54 54 54 54 54 54	180 198 216 234 252 270 288 306 324 342
46 47 48 49 50 51 52 53 52 53 54 55 55 56 57 58	54 54 54 54 54 54 54 54 69	180 198 216 234 252 270 288 306 324 342 0
46 47 48 49 50 51 52 53 54 55 55 56 57 58 59	54 54 54 54 54 54 54 69 69	180 198 216 234 252 270 288 306 324 342 0 30 300
46 47 48 50 51 52 53 54 55 55 56 57 58 59 60	54 54 54 54 54 54 54 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 30 60
46 47 48 50 51 52 53 54 55 55 56 57 58 59 60 61	54 54 54 54 54 54 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90
46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62	54 54 54 54 54 54 54 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90 120
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	54 54 54 54 54 54 69 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90 120 150
46 47 48 49 50 51 52 53 54 55 56 57 58 57 58 59 60 61 62 63 64	54 54 54 54 54 54 69 69 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90 120 150 180
46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	54 54 54 54 54 54 69 69 69 69 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90 120 150 180 210
46 47 48 49 50 51 52 53 54 55 56 57 58 57 58 59 60 61 62 63 64 65 66	54 54 54 54 54 54 69 69 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 30 60 90 120 150 180 210 240
46 47 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	54 54 54 54 54 54 69 69 69 69 69 69 69 69 69	180 198 216 234 252 270 288 306 324 342 0 30 60 90 120 150 180 210

68	69	300
69	69	330
70	83.25	0
71	83.25	90
72	83.25	180
73	83.25	270

6.3.3. W6 Quarter-Basis (41 angles)

Theta	bound	nPhis
0	9	1
18	27	8
36	46	12
56	66	12
78	90	8

Angle indices for W6 Quarter Basis

n	Theta	Phi
1	0	0
2	18	0
3	18	45
4	18	90 135 180 225 270 315
5	18	135
6	18	180
7	18	225
8	18	270
9	18	315
10	36	0
11	36	30
12	36	60
13	36	30 60 90 120 150 180 210 240 270 300 330
14	36	120
15	36	150
16	36	180
17	36	210
18	36	240
19	36	270
20	36	300
21	36	330
22	56	0
23	56	30
24	56	60
25	56	90
26	56	120
27	56	150
28	56	180
29	56	210
n 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 22 23 24 25 26 27 27 28 29 30	18 18 18 18 18 18 18 18 18 18 18 18 18 36	30 60 90 120 150 180 210 240

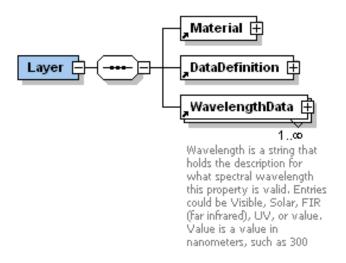
31	56	270
32	56	300
33	56	330
34	78	0
35	78	45
36	78	90
37	78	135
38	78	180
39	78	225
40	78	270
41	78	315

6.4. Documentation for LBNL BSDF XML spec

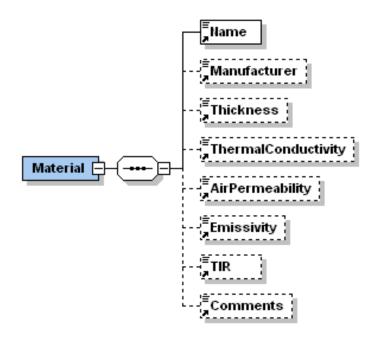
The XML schema was written using Altova XML Spy Home Edition (www.altova.com)

The XML schema is stored in the file BSDF.xsd. This schema definition files contains the structure and other requirements that the data files (XML) have to adhere to. Many XML editors have the capability to validate an XML file against an XSD schema.

This XML schema was designed to store BSDF (bi directional scattering distribution function) data for complex glazing types. All the data for a given layer or system are stored in one file. This includes the following data sections 'Transmission Front', "Transmission Back", "Reflection Front", "Reflection Back". It also allows storage of these properties at various wavelengths. The angular basis for this data is also specified in the file.

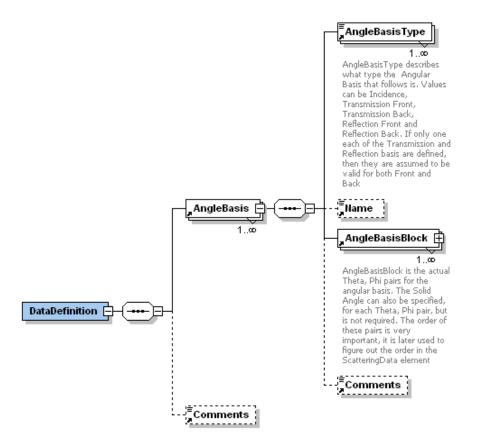

Here is an example of the most basic XML file that validates against the XSD schema:

```
<?xml version="1.0" encoding="UTF-8"?>
<Layer xmlns="http://windows.lbl.gov"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://windows.lbl.gov BSDF.xsd">
<Material><Name>My Test Material</Name></Material>
<DataDefinition>
            <AngleBasis>
                  <AngleBasisType>Incidence</AngleBasisType>
                  <AngleBasisBlock>
                        <Theta>0</Theta>
                        <Phi>0</Phi>
                  </AngleBasisBlock>
            </AngleBasis>
            <AngleBasis>
                  <AngleBasisType>Transmission Front and Back</AngleBasisType>
                  <AngleBasisBlock>
                        <Theta>0</Theta>
                        <Phi>0</Phi>
                  </AngleBasisBlock>
            </AngleBasis>
            <AngleBasis>
                  <AngleBasisType>Reflection Front and Back</AngleBasisType>
                  <AngleBasisBlock>
                        <Theta>0</Theta>
                        <Phi>0</Phi>
                  </AngleBasisBlock>
            </AngleBasis>
      </DataDefinition>
      <WavelengthData>
            <Wavelength unit="integral">Visible</Wavelength>
            <WavelengthDataBlock>
                  <WavelengthDataType>Transmission Front</WavelengthDataType>
                  <ScatteringDataType>BTDF</ScatteringDataType>
                  <<u>ScatteringData</u>>long string with space delimited all the
values of the BSDF</ScatteringData>
            </WavelengthDataBlock>
            <WavelengthDataBlock>
                  <WavelengthDataType>Reflection Front</WavelengthDataType>
                  <ScatteringDataType>BTDF</ScatteringDataType>
```


Explanation

Layer is the data value that holds all the information, it is the container for one system or layer. xmlns, which defines in what namespace all the variables are defined.

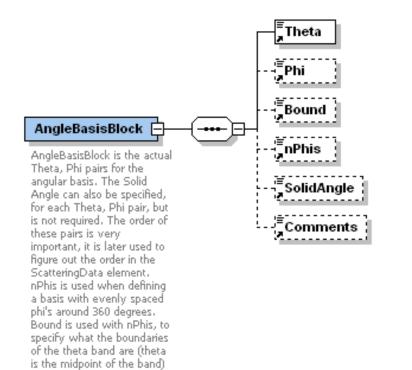
```
<Layer xmlns="http://windows.lbl.gov"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://windows.lbl.gov BSDF.xsd">
```



There are three elements defined in Layer; Material, DataDefintion and WavelengthData.

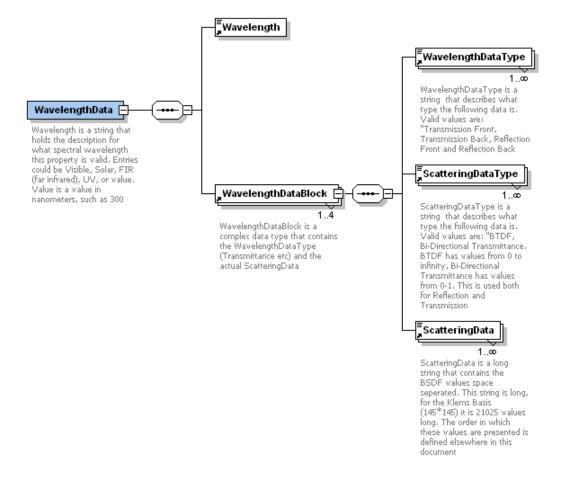
Material is an element that contains useful information about the sample. "Name" is the only required element (solid line around the box), all other elements that are shown above with dashed-lines around the box are optional.

<<u>Material</u>><<u>Name</u>>My Test Material</<u>Name</u>></<u>Material</u>> In the example file above, Name is the only element defined.


DataDefinition is the section where we define what kind of data is presented in the WavelengthData section.

DataDefinition contains only 1 element and a comment. AngleBasis is the important one. It is made up from AngleBasisType, Name, AngleBasisBlock and Comments.

AngleBasisType describes what type the Angular Basis that follows is. Values can be Incidence, Transmission Front, Transmission Back, Transmission Front and Back, Reflection Front, Reflection Back and Reflection Front and Back. If only one each of the Transmission and Reflection basis are defined, then they are assumed to be valid for both Front and Back


AngleBasisBlock is the actual Theta, Phi pairs for the angular basis, or a definition of evenly spaced Phi's in a theta band. The Solid Angle can also be specified, for each Theta, Phi pair, but is not required. If the full theta, phi pairs aren't specified, you can also use nPhis as a variable to specify the number of phi's in a certain Theta ring. They are assumed to be distributed evenly around 360 degrees. The order of these pairs is very important, it is later used to figure out the order in the ScatteringData element. Bound specifies the upper boundary for the theta band. For example if the theta angles are 50, 60, 70 and 90 degrees, then the Bound value could be 55, 65, 80. For the Klems basis, this will be 145 pairs like this: <<u>AngleBasisBlock>Theta>0</Phi>(Phi></AngleBasisBlock></u>

Or for the Klems basis with evenly spaced phi's, it can look like this: <a href="https://www.canalytication-complexation-c


```
<DataDefinition>
```

```
<AngleBasis>
            <AngleBasisType>Incidence</AngleBasisType>
            <AngleBasisBlock>
                  <Theta>0</Theta>
                  <Phi>0</Phi>
            </AngleBasisBlock>
      </AngleBasis>
      <AngleBasis>
            <AngleBasisType>Transmission Front and Back</AngleBasisType>
            <AngleBasisBlock>
                  <Theta>0</Theta>
                  <Phi>0</Phi>
            </AngleBasisBlock>
      </AngleBasis>
      <AngleBasis>
            <AngleBasisType>Reflection Front and Back</AngleBasisType>
            <AngleBasisBlock>
                  <Theta>0</Theta>
                  <Phi>0</Phi>
            </AngleBasisBlock>
      </AngleBasis>
</DataDefinition>
```


WavelenghtData is made up from the elements Wavelength and WavelengthDataBlock.

Wavelength defines for what wavelength the following set of scatteringdata is valid. This could be an integral such as Visible, Solar, NIR, FIR. Where the wavelength ranges are: Visible (380-780 nm), Solar (300-2500 nm), NIR (near IR, 780-2,500 nm), FIR (5,000- 40,000 nm), or a value, such as 300. It is important to use the "unit" attribute. The units can be "integral", "nanometers", "microns", "micrometers".

WavelengthDataBlock is a complex data type that contains the WavelengthDataType (Transmittance etc), The ScatteringDataType and the actual ScatteringData.

WavelengthDataType is a string that describes what type the following data is. Valid values are: "Transmission Front, Transmission Back, Reflection Front and Reflection Back "

ScatteringDataType is a string that describes what type the following data is. Valid values are: "BTDF, Bi-Directional Transmittance. BTDF has values from 0 to infinity, Bi-Directional Transmittance has values from 0-1. This is used both for Reflection and Transmission

ScatteringData is a long string that contains the BSDF values space seperated. This string is long, for the Klems Basis (145*145) it is 21025 values long. The order in which these values are presented is defined elsewhere in this document

<WavelengthData>

```
<Wavelength unit="integral">Visible</Wavelength>
            <WavelengthDataBlock>
                  <WavelengthDataType>Transmission Front</WavelengthDataType>
                  <ScatteringDataType>BTDF</ScatteringDataType>
                  <<u>ScatteringData</u>>long string with space delimited all the
values of the BSDF</ScatteringData>
            </WavelengthDataBlock>
            <WavelengthDataBlock>
                  <WavelengthDataType>Reflection Front</WavelengthDataType>
                  <ScatteringDataType>BTDF</ScatteringDataType>
                  <<u>ScatteringData</u>>long string with space delimited all the
values of the BSDF</ScatteringData>
            </WavelengthDataBlock>
            <WavelengthDataBlock>
                   <WavelengthDataType>Reflection Back</WavelengthDataType>
                  <ScatteringDataType>BTDF</ScatteringDataType>
                  <<u>ScatteringData</u>>long string with space delimited all the
values of the BSDF</ScatteringData>
            </WavelengthDataBlock>
      </WavelengthData>
```

6.5. Standards Files used in WINDOW 6

WINDOW 6 references the W5_NFRC_2003.std file for definitions of calculation standards. This file is found in the "LBNL Standards" sub-directory where the WINDOW 6 program is installed (the default being c:\Program Files\LBNL\LBNL Standards).

6.5.1. W5_NFRC_2003.std

Below is a listing from the W5_NFRC_2003.std file listing the standard assumptions used in WINDOW 6 for optical properties calculations.

```
Standard Description : Consistent with NFRC 300-2003 - default for WINDOW5
Standard Provides Methods: SOLAR, PHOTOPIC, COLOR TRISTIMX, COLOR TRISTIMY,
COLOR_TRISTIMZ, THERMAL IR, TUV, SPF, TDW, TKR
Name : SOLAR
Description : NFRC 300-2003 Solar
Source Spectrum : ASTM E891 Table 1 Direct AM1_5.ssp
Detector Spectrum : None
Wavelength Set : Source
Integration Rule : Trapezoidal
Minimum Wavelength : 0.3
Maximum Wavelength : 2.5
Name : PHOTOPIC
Description : NFRC 300-2003 Photopic
Source Spectrum : CIE Illuminant D65 1nm.ssp
Detector Spectrum : ASTM E308 1931 Y.dsp
Wavelength Set : Color 5nm.wvl
Integration Rule : Trapezoidal
Minimum Wavelength : 0.38
Maximum Wavelength : 0.78
Name : COLOR TRISTIMX
Description : ASTM E308 Color - not in NFRC 300-2003
Source Spectrum : CIE Illuminant D65 1nm.ssp
Detector Spectrum : ASTM E308 1964 X.dsp
Wavelength Set : Color 5nm.wvl
Integration Rule : Trapezoidal (Normalized, k=1.0)
Minimum Wavelength : 0.38
Maximum Wavelength : 0.78
Name : COLOR_TRISTIMY
Description : ASTM E308 Color - not in NFRC 300-2003
Source Spectrum : CIE Illuminant D65 1nm.ssp
Detector Spectrum : ASTM E308 1964 Y.dsp
Wavelength Set : Color 5nm.wvl
Integration Rule : Trapezoidal (Normalized, k=1.0)
Minimum Wavelength : 0.38
Maximum Wavelength : 0.78
Name : COLOR_TRISTIMZ
Description : ASTM E308 Color - not in NFRC 300-2003
Source Spectrum : CIE Illuminant D65 1nm.ssp
Detector Spectrum : ASTM E308 1964 Z.dsp
```

Wavelength Set : Color 5nm.wvl Integration Rule : Trapezoidal (Normalized, k=1.0) Minimum Wavelength : 0.38 Maximum Wavelength : 0.78 Name : THERMAL IR Description : Thermal Infrared average - not in NFRC 300-2003 Source Spectrum : Blackbody (T=300.0K) Detector Spectrum : None Wavelength Set : Data Integration Rule : Trapezoidal Minimum Wavelength : 5.0 Maximum Wavelength : Wavelength set Name : TUV Description : Unweighted UV average - not in NFRC 300-2003 Source Spectrum : ASTM E891 Table 1 Direct AM1_5.ssp Detector Spectrum : None Wavelength Set : Source Integration Rule : Trapezoidal Minimum Wavelength : 0.31 Maximum Wavelength : 0.38 Name : SPF Description : Skin Protection Factor - not in NFRC 300-2003 Source Spectrum : Sayre UV Source.ssp Detector Spectrum : CIE SPF McKinlay UV.dsp Wavelength Set : Source Integration Rule : Trapezoidal Minimum Wavelength : 0.28 Maximum Wavelength : 0.4 Name : TDW Description : NFRC 300-2003 UV Damage Weighted Transmittance based on CIE 89/3 Source Spectrum : ASTM E891 Table 1 Direct AM1_5.ssp Detector Spectrum : UV Action (a=3.6, b=12.0) Wavelength Set : Source Integration Rule : Trapezoidal Minimum Wavelength : 0.3 Maximum Wavelength : 0.7 Name : TKR Description : Old-style Krochmann damage weighted average - not in NFRC 300-2003 Source Spectrum : ASTM E891 Table 1 Direct AM1 5.ssp Detector Spectrum : Krochmann Wavelength Set : Source Integration Rule : Trapezoidal Minimum Wavelength : 0.3 Maximum Wavelength : 0.5