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1. Governing Equations

1.1. Introduction

Heat Transfer is a branch of engineering that deals with the transfer of thermal energy
from one point to another within a medium or from one medium to another due to the
occurrence of a temperature difference. Heat transfer may take place in one or more of
its three basic forms: conduction, convection and radiation.

1.2. Governing Equation

The Governing Equation of two-dimensional heat conduction in a two-dimensional
orthotropic medium Q, under the assumption of constant physical properties, is derived
from the general energy equation and is given by the following partial differential
equation:

o°T o°T

(kyy —5+k

nae 2 PR ——)+0(x,y)=0 in Q Eq. 1.2-1

where ki1 and koo are conductivities in the x and y directions, respectively, and Q(x, y) is
the known internal heat generation per unit volume. For a nonhomogeneous conducting
medium, the conductivities kj are functions of position (X, y). For an isotropic medium,
we set ki1=koo=k in equation (Eq. 1.2-1) and obtain the Poisson equation:

o0 or, 9  dT
—(k—)+—k—)+ ,)=0 Eq. 1.2-2
ax( ax) ay( ay) O(x,y) q
9°T 9°T _
ke 5 )+0(x,y)=0 in Q Eq. 1.2-3
For medium without internal heat generation equation (Eqg. 1.2-3) becomes:
0’ T o°T
Ko+ 5 —5)=0 Eq. 1.2-4

1.3. Boundary Conditions

To complete description of the general problem posed in the previous sections, suitable
boundary and initial conditions are required. Boundary Conditions are most easily
understood and described by considering the fluid mechanics separate from other
transport processes. The magnitude of heat flux vector normal to the boundary is given
by Fourier's law:

aT — aT — JT —

+q,+q, =—k(— ,t—=—n, Eq. 1.3-1

There are three types of boundary conditions:

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 6

1.3.1. With Defined Temperature (Dirichlet or essential condition)

This is referring to boundary conditions with defined temperature on boundary surface
as function of time and space:

T=f(tx,y,z) onlt Eq. 1.3-2

where T is temperature on surface, t is time and x, y, z are surface coordinates, or
special case with constant temperature on boundary surface:

T=T,

const

=const. on 't Eq. 1.3-3

1.3.2. With Defined Flux (Neumann or natural condition)

This is referring to boundary conditions with defined flux on boundary surface as
function of time and space:

q;=f(t,x,y,2) onlq Eq. 1.3-4

where g is heat flux on surface, t is time and x, y, z are surface coordinates, or special
case with Constant Flux on boundary surface:

dy = Qeony = const. on T Eq. 1.3-5

there is one special case of this boundary condition known as Adiabatic Boundary
condition defined with following equation:

q9;=9,=0 Eq. 1.3-6

This means that there is no heat flux exchange between adiabatic surface and
surrounding space.
1.3.3. Newton’s Law

This is referring to boundary conditions with defined surrounding space temperature and
defined law of heat flux exchange between surface of the body and that surrounding
space. In most cases this is defined with Newton’s law of convection heat transfer:

q, =*h(T,(t) =T,(1) Eq. 1.3-7

where q, is heat flux on surface, h is heat transfer coefficient, T4(t) is temperature on
body surface and T,(t) is temperature of surrounding space. There are several cases of
boundary conditions which refer on Newton’s Law:

1.3.3.1.  Convection Boundary Condition

Convection boundary condition is defined by following equation:

q.=h.(T,t,x,y,2)*(T -T,) Eq. 1.3-8

where qc is convective heat flux, h; is the convective heat transfer coefficient which, in
general, depends on the location on the boundary (x,y,z), temperature (T) and time (1),

Carli, Inc. is Your Building Energy Systems and Technology Choice
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and T is a reference (or sink) temperature for convective transfer. In most of cases
coefficient hc is constant and in that case equation (Eq. 1.3-8) becomes:

q.=h(T-T) Eq. 1.3-9

1.3.3.2 Radiation Boundary Condition (without enclosure)
Radiation boundary condition (without enclosure) is defined by following equation:
g =eo(T* =T Eq. 1.3-10

where q is radiative part of heat flow, € is boundary emissivity, o is Stefan-Boltzmann
constant and T, is a reference temperature for radiative transfer. Equation (Eq. 1.3-10)
also can be shown in following shape:

q,=h{T,t,x,y,2)*(T -T) Eq. 1.3-11

where h; is the linearized effective radiation heat transfer coefficient calculated by
equation:

h(T,t,x,y,z) =€ (T+T.)NT* +T7) Eq. 1.3-12

Note that this boundary condition is appropriate when a body or surface radiates to a
black body environment that can be characterized by a single temperature.

1.3.3.3. Material Interface

Another condition that is of concern when a material interface between two or more
solid region is the problem of gap or contact resistance. The boundary or interface
conditions in this situation are the usual continuity conditions on temperature and heat
flux since the gap resistance is dictated by property variations. A more mathematical
representation of contact resistance provides that the heat flux across the interface be
described by an internal boundary condition:

=h, (T, .t,xy,2)T, —T,) Eq. 1.3-13

qgap gap \" gap?

where hgyp is an effective heat transfer coefficient for the contact surface, and Tgap is @an
average temperature between Ty and Ts. The subscripts M and S designate the
“master” and “slave” sides of the contact surface, a distinction that is important in the
numerical implementation of this condition.

1.3.3.4. Condensation Resistance Modeling

Heat flux on indoor surfaces of the fenestration systems can also be presented as
convection:

G fonestation = yn (T8, %, ¥, 2, 8as _ properties) * (T, = T,) Eq. 1.3-14

where Qrenestration 1S heat flux through indoor side of fenestration system, hye, is
condensation resistance factor which depend of mean temperature (Tr), time (1),
location on the inside boundary (x,y,z) and gas properties (density, thermal conductivity,

Carli, Inc. is Your Building Energy Systems and Technology Choice
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dynamic viscosity, specific heat), T1 (hot side) and T,(cold side) temperatures of indoor
sides of the fenestration system (Figure 1-1).

The method is based on the use of the variable convective heat transfer coefficients on
the vertical sides of IGU cavity and the simple radiative heat transfer exchange between
the cavity sides.

——

—*

T

T,

warm side
cold side

=

Figure 1-1: IGU of the Fenestration System

There are two criteria for condensation resistance factor calculations which depend of
laminar or turbulent regime of heat flow:

H

Conduction Regime (G P, < SOOT)

H

Boundary Layer Regime (G, P. >500f)

where Gy is Grashoff number and P, is Prandtl number. Grashoff number is calculated
by following equation:

Grl =

gBATL

,UZ

Eq. 1.3-15

Carli, Inc. is Your Building Energy Systems and Technology Choice
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where is g =9.807ﬂ2 (acceleration due to gravity), thermal expansion coefficient
S

B :Ti, AT =|T, - T,|, L is cavity width (Figure 1-1) and v is kinematics viscosity which

m

is equal:

V="— Eq. 1.3-16
P

where p is dynamic viscosity and p is density (gas properties).
Prandtl number is equal:

P = Eq. 1.3-17

rl

where p is dynamic viscosity and temperature conductivity coefficient a is:

k
oa=—

where K is thermal conductivity, p is density and G, is specific heat.

Eq. 1.3-18

In order to calculate condensation resistance, starting and departing corners must be
determined. To determine which corner is starting and which is departing see Figure 1-2
and Figure 1-3:

Starting Corner Departing Corner
T, T,
Departing Corne Starting Corner
Ti<T,

Figure 1-2: Gas (Gas Mixtures) Flow Direction in case T;<T,

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Departing Cornerj Starting Corner
T, T,
Starting Corner Departing Corner
T>T,

Figure 1-3: Gas (Gas Mixtures) Flow Direction in case T,>T,

Lengths of starting and departing corners are determined by following equations:

x, =0.0077 * L*(G,,)"®" Eq. 1.3-19
and
x, =0.00875* L*(G,)"" Eq. 1.3-20

where xs and Xq are length of starting and departing corners (Figure 1-4).

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Departing Corner
]

Xd

Xs

Starting Corner

Figure 1-4: Starting and Departing Regions (Warm Side)

Therefore, in depending of regime, condensation resistance factor in fenestration

system is:

a) Convective Part

i) Conduction Regime G,P. < 500%
- starting corner

0.72 rl

h,=h, = O.256LL(G )P x® 0<x<x

h,=— x, <x<0.1
L

- departing corner

h =h,= 2.58%(@,)’0'1%0'2 0<x<x,
h, _k x, <x<0.1
L

Eq. 1.3-21

Eq. 1.3-22

Eq. 1.3-23

Eq. 1.3-24

Carli, Inc. is Your Building Energy Systems and Technology Choice
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ii) Boundary Layer Regime (G,P. >500%)

- starting corner

0.3
h,=h =0.231%k *%x—o-l(ow -0.6 *ﬁ)” Eq. 1.3-25
- departing corner
0.3 _
h =h,=0231%k *GL(H —x)"'(0.83 - o.6u)” Eq. 1.3-26
o % AL
where A= H
L
b) Radiative Part
h=4—9  s7° Eq. 1.3-27
1 1
(—+—-1
81 82
and finally:
By =h. +h, Eq. 1.3-28

) Gas (Mixture) Properties

Purpose of gas property calculations is to find coefficients of convective/conductive heat
transfer in gas filled space between isothermal solid layers. Gas (mixture) properties are
thermal conductivity, dynamic viscosity, density, specific heat and Prandtl number.

a) Gas Properties
i) Density
The density of fill gases in windows is calculated using the perfect gas law:
pM
= — E " 1.3'29
P RT q
where p is density, p is pressure, M is molecular mass, R is universal gas constant
(=8314,51 ;) and T, is mean gas fill temperature.
kmol * K

ii) ii) Specific heat capacity (Cp), dynamic viscosity (u) and thermal conductivity (k)

The specific heat capacity, Cp, and the transport properties p and k are evaluated using
linear functions of temperature. For example, the viscosity can be expressed as:

H=a+bT, Eq. 1.3-30

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Values of a and b coefficients appropriate for calculating Cp, p and k for a variety of fill
gases are listed in ISO15099 Standard (Annex B).

b) Gas Mixtures

The density, conductivity, viscosity and specific heat of gas mixtures can be calculated
as a function of corresponding properties of individual constituents.

i) Molecular mass
M, =Y xM, Eq. 1.3-31
i=1

where x; is mole fraction of the i gas component in a mixture of n gases.

ii) Density
pM .
=—"% Eq. 1.3-32
P RT q

iii) Specific Heat

= Lom Eq. 1.3-33
pmix ~ Mmix q. .
where:
Cpmix = Z'xic_p,i Eq. 1.3'34
i=1
and molar specific heat of the i gas is:
C,.=C,M, Eq. 1.3-35
iv) Viscosity
_N Hi
,umix = Zn—_x Eq. 1.3-36
Toeen )
=X
J#I
where
u M. !
[+ (D)2 (=) )
u, M,
¢! = L L Eq. 1.3-37
, vl
22 #[1+ =112
M

J

Carli, Inc. is Your Building Energy Systems and Technology Choice
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V) Thermal conductivity
k. =k. +k. Eq. 1.3-38

mix mix

where k is the monatomic thermal conductivity and k- is included to account for
additional energy moved by the diffusional transport of internal energy in polyatomic
gases.

k= ki Eq. 1.3-39
i=1 {1+Zl//l]7

jil

and,
kLomo L
[1+(f’)2(:’)“]2 — — — —
k' M, (M, ~M )M, —0.142M ,)
V., = = *[1+2.41 V ) —] Eq. 1.3-40
2&*[1+<Ai‘j N (M, +M;)

J

and

Z Eq. 1.3-41
. Z

¢

where, the previous expression for ¢, . can also be written as

1+( ) (—]) I’
o = - Eq. 1.3-42
Zﬁ*[l+244 12

J

1.3.3.5. Radiation Enclosure Boundary Condition

Radiant energy exchange between neighboring surfaces of region or between a region
and its surroundings can produce large effects in the overall heat transfer problem.
Thought the radiation effects generally enter the heat transfer problem only thought the
boundary conditions, the coupling is especially strong due to the nonlinear dependence
of the radiation on the surface temperature.

Enclosure or surface-to-surface radiation is limited to diffuse gray, opaque, surfaces.
This assumption implies that all energy emitted or reflected from a surface is diffuse.
Further, surface emissivity €, absorbtivity a, and reflectivity p are independent of
wavelength and direction so that:

M) =aT)=1- p(T) Eq. 1.3-43

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Each individual area or surface that is considered in the radiation process must be at a
uniform temperature; emitted and reflected energy are uniform over each such surface.
Heat flux through i enclosure (qy) surface is given by following equation:

4, = ‘9;07;4 —o,H, Eq. 1.3-44

where & emissivity of i surface, T; is temperature of i surface, a; is absorbtivity of i"
surface, o is Stefan-Boltzmann constant and H; is irradiation of the surface, and for it"
surface it is equal to:

H, = %(Bi —goT') Eq. 1.3-45
— 8[

where B; is radiosity of the surface “I” and it is equal:

B =¢oT'+(1-¢)) F,B, Eq. 1.3-46
j=1

where F; designates view factor between i"" and j"" surface. Equation (Eq. 1.3-46)
represents a system of n linear algebraic equations which is solved for B;.

1.3.3.6. View Factors

The view factor is defined as the fraction of energy leaving a surface that arrives at a
second surface. For surfaces with finite areas, the view factors are defined by

1 cos g, cos b,
Fk—j :A— j ITdAde/ Eq. 1.3-47

k A A

where S is distance from a point on surface A; to a point on surface A, . The angles 6,

and 6, are measured between the line S and the normal to the surface as shown in
Figure 1-5.

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Surface k
Ay, &, Tx

Surface |
Aj, Sj, Tj

Figure 1-5: Nomenclature for enclosure radiation
From equation (Eq. 1.3-47), following equation is obtained:
AF_,=AF, Eq. 1.3-48

There are several ways to calculate view factors. One of them is “cross-string” rule
which is illustrated in Figure 1-6

o

Iy

-

Figure 1-6: Cross-string rule

Carli, Inc. is Your Building Energy Systems and Technology Choice
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and given by following equation:

Fo=le +ry — (4 1y)
Y 2L,

1

Eq. 1.3-49

When partial, or third shadowing exist, the two radiating surfaces are subdivided into n
finite subsurfaces and contribution to the summation in equation

F; = izn: Fy Eq. 1.3-50
k=1 =1

of those subsurfaces in which ray r, intersects a shadowing surface is excluded (Figure
1-7).

k=1
~ k=2
T~ |
s : I
Blocking Surfale~ ken
———— e
|=1 |=2 _—e— o

— ] ——— —
Lj l=n

Figure 1-7: Third Surface Shadowing

2. Basic Concepts of the Finite-Element Method

Regardless of the physical nature of the problem, a standard finite-element method
primarily involves the following steps:

Definition of the Problem and its Domain
Discretization of the Domain

Identification of State Variable(s)

Formulation of the Problem

Establishing Coordinate Systems

Constructing Approximate Functions for the Elements

N o O s~ b~

Obtain Element Matrices and Equations

Carli, Inc. is Your Building Energy Systems and Technology Choice
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8. Coordinate Transformations

9. Assembly of Element Equations

10.  Introduction of Boundary Conditions

11.  Solution of the Final Set of Simultaneous Equations
12.  Interpretation of the results

2.1. Definition of the Problem and its Domain

In finite element methods, there are primarily three sources of approximation. The first
one is the definition of the domain (physically and geometrically); the other two are the
discretization and solution algorithms. The approximation used in defining the physical
characteristics of different regions. In case of heat transfer through material domain,
governing equations are defined in previous chapter.

2.2. Discretization of the Domain

Since the problem is usually defined over a continuous domain, the governing
equations, with the exception of essential boundary conditions, are valid for entirety of,
as well as for any portion of, that domain. This allows idealization of the domain in the
form of interconnected finite-sized domains (elements) of different size and shape.

In finite-element idealization of the domain, we shall, in general, make reference to the
following elements: finite element Q, and master element<, .

Finite elements are those which, when put together, result in discrete version of the
actual continuous domain. Their geometric approximations are controlled by the number
of nodes utilized at the exterior of the elements to define their shape. The physical

approximations are controlled by the total number of nodes utilized in defining the trial
functions (shape functions) for state variable.

For a moment let us assume that it is possible to systematically generate the
approximation temperature field function for the elementQ, :

T(x,y) =T (x,y) =D . T/Wi(x, ) Eq. 2.2-1

j=1
where T“(x, y) represents an approximation of 7'(x, y) over the element Q,, T, denote
the values of function 7°(x, y) at selected number of points, called element nodes, in
the element Q,, and ¥ (x, y) are the approximation functions associated with the
element.

Master elements are those which are used in place of finite elements in order to
facilitate computations in the element domain. Figure 2-1 illustrates an actual finite

element Q, and corresponding master element &, with associated coordinate axes.
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1 2

Figure 2-1: Demonstration of Coordinate for a Rectangular Finite Element

In general, the master elements are straight lines, right triangles or prisms, squares, and
cubes. They are defined in reference to normalized coordinate axes (¢, n, ¢). The actual
elements can be of any shape and size.

2.3. Identification of State Variables

Until this step, no reference has been made to the physical nature of the problem.
Whether it is a heat-transfer problem, fluid or solid-mechanics problem, etc., comes into
the picture at this stage. The mathematical description of steady-state physical
phenomena, for instance, leads to an elliptic boundary-value problem in which the
formula contains the state variable and the flux. These variables are related to each
other by a constitutive equation representing a mathematical expression of a particular
physical law.

For heat transfer presented in previous chapter (and in Conrad) state variables are
temperatures in element nodes (7) or temperature distribution T(x, y).

2.4. Formulation of the Problem
Vary often a physical problem is formulated either via a set of differential equations:

Lu=f Eq. 2.4-1
with boundary conditions or by an integral equation:

= j G(x,y, z,u)dQ + j g(x,y, z,u)dl Eq. 2.4-2
Q r

where u present state variable(s).
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For heat transfer governing equation (Eq. 1.2-1):

0 or. 9 oT
=k, =)+~ (kyy —)] = Eq. 2.4-3
[ax(“ ax)+ay( » ay)] o q

The weak form of differential equation is weighted-integral statement that is equivalent
to the governing differential equation as well as associated boundary conditions:

0 oT d
0= ———(k, —)— |dxd Eq. 2.4-4
iw[ o) a<zza>Q<xy>xy q

The expression in square brackets of the above equation represents a residual of the
approximation of differential equation and it is called weighted-residual statement of
equation (Eq. 1.2-1).

Note the following identities for any differentiable functionsw(x, y), F,(x,y), and

Fy(x, y):

0w oF, oF, Jdw 0
—(wF)=—F +o— —0—=—F —— (F, Eq. 2.4-5
ax( 2 ox | ox o ox ox | ax( 2 9
0 0w oF oF, Jw 0
L (wF)=22F +0%2 —0=2="2"F - (oF Eq. 2.4-6
dy (@F) dy @ dy or @ dy dy ° dy (@F) 9
and gradient (divergent) theorem:
| %(a)ﬂ)dxdy = § (0F )n.ds Eq. 2.4-7
Q. T,
9 -
| S (@F, )dxdy = § (@F,)n,ds Eq. 2.4-8
o, 9 I,

where n. and n, are the components of unit normal vector. Using equations (Eq.
2.4-5),(Eq. 2.4-6), (Eq. 2.4-7), (Eq. 2.4-8) and (Eq. 2.4-4) with:

F =k, ar and F, =k, ar Eq. 2.4-9
ox dy
we obtain
aw oT aw oT oT
0= I( i gy g, ke gy @Oy - §a)(kll - etk O > n,)ds  Eq.2.4-10

2.5. Establishing Coordinate Systems

There are primarily two reasons for choosing special coordinate axes for elements in
addition to the global axes for entire system. The first is case of constructing the trial
functions for the elements and the second is ease integration over the elements.
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Once the coordinate axes are established, the element equations are ordinarily
computed first in master elementQ . They are then transformed into Q_ and finally into
the global system for assembly.

2.6. Constructing Approximate Functions for the Elements

Once the state variable(s) and the local coordinate system have been chosen, the
functions can be approximated in numerous ways. The reader is reminded that there
are two entities that need to be approximated. The first is physical (the state variable)
and the second is geometrical (the shape of element). The analyst must decide whether
to approximate physics and geometry equally or give preference to one or the other in
various regions of the domain. This leads to the three different categories of elements
with m and n representing the degree of approximation for element shape and state
variable, respectively:

Subparametric (m<n)
Isoparametric (m=n)
Superparametric (m>n)

2.7. Linear Elements

2.7.1.1.  Shape Functions for Master Line
Master line element is shown in Figure 2-2:

2;1\

Figure 2-2: Master Linear Line Element
and shape functions are:

il_Ljt=e Eq. 2.7-1
el 2 1+¢ o

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation

Page 22

2.7.1.2.  Shape functions for master rectangular element
Master rectangular element is shown in Figure 2-3:

s
4 1 3
-1 1
I| -
1 1 2

Figure 2-3: Master Linear Rectangular Element
and shape functions for this element are:
Vi A=-&1-m)
72 1 1-
il _1]a+od-m Eq. 2.7-2
gy 4 |A+HA+m)
v, 1-5HA+n)

2.7.1.3.  Shape Functions for Triangular element
The linear interpolation functions in global coordinate system for the three-node
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yA

X
Figure 2-4 : The Linear Triangular Element in Global Coordinates

triangle (see Figure 2-4 ) are (see [3]):

/8 :ﬁ(a’ie+ﬁfx+7fy):Li i=1,23 Eq.2.7-3

where A, is the area of the triangle, and «;, B’ and y’ are geometric constants
known in terms of the nodal coordinates (x;, y,):

O =Xy, = XY
B; =Y~ W Eq. 2.7-4

€

Vi =—(x;—x)

Here the subscripts are such that i # j # k, and /, jand k permute in natural order. Eq.
2.7-3 is used to mapping from global to local coordinate system where L, presents

nodal function in local coordinate system. Inverse mapping is presented by following
equations:

x:ixilﬁ; y:ZYiLi Eq.2.7-5

i=1 i=1

Note also equation for calculating triangle area:

L x y
24, =1 x, Yy, Eq. 2.7-6
L xy oy
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2.7.1.4. Shape functions for master 3D rectangular element
Master 3D rectangular element is shown in Figure 2-5:

(1,11) 5

(-1--1,-1)§5 ~2: (1,-1,-1)

Figure 2-5: Master Linear 3D Rectangular Element
and shape functions are:

v 1-5Hd-ma-7)
7, 1+5HA-m1-7)
s 1+5A+m1-{)
wi| _1]d=g)+mi=¢) Eq.2.7.7
s 1-5Hd-ma+{)

Ve 1+5HA-md+{)
v 1+5A+m1+E)
Vs 1= +md+{)

oo |

2.8. Quadratic Elements

2.8.1.1.  Shape Functions for Master Line
Master Quadratic line element is shown in Eq. 2.8-1:
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N
29 (1 ,0)
o - Master Nodes
e - Slave Nodes
3 e
1¢ (-1,0)

Figure 2-6: Master Quadratic Line Element
and shape functions for line element are:

7 -{1-%)

W, r==1 61+9) Eq. 2.8-1
22 )

788 21-¢9)

2.8.1.2.  Shape functions for master rectangular element
Master rectangular element is shown in Figure 2-7:
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Na
o - Master Nodes
e - Slave Nodes
4 7 3
@ * )
8¢ @ =
6 g
® o &
1 5 2

Figure 2-7: Master Rectangular Quadratic Element
and shape functions are:

e A-EA-m(E-n-1)

7 A+&HA-mE-n-1)

7, A+5HA+mME+n-1)

7| _1]A=HA+mE+n-1) Eq. 2.8:2
ge| 4 200-&*)1-m)

7 20+ 61-n%)

7 201 +1m)

7 20-&)1-n*)

2.8.1.3. Shape functions for master 3D rectangular quadratic
element

Master 3D rectangular element is shown in Figure 2-8:
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n
(-1,1,1) £ I 15 (1,1,1]:,;/'

14
o - Master Nodes
, 6 -7
(-1,-1,1) 5 (1,44,1) e - Slave Nodes
$20 ' |t 19
! N e ——bE
! 18
174 4y o ,------- D (1,1,-1)
- { 1 1,_1} 11 3 LS ]
1?.,
. 10
(-1,-1,-1) &= * & (1,-1,-1)
1 9 2

Figure 2-8: Master 3D Rectangular Quadratic Element
and shape functions are:

e A=-5HA-mA-O(=E-n-¢-2)
7 1+HA-A-OE-n-{ -2)
7 A1+ OA+MA-OE+17-{ -2)
e A=-5HA+mUA-O(E+1n-{-2)
7 A=-5HA-mA+O(E-n+{-2)
e A+ OHA-A+OE-n+{ -2)
7 A+ OHA+mA+OE+7+E-2)
e A=-HA+mA+O(E+n+{-2)
e 20-&H1-m1-4)
A 20-7°)1+&)1- )
7 20-EHA+mA-¢)

e, 20-7)A-E1-{)

v, 20-&HA-m+{)

v, 20-7*)1+E)1+¢)

v, 200-&HA+m1+¢)

v, 20-7)1-5H1+E)

78 20-HU-5HU-1)

v 201~ +E)1 1) £q. 283
v, 20-¢HA+EHA+1)

78 200-¢HA-EHA+1)
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2.9. Obtain Element Matrices and Equations

At this stage assume that the modeling of the problem has been completed. Let the
approximate function for a steady-state problem be written as:

i, (x,y,2) = N(x,y,2) *u, Eq. 2.9-1

where N(x,y,z) is referred to as the shape function. It is called shape function because

it contains not only the approximation made for state variables but also the coordinates
of the element nodes which define the shape function of the element. The shape
function can be written as:

N(x,y,2)=[N, N, .. N,] Eg. 2.9-2

where n represents the number of nodes of the element and N; is the shape function
corresponding to node i. Substituting equation (Eq. 2.4-10) into the equation (Eq. 2.9-1)
written for Q,, where the first term is often a quadratic form of u and its derivatives,

yields:
7, = [u!B" DBu,dQ, + [u] N" pdl Eq. 2.9-3
Q, r

Matrix B contains the shape function and its derivatives as well as the constitutive
relationships of the problem. Matrix D represents the physical parameters of the
domain, and p represents disturbances at the boundaries. Carrying out the integrations
(often numerically) results in the following matrix equation:

ku,+p,=0 Eq. 2.9-4

2.9.1. Linear Problem

For heat transfer described in previous chapter weak form of equation (Eq. 2.4-10)
combined with (Eq. 2.2-1) and without boundary conditions gives:

0w & OV dw. & OV
" ki 217 = )5 ok 2 T = 5) — 0dxd Eq. 2.95
i[ ax( 11; J ax ) ay( 22; j y ) (()Q] xdy q

9

This equation must hold for any weight function @ . Since we need n independent
equations to solve for the n unknowns, 7\, 7,, ..., T, , we choose n independent

algebraic equations to solve for w: w =y ,y;.... ;. For each choice of @ we obtain an
algebraic relation among (7,7, ,...,T,") . We label the algebraic equation resulting from
substitution of ¥ for @ into equation (Eq. 2.9-5) as the first algebraic equation. The i"
algebraic equation is obtained by substituting @ = y; into equation (Eq. 2.9-5):

Z} KiT; =0Qf Eq. 2.9-6
=
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where the coefficients K and Q; are defined by

: oy oY; . 9yl oY
K; k +k dxd Eq. 2.9-7
.[( 11 ax ax 22 ay ay ) X y q
O = [ Q! (x, y)dxdy Eq. 2.98
Qe

In matrix notation, equation (Eq. 2.9-6) takes the form

[K f]{Te}= {Q} Eq. 2.9-9

The matrix [K°] is called the coefficient matrix, or conductivity matrix. Equation (Eq.
2.9-9) is solved by {T°}.

2.9.2. Nonlinear problem
For nonlinear problem following equation will be replaced in equation (Eq. 2.4-10):
T()C, )’) + AT()C, )’) = Te(-x’ y) + ATe(x’ y) = ZY}EW?(X’ y) +ZA’T;‘//§(X’ )’) Eq' 2'9-10

j=1 j=l

substituting (Eqg. 2.9-10) into the (Eq. 2.4-10) without boundary conditions:

0= j[a“’{kn@re +ZAT€ iy 22 {anT“ ,}_

Eq. 2.9-11
a)Q(T + AT)]dxdy
where Q(T + AT) must be substituted with following equation:
00 _ QT +AT)-Q(T) 0Q
— = T+AT)=0Q(T +—AT Eq. 2.9-12
T AT = O( )=0(T) 3T q

The i algebraic equation is obtained by substituting @ = y; into equation (Eq. 2.9-11):
ST+ KAT: =0f +Y QAT Eq. 2.9-13

=] j=1 -

where K; and Qf are defined by equations (Eqg. 2.9-7) and (Eq. 2.9-8) and:

Q; = j Q'Y (x, Y)Y (x, y)dxdy Eq. 2.9-14

In mat;ix notation, equation (Eq. 2.9-13) takes the form

— o MAT }={o* }- 1k UT) Eq. 2.9-15

The matrix [K°] is called the coefficient matrix, or conductivity matrix. Equation (Eq.
2.9-15) is solved by {AT“}.
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NOTE: To obtain ¥/ (x,y) and ¥ (x,y) in equations (Eq. 2.9-8) and (Eq. 2.9-14)
substitute equations (Eq. 2.10-1) and transformation to master element is obtained

For isotropic materials k,, = k,, and conduction matrix becomes:

dy IV dyr oyl
K= 1k L S 4 ! I Ndxd Eq. 2.9-16
~J<ax o oy oy P 9

e

2.10. Coordinate Transformations

Coordinate transformations of physical entities such as vectors and matrices follow well
defined rules. They are often done in the form of a Jacobian matrix.

2.10.1. Rectangular Element

For instance, let us assume that there are two different coordinate systems, for example
X, y located in the element domain and &, n, located in the master element:
7. = x(§,m)

: Eq. 2.10-1
y=y(&.n)

The transformation between actual element Q, and the master element Q. [or
equivalently between (x, y) and(&,7)] is accomplished by a coordinate transformation of
the form:

x=2XPED, y=2 yFED Eq. 2.10-2
Jj=1 Jj=1

where ¥ denote the finite element interpolation functions of the master element Q, .

An infinitesimal line segment (or area and volume) in one coordinate system can be
transformed into another by following the usual rules of differentiation:

ag:] [ax ] oy

o6 |_| 9 9& || ax !
3 1=l av o * e Eq. 2.10-3

i —

on | Lom on] | dy

The matrix on right-hand side of this equation is known as Jacobian. Equation (Eq.
2.10-3) transforms the line segments in &, into line segments inQ, . The inverse
transformation which defines mapping of element Q_ back into the master element Q
follows a similar rule. This refer to as the inverse transformation
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Iy I
o0x 4| 08
=J % Eq. 2.10-4
oy 27 q
dy on
where J7' is the inverse matrix of the Jacobian:
9y 9y
-1 L 87] 85 :
e S Eq. 2.10-5
an  dI¢

This implies that condition of |J| >0 must be satisfied for every point in both domains.
For example, consider the element coefficients:

o oy
ox Oox

oy, oY

ky, (x,
+ ko (X, y) dy dy

K= j [k, (x, ) ldxdy Eq. 2.10-6
Qe

The integrand (i.e., expression in square brackets under the integral) is a function of
global coordinates x and y. We must rewrite it in terms of &,7 using the transformation

(Eq. 2.10-4).

The functions ¥ (x,y) can be expressed in terms of the local coordinates& and 7 by
means equation (Eq. 2.10-4). Hence, by the chain rule of partial differentiation, we have:

OP; _dy; ox Jy; dy

- Eq. 2.10-7
9 ax oF  dy oF

IP; _dy; ox oy dy
on ox dn dy 9@

Eq. 2.10-8

which gives the relation between the derivatives of i with respect to the global and

local coordinates. Equations (Eq. 2.10-7) and (Eq. 2.10-8) can be expressed in following
form:

o oy;
& ox
_ Eq. 2.10-9
VA vy 9
on dy

where J is Jacobian matrix or inverse transformation:
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oy, 17
ox ) 9E
e Eq. 2.10-10
oy o 9
dy on

Equations (Eq. 2.10-2)-(Eq. 2.10-10) provide the necessary relations to transform
integral expressions on any element Q_ to an associated master element Q . Suppose

that the finite element Q_ can be generated by master element Q. Under the previous
transformations we can write:

€

0 ¢ oy
= [l (x, ) o V’ Vi Vit 2 Y gy = [F, & md&in  Eq. 2.10-11
Ks a 0x dy dy 5

and equation (Eq. 2.9-14) in local coordinate system becomes
O = [Qy! (x, y)dxdy = [Q* ! (&, 1) *det* d&dn Eq. 2.10-12
Q, Q,

2.10.2. Line Element

2.10.2.1. Linear Line Element

For line element consider following equation:
T:s=s(x,y)= sW(&) Eq. 2.10-13
J=1

where s present line element in global coordinates, s are coordinates of line in global

coordinates and (&) are functions of master line element (Eq. 2.7-1). Note also that
for line elements m=2. Substituting equations (Eq. 2.7-1) in (Eq. 2.10-13):

s=%(sl+s2)+%§(s2—sl) Eq. 2.10-14

An infinitesimal line segment in one coordinate system can be transformed into another
by following the usual rules of differentiation:

ds = det* d& Eq. 2.10-15
and substituting equation (Eq. 2.10-13) into the (Eq. 2.10-15):

ds 1
det = de& 2(s2 5\/()c2 —x) + (v, —y,) Eq. 2.10-16

2.10.2.2. Quadratic Line Element

Same approximation is used for quadratic line segment (see Eq. 2.10-13) just different
shape functions Eq. 2.8-1 are used, which lead to:
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s=—%*ﬂ*f*(l—é>+%*sz*é*<l+é>+s3*(1—§2> Eq. 2.10-17

and corresponding determinant is:

ds 1
= =—(s,—8)+&(s, +5,—25,) =

det=—
dé 2

Eq. 2.10-18

1
:5\/(x2 —x) +(y,—y) +§\/(x1 +x,-2x) +(y, +y,—2y,)°

2.11. Assembly of Element Equations

The assembly of element matrix equations (p, = k,u,) is done according to the

topological configuration of the elements after this equation is transformed into the
global system. The assembly is done through the nodes as the interfaces which are
common to the adjacent elements. At these nodes the continuities are established in
respect to the state variable and possibly in respect to its derivatives. Sometimes this
assembly is done through certain nodes only, referred to as the primary nodes (e.g.
corner nodes), instead of to all the nodes at the interfaces. This reduces the overall size
of the assembled matrix. The nodes that are not used in the assembly, the so-called
secondary nodes, are used together with the primary nodes to increase the degree of
approximation at the element level. Assume that the complete element matrix is
partitioned as follows:

{PI } - [K” Ko }{U’ } Eq. 2.11-1
PII KII,I KII,II UII
in which subscripts | and Il identify the portions of the equations corresponding to

primary and secondary nodes, respectively. This equation can be brought to the
following form:

PI - KI,IIKI_I{IIPII = [KI,I - KI,IIKI_I{IIKII,I ]UI Eq' 2.11-2
which, in short, can be written as
F,=KU, Eq. 2.11-3

this is the final equation to be assembled. It contains the unknown value of the function
at the primary nodes only. To illustrate the assembly, let assume that domain Q in 2D
space consist of three elements (rectangular, triangular and line elements), as shown in
Figure 2-9:
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2
Y
O Rimary nodes
Qy e Secondary nodes
1 3
) Hement designation
i ] q r
o 1 5 4 3
5 4
3 2 1
X
> n 2 4
0

Figure 2-9: Assembly of three elements

The element submatrices are identified as the dyadic product of element designations
using primary nodes (i, j, g, r are the numbers assigned to nodes)

i
i j q 1=
q

r

ii ij ig ir
JjuogjoJa o Jr
qi g qq9 qr
ri rj rq rr

Eq. 2.11-4

which for example shown in Figure 2-9 leads to following element submatrices:

Pl |K; K;
R|_|K, K|
})4 K;z qj
P

KI

L™ 3 ri 7
p] [k! K
P |=|K] KI
P| |K, K,

11 biig
K" K]

biik biik
K K

Kii] Ktlr Ul
1 1
Ki, K| |Us
1 1
K, K, U,
Krlq Krlr U3
K| U,
1
qu * U2
/4
K, U,

Eq. 2.11-5

Eq. 2.11-6

Eq. 2.11-7
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With this designation, the assembled version of the complete matrix of the configuration
shown in Figure 2-9 will be:

Tpl [ w! i I/ 1 I/ 1 T 7
P, K;+K, K, K, +K, K, K; U,
i m n il
P, K; +K; K K; 0 U,
P, |= K +K/ K, K, |*| U, Eq.2.11-8
1 ur 1
P, K,+K; K, U,
| F] | Symm. K;j_ Uy |

Final results of assembling all these elements are system of linear equation which is
solved by unknown nodal values (temperatures in Conrad):

|K|*{T}={P} Eq. 2.11-9
which is solved by unknown nodal values {T}, or in equation form:

K, *T)+K,*T,+..+ K, *T,+..+ K, *T, = P,

K, *T\+K,,*T, +..+K,, *T, +..+ K, , *T, = P,

Eq. 2.11-10

1

Ki’l*Tl+K[,2*T2+...+KU *T, +..+K,, *T =P

K, *T+K, ,*T,+..+K,  *T,+..+ K, *T =P,

2.12. Introduction of Boundary Conditions

At this stage, the essential boundary conditions are introduced. As result of this, the
complete set of equations will be reduced or condensed to its final form.

There are several boundary conditions presented in previous chapter. Using weighted-
residual method for boundary conditions, following equation is obtained:

[@h (T ~T_)dT, + [ woe(T* ~T)dT, — [ g, T,
r

g & " Eq. 2.12-1
~ [wloe(r* -T2~ a,H 1T, =0
r"

2.121. Convection Boundary Condition

Convection Boundary Condition is presented by first term of equation (Eq. 2.12-1).
There is also linear and nonlinear type of problems in boundary condition presentation.
2.12.1.1. Linear Problem

Using first term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for i" algebraic
equation (w=y;) convection boundary condition is:
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[@h (T —T.)dT, = [w! (x. ) *h, QO Ty (x,y)~T.)dT, =
I, i

L,

= [FE() % h, *dets Y[ (&) *T{ 1T, — [ § (€)% h, * T, * det* dF,
f, = f,

Eq. 2.12-2

where ¥/ ($) and ¥ ($) are line functions for master line element (Eq. 2.7-1), det is
determinant obtained from equation (Eq. 2.10-16) and T is segment in master element.

Equation must hold for any weight function @ . Since we need n independent equations
to solve for the n unknowns, 7, T,, ..., T.', we choose n independent algebraic

equations to solve for w: w=vy;,y;,....¥. . For each choice of @ we obtain an algebraic
relation among (7,7, ....,T,) . We label the algebraic equation resulting from substitution
of y¢ for w into equation (Eq. 2.12-2) as the first algebraic equation. The i algebraic
equation is obtained by substituting @ = y; into equation (Eq. 2.12-2):

n

D AT —B =0 Eq. 2.12-3
j=l
where:
A= [§ () * () *h, * det* T, Eq. 2.12-4
i
Bf = [§;(§)* h *T, *det*dT, Eq.2.12-5
In

these equations must be assembled into the equation (Eq. 2.11-9) to obtain system of
linear equation with introduced convection boundary conditions. In matrix notation,
equation (Eq. 2.12-3) becomes:

[A; UT;}={B;} Eq. 2.12-6

Therefore, equation (Eq. 2.12-6) must be assembled into equation (Eqg. 2.11-9).

2.12.1.2. Nonlinear Problem
Equation for convection boundary condition for nonlinear problems takes following form:

[@*h (T + AT)*[(T + AT) - T_1dT;, =0 Eq. 2.12-7

r/l

Convection boundary condition for nonlinear problems uses following approximations:

ahc _ hc (T + AT) - hc (T) = hc (T + AT) = hc (T) + AT ahL
o AT or

and

Eq. 2.12-8
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m m

T(x,y)+AT(x,y) =T*(x, y) + AT (x,y) = D T{Wi (x, 1) + 3 ATS 5 (x, ) Eq. 2.12-9
j=1

j=1
Using these two approximations and w =y, equation (Eq. 2.12-7) becomes:

oh,
ot

jwf (x, y)*[h (T)+ (Zm: ATy (x, ) —=1*I(T,, + AT,,) - T.1dT, Eq. 2.12-10
T, Jj=l

where T,, and AT,, are temperatures from previous iteration.

Linear part of equation (Eq. 2.12-10) obtain same result as equations (Eq. 2.12-4), (Eq.
2.12-5) and (Eqg. 2.12-6). Note also that for linear part of equation (Eq. 2.12-7) is not
used (T,, +AT,,) but equation (Eg. 2.12-9) .Nonlinear parts of equation (Eq. 2.12-7) are:

C, = jv75 ) *PF(E)* aa};c *det*T,, *dI, Eq. 2.12-11
I

D. = [ (&) * 7 *ahc*d * AT *dl Eq. 2.12-12

,,—fjwi(é) 7o) 5 det* AT, *dL, q.2.12-

E. = [ & *ye *ah"*d T %l Eq. 2.12-13

ii—fjva(f) V()= det T *dT, q. 2.12-

Convection boundary condition for nonlinear problem in matrix form:
[CU]{AT, } + [Dl,]{ATJ } - [EU]{ATJ } = {Bl } - [AU]{TJ } =

Eq. 2.12-14
= {[C,,]+[D,,]_[El,]}*{AT,}:{B,}_[AU]{T,}

2.12.2. Flux Boundary Condition

Flux Boundary Condition is presented by third term of equation (Eq. 2.12-1). There is
also linear and nonlinear presentation of this boundary condition.

2.12.2.1. Linear Problem

Using third term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for i" algebraic
equation (w =y ) flux boundary condition is:

[@q,dU, = [y (x.y)%q, *dU, = [§{(&)*q, *dT, Eq. 2.12-15
T, T,

r‘i q

Q= [ (&)*q, *det*dT, Eq. 2.12-16
fq

this matrix must be assembled into the (Eqg. 2.11-9).

2.12.2.2. Nonlinear Problem

Nonlinear part uses following approximations:
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%)
qf(T+AT)=qf(T)+AT% Eq. 2.12-17
and
AT(x,y) = AT (x,y) = Y ATy (x, y) Eq. 2.12-18
j=1

Therefore, flux boundary condition for i-th equation is:
[@*q (T +AT)*dT, = [y! (x,y)* [qf(T>+ ZAT W (x, )]
K 5 K Eq. 2.12-19
= [7:(&) *1q, (D) + gf > AT/ (1" et T,

L,
or
Z FiAT, +Q,=0 Eq. 2.12-20
or in matrix from
[F; {AT;}-{Q,} =0 Eq. 2.12-21
where

- . dq -
Ff = J'l//ie (&)* 78 (&) * a_tf *det* dT, Eq. 2.12-22
T,

and Q, is given by equation (Eq. 2.12-16).

2.12.3. Radiation Boundary Condition
Radiation (black body) boundary condition is given by second term of equation (Eq.
2.12-1):

[woe(T* —T2)dr, =0 Eq. 2.12-23

I

Because radiation makes problem nonlinear, this equation will be calculated only for
nonlinear case. Before transformation equation (Eq. 2.12-23) must be linearized about
temperature from previous iteration:

(T* =T = Tpppy +T) Ty +TNT =T.,) Eq. 2.12-24

where T,,., is temperature from previous iteration. Substituting equation (Eq. 2.12-24)
into the (Eq. 2.12-23):

[ 00E Ty + T )Ty +T2NT ~T.)dT, = [@*h, *(T =T.)*dl,,  Eq.2.12-25

I Ik
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where

h, = CE(Tpppy +T.) Ty +T2) Eq. 2.12-26

oo

is linearized about T, .

Equation (Eq. 2.12-25) is same as equation (Eqg. 2.12-2) but only for nonlinear case
(because radiation makes problem nonlinear). Therefore, element matrices and
equations are same as for convection boundary condition for nonlinear case:

th(T T,)dr, = jw(w)*h(ZTc//(xy) T.)dl, =
g Eq. 2.12-27
=I ‘(&) *h, *det*Z[v/@‘)*T]dF j C(E) ¥R *T. *det* dl,

which leads to same matrix equations as convection boundary condition for nonlinear
case:

Al = j C(E)*PE(E) *h, *det* T, Eq. 2.12-28
B = [§(&)*h, *T, *det*dT, Eq. 2.12-29

T,
:I “(&)* ~e(g€)* oh, *det*T dﬁ Eq. 2.12-30

L,
— J‘ <(&)* ’“e(g&)* h, *det*AT *dl, Eq. 2.12-31

I
— J‘ Sk "e(g&)* oh, *det*T *dF Eq. 2.12-32

Iy

Or equation (Eqg. 2.12-27) in matrix form:

Eq. 2.12-33
= {[C;1+[D;1-[E; 1} *{AT,;} ={B,} -[A, T}

2.12.4. Enclosure Radiation Boundary Condition

Enclosure radiation (gray body) boundary condition is given by fourth term of equation
(Eq. 2.12-1):

[aloe T} —a,H AT, = [ olo€,(4* Ty * T, 3% Ty, ) — 0, H,1dT, Eq. 2.12-34
T, T,
where index “i” mean i-th surface in enclosure model and H, is calculated by equations

(Eqg. 1.3-45) and (Eq. 1.3-46). From equation (Eqg. 1.3-46) is obtained following system
of equations:
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£ —1 -1 -1
[( : )Fn _i]Bl +..+ d FnBi +..+ 4 Flan = OTIA;’REV
6'1 6'1 6'1 6'1
e -1 e —1 —1
S lpp v & o tip e 5 p g —ort Eq. 2.12-35
& & g, g,
e —1 e —1 e —1
" —F.B+.+"—FB +..+[(-“—)F, —i]Bn =X .
£, £, £, £

where T,,,, is temperature of i-th surface from previous iteration. Or in matrix notation
[AEF,{B,} = 0{Tppy} = {B,}=[AEF,]" *0 *{Tp, Eq. 2.12-36

equation (Eq. 2.12-36) gives solution of radiosity matrix {B;}. For nonlinear iteration
using for calculation of enclosure radiation boundary condition following matrix equation
is used:
(B} =[AEF, 1" %0 *{Tppp } + {AEF i} * 0 *{T}} =

i#j i#J Eq. 2.12-37
={K ,}+{AEFi}* o *{T}'}
where {AEF™';} represent vector of elements tacked from diagonal of inverse matrix
[AEF,] and {Tj“} is vector of unknown temperatures. Therefore, radiosity for i-th surface
is:
B, = Z(AEF_l’ff to* T;I"REV )+ AEF i * o * Ti4 =

J=1

. Eq. 2.12-38
= Z(pSiij *O-*Ti;REV)—i_pSiii *o* T =K, + psi, * o *T
=
i

replacing this equation into the equation (Eq. 1.3-45), following equation is obtained:

H, :%(K; —(& - pSin‘)*G*Tiét) Eq. 2.12-39
_gi

and substituting this into (Eq. 2.12-34):
Jw[o-giTi4 -oH,]dl,, =
rer

c c Eq. 2.12-40
= Jw[—l(l — psi; )Ti4 _—iKi )ldr,,
r l-¢ 1-¢,

where «, = ¢, for gray and isothermal radiating surfaces. After Taylor approximation
about temperature T,,,, equation (Eqg. 2.12-40) becomes:
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[doeT! —aH )T, =
rel

E. E.
- Id_lg(l_pséi)g*47;;REv*T_ﬁ((l_pséi)o-*ﬂ;:mv+K,’)]drer = Eq. 2.12-41
I, G TG

1

= J‘aiher * T - rh ]d[;r
rﬂr

where

h, = ffg‘ (1- psi)o* 4T3 Eq. 2.12-42
and

r = 11[ ((1- psi,)o*3T  +K) Eq. 2.12-43

In order to obtain element equations and matrices, equation (Eq. 2.12-41) is used with
following approximations:

h, (T +AT)=h, (T)+AT aah; Eq. 2.12-44
and equations (Eq. 2.12-9) and (Eqg. 2.7-1). Consider first term of equation (Eq.
2.12-41):

[@*h, *T*dT, Eq. 2.12-45
rﬂr

to obtain element equation, equation (Eq. 2.12-45) is considered in two different forms:

[ (f)*(he,(T)+AT%)*(T+AT)*det*dl~“a =

rer

. ) ) Eq. 2.12-46
= [7:©)* (h, (D) + == YA ) * (LT 7€)+ AT 7)) *detdT,,
I, J=l j=l =l
and
. oh ~
[#:(&)* (h, (T)+ AT ) (T +AT)* detdl, =
e o Eq. 2.12-47
= | @ (&) * (h,(T)+ a—T"Z AT F4(E) * (T,,, +AT,,,) * det* dT,,
£, J=l
or
(G, +H; +I)AT +L =0 Eq. 2.12-48

or in matrix form:
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(G, +H, + [,{AT} +{L}=0 Eq. 2.12-49
where
G, = [W (& *h, * ;&) * det*dl, Eq. 2.12-50
T,
=[5 + O 7 () *T,,, *det* df, Eq. 2.12-51
I,
;= [ i« ey * 0 (E) * AT, *det* dl,, Eq. 2.12-52
I,

where T, and AT, are mean temperature (and temperature difference) on i-th

ign
segment from previous iteration, and:

L, =[G,1*{T;) Eq. 2.12-53

where {T} are matrix of node temperatures for i-th segment from previous iteration.
Now consider second term of equation (Eq. 2.12-41):

ja)*r #dr, —Iy/l (&)* (rh(T)+AT ")*det*dferz

Eq. 2.12-54
= [ (&)= (r(T) + 9IS G (E)AT*) * det* d,
1: aT = J J
or in matrix form
(M, {AT}+{N;} =0 Eq. 2.12-55
where
AN AGM I, L+ det T, Eq. 2.12-56
i,
= [W (&) *r, * det*dT, Eq. 2.12-57
L,

2.13. Solution of the Final Set of Simultaneous Equations

Until this step, we have made no reference to weather the problem is linear or
nonlinear, or weather it is an eigenvalue problem or not. Regardless of the nature of the
problem, the finite-element methods eventually yield the solution of a set of
simultaneous differential equations. The solution procedure for simultaneous equations
can in general, is categorized into the three parts: (1) direct, (2) iterative, and (3)
stochastic.
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2.13.1. Linear Method

Conrad improves two methods of solution which depends of problem type. For linear
type of problem Conrad uses direct method which means that solution is obtained after
solution of global matrices.

2.13.2. Nonlinear Method

For nonlinear type of problem Conrad uses iterative method to obtain final solution (this
mean that solution is obtained after couple of iterations). To obtain achieved
convergence Conrad uses following equations:

enorml = [T} + T} + T +..+T? Eq. 2.13-1

where 7,, T,, T, ..., T, are temperatures at nodes in current iteration which are obtained
as:

T =T +relax* AT/ 0<relax <1 Eq. 2.13-2

where 7" is temperature at i node form previous iteration and AT, is solution from
current iteration.

1) Convergence Criteria

If signed enorm2 as Eq. 2.13-1 from previous iteration, then solution is achieved when:

|en0rm1 - enorm2|

edif1 < tolerance Eq. 2.13-3

enorml

Eq. 2.13-3 is known as convergence criteria and edif1 is achieved convergence.

ll)  Divergence Criteria

Sign edif2 as achieved convergence in previous iteration. Solution diverged (for fixed
relax) if following condition is satisfied ten times for fixed value of relax parameter:

edif 2 < edif 1 Eq. 2.13-4

2.14. Interpretation of the Results

The previous step resulted in the approximate values of the state variable at discrete
points (nodes) of the domain. Normally these values are interpreted and used for
calculations of other physical entities, such as flux, either thought the domain or in
certain regions of it.

This is decision-making step and is probably the most important step in the entire
process. Two important questions must be answered at this point: How good are the
results? and What should be done with them? The first requires the estimation of error
bounds, and the second involves the physical nature of the problem.
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2.15. Numerical Integration

Numerical integration plays an important role in finite element methods. For instance,
evaluation of element matrices requires integration of certain functions over the element
domains. In order to facilitate these integrations and special coordinate systems are
normally chosen.

Integrals defined over a rectangular master element Q  can be numerically evaluated
using the Gauss-Legendre quadrature formulas:

N
Y F(&,.n,)WW, Eq. 2.15-1

J=

[ F&magdn = [ [ F(& maéin =

M
-1-1 1=

,_.
JUR

where M and N denote the number of Gauss quadrature points, (&,,77,) denote the

Gauss points coordinates, and W, and W, denote the corresponding Gauss weights as
shown in Table 2.1.

For two-point formula gauss points are shown in Figure 2-10:

A
4 1 3
[ o
O it 93
5 R
1 = 5 1
5 Vi 3
Cldl
g1 NE 92
1 -1 2

Figure 2-10: Gauss Points for Two-Point Numerical Integration

Table 2.15-1: Quadrature Weights and Points for Rectangular Elements

Points & r Weights Wi
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0.0000000000 One-point formula 2.0000000000
1+0.5773502692 Two-point formula 1.0000000000
0.0000000000 . 0.8888888889
Three-point formula
+0.7745966692 0.5555555555
+0.3399810435 : 0.6521451548
Four-point formula
+0.8611363116 0.3478548451
0.0000000000 0.5688888889
+0.5384693101 Five-point formula 0.4786286705
+0.9061798459 0.2369268850
+0.2386191861 0.4679139346
+0.6612093865 Six-point formula 0.3607615730
+0.9324695142 0.1713244924

3. Additional Algorithms and Descriptions

3.1. Bandwidth Minimization

A key numerical problem which arises throughout finite-element analysis (whether linear
or nonlinear, static or dynamic) is that of the solution of large sets of linear algebraic
equations such as, in matrix form,

At} = (b} Eq. 3.1-1

where the vector {b} and the square matrix ||4| are known, and the unknown vector {x}
is sought.

In finite element applications, | A| contains mostly zeros and efficiency in equation

solving is obtained by avoiding arithmetic operations (multiplications and additions) on
matrix terms that are known in advance to be zero. The computer execution time for
most equation solvers and triangular factorization routines is proportional to the order N
of the matrix. It is possible to choose an ordering for sparse matrices so that nonzeros
are located to allow subsequent matrix operations such as equation solving or
eigenvalue extraction. In general, a banded matrix has all its nonzero entries clustered
about the main diagonal (Figure 3-1).

Conrad uses the Gibbs-Poole-Stockmeyer algorithm (see [2]) to determine a nodal
numbering scheme which results in minimal bandwidth/profile.
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(a) (b)

Figure 3-1: Location of nonzero terms in a stiffness matrix: (a) before and (b) after
reordering (see [2]).

Sign transformation from original to reorder numbering system [Figure 3-1 from (a) to
(b)] as BWM , and inverse transformation or from reorder to original numbering system

as BWM .

3.2. Gravity Arrow Algorithm and Frame Cavity Transformations for
ISO15099 Calculations

3.2.1. Introduction

Gravity Arrow Algorithm is used to determine heat flow direction in frame cavities
according to gravity arrow. It is needed to perform calculations shown in [1]. Note that in
[1] frame cavity calculations are in 2D space and in THERMS frame cavity are
presented by 3 dimensions (or in 3D space). Therefore, purpose of this algorithm is to
transform frame cavity from 3D presentation into the 2D presentation according to heat
flow direction and Gravity Arrow direction.

3.2.2. Equivalent Gravity Arrow

Gravity Arrow is vector can point in any direction in 3D space and according to
algorithm described bellow it will be transformed to Equivalent Gravity Arrow which can

point only in the "x”, “y” or “z”-axes direction.

Gravity Arrow is presented in 3D (Figure 3-2) space by coordinates gy, gy and g;
respectively.
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y A

Figure 3-2: Gravity Arrow in 3D Coordinate System
Therefore, Gravity Arrow can be expressed by following equation:

g=8.x+g y+g.z Eq. 3.2-1

where coordinates g, g,, g. must satisfy following equation:

V8 +(g,) +(g.) =1 Eq. 3.2-2

In order to determine equivalent Gravity Arrow (this is gravity arrow which pointing in
one of the axes direction), 3D space is divided into the six equivalent spaces using six
surfaces which are shown in Figure 3-3, Figure 3-4 and Figure 3-5.
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surface equation:
y=-X

Figure 3-3: Surfaces Parallel With z-axis

surface equation:
z=X

surface equation:
Z=-X

Figure 3-4: Surfaces Parallel With y-axis

surface equation:
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surface equation:
y=-z

surface equation:
y=z
Figure 3-5: Surfaces Parallel With x-axe

Surfaces on Figure 2 and Figure 3 make pyramids in direction to the x-axis (Figure 3-6),
one in positive direction of x-axes (yellow) and the other in negative (blue).

Figure 3-6: x-axe Pyramids

Note that these pyramids have top angle equal with 90° (Figure 3-7 and Figure 3-8).
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9@ degrees

Figure 3-7: Pyramid Angle

90 degrees

Figure 3-8: Pyramid Angle

Therefore, these four surfaces make two pyramids in x-axes direction in order to
determine any gravity vector which belongs to pyramids space. According to surfaces
equation (see Figure 3-3, Figure 3-4 and Figure 3-5) gravity arrow belongs to positive x-
axes pyramid (yellow color in Figure 3-6) when following equations are satisfied:

y<x; y>—x; z<x and z>-x Eq. 3.2-3
when replacing gravity arrow orts
8,<8; 8,>8: 8.<8,and g.>-g, Eq. 3.2-4

If condition (Eq. 3.2-4) is satisfied, gravity arrow is replaced with it equivalent which
pointing in positive direction of x-axis and which orts are:

gx :1’ gy :0’ gZ :O Eq. 3.2'5
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Same explanation is for negative x-axis pyramid (blue color in Figure 3-6) but for
different equations.

To recover all directions in 3D space, there are also pyramids which belongs to “y” and
“z2” axis (Figure 3-9 and Figure 3-10)

AY

Figure 3-9: y-axis Pyramids

Z

Figure 3-10: z-axis Pyramids
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3.2.3. Summary of Pyramid Equations

3.2.3.1. X-Axis

1) Positive Direction

gx>gy; gx>_gy; gx>gz; gx>_gz

)] Negative Direction

2,.<8, 8:<-8,; 8, <8 & <-¢,
3.2.3.2. Y-Axis

1) Positive Direction

8,>8: 8,785 8,28 8§, >78.

)] Negative Direction

gy<gx; gy<_gx; gy<gz; gy<_gz
3.2.3.3. Z-Axis

1) Positive Direction

gz>gx; gz>_gx; gz>gy; gz>_gy

1) Negative Direction

8.<8,: 8. <78 8,<8,5 8. <78,

3.2.4. Frame Cavity Presentation and Heat Flow Direction

Eq. 3.2-6

Eq. 3.2-7

Eq. 3.2-8

Eq. 3.2-9

Eq. 3.2-10

Eq. 3.2-11

Frame Cavity in THERM5 can be drawn only in 2D and third dimension is given by

variable “jambheight” (see

Figure 3-16). Irregularly shaped Frame Cavities are rectangularized according to
procedure given in [1]. Rectangularized Frame Cavity in THERMS is presented by

Figure 3-11:
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L

|A »
|‘ >

Figure 3-11: Rectangularized Frame Cavity (needed for calculation)

Heat Flow direction is calculated in Conrad and according to screen, heat flow direction
can be “RIGHT” (Figure 3-12), “LEFT” (Figure 3-13), “VERTICAL DOWN?” (Figure 3-14)
and “VERTICAL UP” (Figure 3-15) which depends of temperatures on rectangularized
frame cavity sides.

A

L

I o

le >l

Figure 3-12: RIGHT Heat Flow Direction (According to Screen)

A

L

I i

le >l

Figure 3-13: LEFT Heat Flow Direction (According to Screen)
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I~ o

Figure 3-14: VERTICAL DOWN Heat Flow Direction (According to screen)

A

| L

d Ll
I~ o

Figure 3-15: VERTICAL UP Heat Flow Direction (According to Screen)
Frame cavity in THERM5 is presented by three dimensions (

Figure 3-16) but only two dimensions can be seen. Third dimension is presented by
value “jambheight”.

jambheight
A o
»

L

Figure 3-16: Frame Cavity Presentation in THERM

According to gravity arrow direction (in 3D space) and screen heat flow direction, heat
flow direction in 3D (or according to gravity arrow) can be: “HORIZONTAL”, “VERTICAL
UP”, VERTICAL DOWN”, “JAMB HORIZONTAL” and “JAMB VERTICAL".
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FZ .

T

i A
Figure 3-17: HORIZONTAL Heat Flow Direction (According to Gravity Arrow)

B .

oo |

MO[J TBOH

A 4

Figure 3-18: VERTICAL UP Heat Flow Direction (According to Gravity Arrow)

jambheight
4 >

y

v

Figure 3-19: VERTICAL DOWN Heat Flow Direction (According to Gravity Arrow)

8

B .

Ll

oo |

A 4

Figure 3-20: JAMB HORIZONTAL Heat Flow Direction (According to Gravity Arrow)
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I WA =

i_ jambheigV

Y

=
MO[J 18y

\ 4

Figure 3-21: JAMB VERTICAL Heat Flow Direction (According to Gravity Arrow)

Important part of this algorithm is Frame Cavity transformation form 3D (or therm)

presentation to 2D (needed for calculation) presentation. This transformation is
presented by Figure 3-11 and

Figure 3-16.

start

)

BLOCK1
Calculate heat flow
direction according to

screen

BLOCK2
Calculate equivalent gravity
arrow

)

BLOCKS
Calculate heat flow
according to gravity arrow

}

BLOCK4
Frame Cavity dimension
transformations needed for
1SO15099 calculations

)

exit

Figure 3-22: Gravity Arrow Algorithm
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T

up

LEFT RIGHT

T

DOWN

Figure 3-23: Temperatures on Rectangularized Frame Cavity

Depends of temperatures on equivalent frame cavity sides (Figure 2-1), screen heat
flow direction is determined according to according to algorithm shown on

BLOCK1

TLEI-T - TRIGHT ‘ > ‘TUP - TDOWN

e

Screen Heat Flow Screen Heat Flow =

yes

“f =RIGHT VERTICAL DOWN rlo
Screen Heat Flow Screen Heat Flow =
=LEFT VERTICAL UP
» e

Figure 3-24: Screen Heat Flow Calculation Algorithm
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BLOCK2

8:>8> 8&:>78,> 8> 8.5 8.>§;

no g.=1 g,=0, g.=0
-
(<8, 8:<78, 8, <8 8,<-8. yes—l
no g.=-1 g,=0, g=0
I
y > 8 8,> 8 8,>8. 8§, >8, yes—l
no 8.=0,g,=1 g.=0
I

y <8 g_v<_g)(; gy<gz; g_v<_g'

no

8:>8: 8:>78: 8:>8, 8.8,

no 2.=0, g,=0, g.=1

8: <8 8, <78 8:<8,5 8. <8

, yes—l
no

A 4 gX:(), gy:O, gZ:—l
Error in Algorithm

Figure 3-25: Equivalent Gravity Arrow Calculation Algorithm
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BLOCK3

8:>8,5 8:>78,) 8:> 8.5 8,.>78;

yes—

Positive x-axe
no dlre(‘:tlon
<8y 8, <78 8:<8; 8 <78 yesj
Negative x-axe
no direction
8, >8> 8,>78: 8,285 8,>78: yesﬁ
Positive y-axe
direction
no I
y <8 8, <78 & <85 8§, <78. yes
Negative y-axe
direction
no
8.>8: 8:>8: 8:.>8, 8. >78, yesj
Positive z-axe
no d|re<‘:t|on
8:<8: 8:<78: 8:<8,> 8.:<78, yesT
Negative z-axe
no o
v diretion
Error in Algorithm
N

Figure 3-26: Gravity Heat Flow Algorithm
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Positive x-axe

direction

Screen Heat Flow =
RIGHT

no

Screen Heat Flow = LEFT

no

Screen Heat Flow = UP

no

Screen Heat Flow =
DOWN

no

<

yes—

Gravity Heat Flow =
VERTICAL DOWN

r

es
i’

Gravity Heat Flow =
VERTICAL UP

|
yes—

Gravity Heat Flow =
HORIZONTAL

]

yes—l

Gravity Heat Flow =
HORIZONTAL

Figure 3-27: Positive x-axe Direction
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Negative x-axe
direction

Screen Heat Flow =

RIGHT yes ¥

Gravity Heat Flow =
no VERTICAL UP

r
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i’

Gravity Heat Flow =
no VERTICAL DOWN

Screen Heat Flow = LEFT

|
Screen Heat Flow = UP yesﬁ
Gravity Heat Flow =
no HORIZONTAL
]
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no

ERROR HORIZONTAL
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Figure 3-28: Negative x-axe Direction
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Positive y-axe
direction

Screen Heat Flow =

RIGHT yes—
Gravity Heat Flow =
no HORIZONTAL
-

Screen Heat Flow = LEFT yesj

Gravity Heat Flow =

no HORIZONTAL
|
Screen Heat Flow = UP yesi+
Gravity Heat Flow =
no VERTICAL DOWN
|
Screer]l) Iéw“;blilow = yes—l
nvo Gravity Heat Flow =
ERROR VERTICAL UP

I ‘

Figure 3-29: Positive y-axe Direction
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Negative y-axe
direction

Screeriqll-légrllflow = yes
Gravity Heat Flow =
no HORIZONTAL
-
Screen Heat Flow = LEFT yesj
Gravity Heat Flow =
no HORIZONTAL
|
Screen Heat Flow = UP yesﬁ
Gravity Heat Flow =
no VERTICAL UP
|
Screer]l) }ée&;glow = yes_l
nvo Gravity Heat Flow =
ERROR VERTICAL DOWN

Figure 3-30: Negative y-axe Direction
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Positive z-axe
direction

Screen Heat Flow =

RIGHT yes—y
Gravity Heat Flow =
no JAMB HORIZONTAL
-

Screen Heat Flow = LEFT yesj

Gravity Heat Flow =
no JAMB HORIZONTAL

.
Screen Heat Flow = UP yesi+
Gravity Heat Flow =
no JAMB VERTICAL
]
Screer]l) Iée&;lglow = yes—l
nvo Gravity Heat Flow =
ERROR JAMB VERTICAL

I ‘

Figure 3-31: Positive z-axe Direction
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Negative z-axe
direction

Screen Heat Flow =

RIGHT yes ¥

Gravity Heat Flow =
no JAMB HORIZONTAL

r

es
gl

Gravity Heat Flow =
no JAMB HORIZONTAL

Screen Heat Flow = LEFT

I
Screen Heat Flow = UP yesﬁ
Gravity Heat Flow =
no JAMB VERTICAL
I

Screen Heat Flow =
DOWN

yes—l

Gravity Heat Flow =

no

ERROR JAMB VERTICAL

v ‘

Figure 3-32: Negative z-axe Direction
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BLOCK4

|

Gravity Heat Flow = DOWN or UP

yes i

Temporary = H
H=L
L = Temporary

-

no

Gravity Heat Flow = JAMB
HORIZONTAL

yes

‘H - jambl‘leight ‘

no
!

Gravity Heat Flow = JAMB
VERTICAL

yes

L=H
H = jambheight

Figure 3-33: Transformation from 3D (THERM presentation) to 2D Frame Cavity

3.3. “Grid” Algorithm — Used for speed up Viewer

“Grid” algorithm is used to speed up view factor calculation. Main factor which has
influence on program speed are calculation if blocking surfaces between two segments
exist. Example of enclosure radiation segment which are segments used in view factor
calculation are shown in Figure 3-34. View factor matrix can be very large and this
depends of number of radiation enclosure segments. If you note that number of
radiation enclosure segments is “n” than number of view factors are “n x n” and this can
be large number. To remained that view factor is calculated by Eq. 1.3-49 and if ray
intersection by third surface exist than by Eq. 1.3-50 (see Figure 1-7 also).
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bl ik
i

[

Figure 3-34: Example of Radiation Enclosure Segments (used in View Factor
Calculations)

Therefore, in view factor calculation third surface intersection must be considered and
for this purpose blocking surface are used. Any surface which can blocked ray of any
other two segments must be signed as blocking surface and it is not always easy to
determine in advance which surfaces are blocking. Sign number of blocking surfaces in
one problem as “m”, and note that in most of cases m=n. In calculation of view factor of
any two surface program must pass through all surfaces which are signed as blocking
to check if intersection exist (or simple — check if surface blocking ray between surfaces
for which is currently calculate view factor). This leads that number of operations in view
factor calculation is approximately equal »’ (“n x n” view factors and “n” to determine
number of blocking surfaces).

“Grid” Algorithm steps:

To speed up calculations algorithm set grid net (see Figure 3-35). Purpose of this net is
that algorithm grouping blocking surfaces into the grid cells. Each cell contains blocking
surfaces numbers that belong to this surface.
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In view factor calculation between two segments algorithm determine grid cells that ray
between two surfaces passes through.

Examine if there is surface that intercept ray. In this calculations algorithm uses only
blocking surfaces which belong to cells that ray passes through (this rapidly decrease
number of blocking surfaces which program will check).
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Figure 3-35: Grid Net
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For example in Figure 3-36 is shown example where is no interception between two
surfaces, but without using algorithm program will pass through all blocking surfaces to

check if interception exists.
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Figure 3-36: Ray Between Two Surfaces
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Figure 3-37: Ray in Grid Net

Same ray in grid net (see Figure 3-37) passes only through cells numbered 22, 27 and
28 which cause that algorithm will examine blocking surfaces only in these three cells
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and this mean much less number of blocking surfaces (cell 28 is empty) to
consideration.

There is no equation from which can be obtained grid net density (number of grid cells)
because this also depends of problem geometry, number of segments and number of
blocking surfaces. Note also that too much cells can decrease program speed and have
very bad effects on program speed. For details see chapter 6.3.

3.4. Shadowing

Self shadowing and third surface shadowing are important rules in view factor
calculations.

3.4.1. Calculating Surface Normal

Surface is presented by line between two points which are presented by coordinates
(x,,y,) - first point and (x,,y,) - second point. Surface normal is calculated by following
equations:

l:\/(xl_x2)2+(y1_y2)2 Eq. 3.4-1
x, = % Eq. 3.4-2
y,= -2 Eq. 3.4-3

l

where x, and y, presents surface normal coordinates.

3.4.2. Self Shadowing

To check if segment can “see” any point (in 2D geometry) simple equations are applied.
Note that line segment is presented by normal which point into the view surface
direction (Figure 3-38).
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- I

normal is moved in zero point of coordinate system

Xn X
Figure 3-38: Surface Normal

Surface normal is moved in zero point of coordinate system and coordinate of normal
must satisfy following equation:

VX +yr =1 Eq. 3.4-4

To calculate if surface can “see” point in 2D space, point also must be presented by
vector (Figure 3-39).

point
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Figure 3-39: Point vector

To check if point belongs to view area (or can surface “see” the point) of surface
following equations must be satisfied:

y A

point vector

B

surface normal

a

Figure 3-40: Angles Between Vectors

Sign coordinates of surface normal as x, and y, and coordinates of point vector as
x, and y,.

Check if point belongs to view area:

-90° < B—a <90’ Eq. 3.4-5

which is equal with

cos(f—a)>0 Eq. 3.4-6

after trigonometric transformation

Eq. 3.4-6
cos(a) *cos(B) + sin(a) *sin(S) > 0

Eq. 3.4-7
from Figure 3-40 following equations are obtained:
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cos(a) = S T
VO + )
sin(@) = —21___
NEARS
cos(f) = S —
& +y7)
. y
sin(f) = ——L—
V& +y0)

note that equation +/(x* + y*) > 0is always satisfied. After substituting Eq. 3.4-8 into the

Eq. 3.4-8

Eq. 3.4-7:
x,*x,+y,%y,>0 Eq. 3.4-9

Self shadowing algorithm is shown on Figure 3-41:
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Self
shadowing
algorithm

K=0

v

Number of passes = number of nodes in surface nseg (=2 in line
segment)

Number of passes = number of nodes in surface iseg (=2 in line
segment)
Node on nseg surface can “see” node on iseg surface?

yes

Node on iseg surface can “see” node on nseg surface?

yes

K=K+1

%
e
<

no

Figure 3-41: Self Shadowing Algorithm

There is three case of self shadowing which can be obtained:

No self shadowing (k=4)
Partial self shadowing (0<k<4)
Total self shadowing (k=0)
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surface 1

surface 2

Figure 3-42: No Shadowing

surface 1

surface 2

Figure 3-43: Partial Self Shadowing
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surface 1

surface 2

\

Figure 3-44: Total Self Shadowing

3.4.3. Third Surface Shadowing

Third surface shadowing is occurring when there is any third surface which blockade ray
between surfaces. As in previous chapter, there are three possibilities for third surface
shadowing:

. No third surface shadowing (Figure 3-42)
. Partial third surface shadowing
. Total third surface shadowing

To examine if intersection exist in determined area, algorithm uses line equations
through two points (Figure 3-45).

YAv

~ (XA, y4) (Xz’ y2)

ai
a

(X\, yl) (XB’ YS)

b-

b,

A4
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Figure 3-45: Intersection Between Two Points
Line equations between two points for these two lines are:

=) *(x—x,)

y=y :m

( ! 2) Eq. 3.4-10
Yoy, = 2Ty

(XS—X4)

Calculating intersection point from Eq. 3.4-10, following result is obtained:

ok
¢ *by—c,*b

X, =

" a,*b,—a,*b

b Eq. 3.4-11

y, = o ta—¢ *a,

" oa*b,—a,*b
where x, and y, denotes coordinates of intersection point, and
Q=X F Y, =Xy
C=x% Y, —x "y,
a = -

1=RTh Eq. 3.4-12
a4, = Y4~ )3
b =x—x,
b, =x,—x,

To determine if intersection point is on line between end points (intersection exist) or
intersection point is out of line (no exist) see Figure 3-46 and Figure 3-47.

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 78

‘A

(Xz, y2)

as

A
v

4

o]

<
<

v

Figure 3-46: Intersection Exist
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i

(Xw, y1) P vV Vv

bk2

4

< >
< >

b

Figure 3-47: No Intersection

Whether intersection exist or not following equation are always satisfied:

rtot = Valz +b12

n=qa, by Eq. 3.4-13
=4 aiz + bk22

in case when intersection exist

r,=hL+rn Eq. 3.4-14

and if intersection not exist
<rn+r Eq. 3.4-15

Vot

Therefore, intersection between two lines exists only if Eq. 3.4-14 is satisfied for both
line segments.
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3.5. Frame Cavity Rectangularization

3.5.1. Rectangularization Algorithm

For unventilated irregularly shaped frame cavity, the geometry shall be converted into
equivalent rectangular cavity according to ISO/DIS 10077-2. For these cavities, the
following procedure shall be used to determine which surfaces belong to vertical and
horizontal surfaces of equivalent rectangular cavity:

. any surface whose normal is between 315 and 45 degrees is left vertical surface
« any surface whose normal is between 45 and 135 degrees is bottom horizontal surface
. any surface whose normal is between 135 and 225 degrees is right vertical surface
« any surface whose normal is between 225 and 315 degrees is top horizontal surface

Assume that frame cavity is divided into the finite elements which number of edge sides
whose normal is between 315 and 45 degrees is equal to “n”. Rectangularization of left
vertical surface is calculated using following equation:

. Temperature

n

Zli *temp,
LeftTemp = -='——— Eq. 3.5-1
/ P TotalLength 9
where [, is line segment length, temp, is mean segment temperature (mean
temperature is calculate using mean temperature of segment nodes), TotalLength is
sum of all segment length which surface normal is between 315 and 45 degrees and “n”
is number of segments which surface normal is between 315 and 45 degrees.

. Emissivity

Zli *emis,
LeftEmis = = Eq. 3.5-2
TotalLength
where [, is line segment length, emis, is segment emissivity, TotalLength is sum of all
segment length which surface normal is between 315 and 45 degrees and “n” is number
of segments which surface normal is between 315 and 45 degrees.

Calculation of other three (top, bottom and right) rectangularized sides are calculated
using same equations (Eq. 3.5-1 and Eq. 3.5-2).

3.5.2. Rectangularization of Non Existing Sides Algorithm

“Non Existing Side” occurs when number of segment which belongs to one of sides (left,
right, top and bottom) is equal to zero. It means that equations Eq. 3.5-1 and Eq. 3.5-2
can’t be applied because ToralLength is equal to zero.

Suppose that left side is “Non Existing” in rectangularized frame cavity (see Figure
3-48).
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Figure 3-48: “Non Existing” Left Side of Rectangularized Frame Cavity
LeftSideTemperature = theta(nodewith min x coordinate) Eq. 3.5-3

LeftSideEmissivity = (TopSideEmissivity + BottomSideEmissivity) /2 Eq. 3.5-4

Note that LeftSideTemperature is equal with temperature at node with minimal x-
coordinate. Similar equations are applied on other three sides:

. Top
TopSideTemperature = theta(nodewith max y coordinate) Eq. 3.5-5
TopSideEmissivity = (LeftSideEmissivity + RightSideEmissivity) /2 Eq. 3.5-6
. Bottom
BottomSideTemperature = theta(nodewith min y coordinate) Eq. 3.5-7

BottomSideEmissivity = (LeftSideEmissivity + RightSideEmissivity) /2 Eq. 3.5-8
. Right
RightSideTemperature = theta(nodewith max x coordinate) Eq. 3.5-9

RightSideEmissivity = (TopSideEmissivity + BottomSideEmissivity) /2 Eq. 3.5-10

4. Description of Conrad Subroutines

This chapter describes Conrad routines which use theoretical background described in
previous chapters.

4.1. Routine CONRAD

Routine CONRAD is main routine which contains all calculations described in precious
chapters. Routine CONRAD is used by THERMS and it is implemented as dynamic link
library (or dll) routine.

List of arguments:
in— (input file) Input file name (*.con file)
out — (output file) Output file name (*.o file)
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gaus — (output file) Output file name for flux results (*.sol file)
view — (output file) Output file from Viewer — view factors (*.view file)
nerr — (output value) Error flag

List of commons:
common /blk03/
nummat - Number of materials

numnp - Number of node points
numel - Number of elements
igeom - type of geometry

eq.1: axisymetric
eq.2: 2D planar
iband - bandwidth minimization
eg.0: no minimization
eq.1: minimization
eg.2: minimization — nodal destination

nsl - number of slide lines (future implement)

nslvt - total number of slave nodes (future implement)
nmstrt - total number of master nodes (future implement)
numels - number of slide line elements??? (future implement)
nprof - matrix profile for actol solver

sigma - Stefan-Boltzmann constant [5.6697¢ —8 % ]
irtyp - equal 4 (always)

itmax - Maximal number of Radiosity iterations — nonlinear iterations (100)
tolb - Radiosity convergence tolerance (def=1e-4)

numelt - ?

igenm - Thermal generation rate multiplier flag

eq.0: no thermal generation
eq.1: thermal generation
igene - ?
isotr - flag for material type
eq.0: isotropic
eq.1: orthotropic
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mcut - ?
isoln - equation solver for [A{x}={b} (always 0)

eq.0: fissle direct solver

eq.1: actol direct solver

eq.2: nonsymmetric solver
common /blk04/
nit - Number of nodes with temperature initial condition???
ntbc - Number of nodes with temperature boundary condition
nfbc - Number of flux boundary condition segments
ncbc - Number of convection boundary condition segments
nrbc - Number of radiation (Black Body) boundary condition segments
nebc - Number of enclosure radiation segments
hecurv - Number of emissivity vs wavelength curves
nfelm - Number of fluid flow elements

common /blk06/

nonl -

maxrf -
maxit -
tol -
relax -
step -
nsteps -

Type of problem [NOTE: Radiation makes problem nonlinear]
eq.0: linear

eq.1: nonlinear

Maximum number of conductivity matrix reformations
Maximum number of equilibrium iterations per reformation
Convergence tolerance (def = 1e-6)

Divergence control parameter 0 < p <1 (def = 1)

Number of steps to decrement divergence control parameter
Step value for which is Divergence control parameter is decremented

common /blk08/

title(1) -
head -
longo -

iconv -

Project name

name, date and version information
debug information flag

eq.0: no debug information

eq.1: debug information

type of temperature scale

eq.1: Celsius (tscale="c’ or ‘C’)
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eq.2: Fahrenheit (tscale="f’ or ‘F’)

eq.-1: Kelvin (tscale=’k’ or ‘K’)

eq.-2: Rankin (tscale="r’ or ‘R’)
common /blk11/

h - Values of master element functions in gauss points for numerical
integration
dhdz - Values of first derivative of master element functions by x coordinate in

Gauss points for numerical integration

dhde - Values of first derivative of master element functions by y coordinate in
Gauss points for numerical integration

common /blk12/

mpcurv -  Number of data points per curve
common /blk18/

pi - Value of pi number (eq. 3.14159265358979323846)
twopi - Value of two pi (eq. 2*pi)

common /coniob/

iobuf - Buffer to store information

common /iofilx/

fnames -  Array to store names of input-output files
common /errchk/

nperr - Error counter

common /iter/

iter - Flag to show if new iteration is needed because frame cavity conditions
are not satisfied

eq.0: new iteration is not needed
eqg.1: need new iteration
common /blk11/

gcon - Array of constants for gas conductivity calculation

gvis - Array of constants for gas dynamic viscosity calculation
gcp - Array of constants for gas specific heat calculation
wght - Vector of Molecular weights for gasses

Program flow for Conrad routine is shown in Figure 4-1.
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start

.

Open files to read information and store results. Reading gas
properties from table

A 4

Call routines to reading data from input file. (Routine INPUT)

A 4

Call routines to perform calculations and to store results into the
output files (Routine SOLVE).

A 4

Close all files and delete all pointers.

'

exit

Figure 4-1: Program Flow for CONRAD Routine

4.2. Routine SOLVE

Routine SOLVE is used to perform calculations (see Figure 4-1).

List of arguments:

Icount — (input/output value) Current line number in input file(*.con)
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start

.

Input initial conditions for frame cavities

NO Bandwidth minimization?

YES

Bandwidth minimization — Nodal reorder

) 4

Make some matrix profile using nodal
numbers. (Purpose of this is still unknown)

A 4

Call routine for calculate steady state
solution (Routine STEADY)

v

exit

Figure 4-2: Program Flow for Routine SOLVE

4.3. Routine STEADY

Routine STEADY is used to calculate nodal temperatures according to element
matrices and boundary conditions for linear and nonlinear problems. In this routine are
called all routines which introduce element matrices and conditions at the defined
boundaries. Routine STEADY also implement iterations for frame cavities (for both —
linear and nonlinear problems) and automatic decrement of “relax” parameter.

List of arguments:
There is no list of arguments for this routine
Program flow diagram is shown in Figure 4-3, Figure 4-4 and Figure 4-5.
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start

|

Flag and counter initial settings

Is maximal number of
iterations achieved?

SUBBLOCK1

©

Calculate element matrices and introduce
boundary conditions to global matrix.

A 4

Solve global matrix equation

\ 4

Calculate frame cavity properties with
new nodal temperatures and check is
frame cavity conditions are satisfied

A

SUBBLOCK?2 C

4

NO

Is frame cavity
conditions satisfied?

Solution diverge

A

-

exit

Figure 4-3: Program Flow for Routine Steady
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SUBBLOCKI1

enter

Is relax parameter
achieved minimum?

NO

Decrease relax parameter
divergence =0

o

Figure 4-4: Program Flow for SUBBLOCKT1 (Routine STEADY)
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SUBRI.OCK?

enter

Is achieved convergence less
than in previous iteration?

divergence = divergence + 1

NO

Is divergence > 10

Is relax parameter
achieved minimum?

Decrease relax parameter
divergence = 0

Figure 4-5: Program Flow for SUBBLOCK2 (Routine STEADY)

4.4. Routine BASIS

Routine BASIS calculates shape functions and derivatives for master rectangular
element (Eq. 2.7-2) in Gauss point integration (Table 2.15-1).

List of arguments:

There is no list of arguments for this routine
Results are stored in following arrays:

h(i,j), dhdz (i,j) and dhde(i,j) (common block) where

i-number of Gauss point integration (for example i=1 mean first gauss point, i=2 means
second gauss point etc.)
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j-function number

For example:
. . 1 1

h(2’3) =Y, (fz’nz): v, (g2) fz = E’ n= _ﬁ Eq' 4.4-1
o5 (¢, o5 (gl

dhdz(13) = 2¥5 é? m _ Vfgég ) ¢ :_%’ 7 :_% Eq. 4.4-2
0V, (5,.7,) _ 0W;(g2) 1 1

dhde(2,4) =222 122 =~ 714 =—, =—— Eq. 4.4-3

e(2,4) 877 877 52 \/5 m, \/g q

Results are stored in common block /blk11/.

4.5. Routine SHAPE

Routine SHAPE calculates Jacobian matrix and determinant, and function derivatives in
global coordinates (Eq. 2.10-10) for specified gauss point () for one element.

List of arguments:

ig— (input value) Gauss point number

ex — (input value) Vector of node coordinates of element

det — (output value) Jacobian determinant

sh - (output value) Vector of function derivatives in global coordinates

To shape function derivatives in global coordinates equations (Eq. 2.10-2), (Eqg. 2.10-5)
and (Eqg. 2.10-10) are used. Jacobian matrix is stored in:

xs(L)  xs(1,2)

=J Eq. 4.5-1
xs(2,1)  xs(2,2)
and

oV (X, Vip)

SAALD) ) - o Eq. 4.5-2
sh(2,0)| [0 (xi» ¥;,)

dy

where ¥ (x,,y,) is global element function in ig-th gauss point.

4.6. Routine SHAPEV

Routine SHAPEYV calculates Jacobian matrix and determinant, and function derivatives
in global coordinates (Eq. 2.10-10) for specified gauss point () for group of elements.

List of arguments:
ig— (input value) Gauss point number
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It - (input value) Number of elements

Results are also stored in common blocks:

/v01/ - vectors for Jacobian determinant, functions and function derivatives
/v02/ - vectors for node coordinates of elements

To shape function derivatives in global coordinates equations (Eq. 2.10-2), (Eqg. 2.10-5)
and (Eqg. 2.10-10) are used. Jacobian matrix for i-th element is stored in:

xs11(7)  xs12(i)

=J Eq. 4.6-1
xs21(i)  xs22(i)

and function derivatives in global coordinate system for i-th element

oWy (X, ¥,,)
shk@)| | ax Eq. 462
Sh2Kk ()| (0¥ (X v o
dy

enter

l

calculates Jacobian matrix and
determinant in gauss point number ig

A 4

shape function derivatives in global
coordinates

l

exit

Figure 4-6: Program Flow for Routines SHAPE and SHAPEV

4.7. Routine FORMKF

Routine FORMKEF calculates conduction matrix and internal heat generation matrix
(equations 2.7.6 and 2.7.13) for all elements and assemble it in global matrix. Routine
FORMKEF also uses results evaluated in routine SHAPEV (common blocks /v01/ and
/v02/).
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List of arguments:

X —
km —
angl —
mtype —
ptemp —
cv —
condi —

cond2 —
ncgenm —
genm —

ncgene —
gene —
dqggen -
curvx —
curvy —
npc —
tmpc -
tmpk —
cvtr —
cntr —
jdiag —
tn -

tnp —

gf -

gk —

au -

ad -
nonl —
rhoelm —

(input vector) Vector of node coordinates
(input vector) Vector of element data

(input vector) Future use

(input vector) Vector of material types

(

(input vector) Vector for material heat capacity

(input vector) Vector for thermal conductivity (=k for isotropic, =k11 for
orthotropic materials)

(input vector) Future use (=k22 for orthotropic materials)
(input vector) Future use. Vector of thermal generation rate curve numbers

(input vector) Future use. Thermal generation rate (multiplier in future use
with ncgenm)

(input vector) Future use

(input vector) Future use

?

(input vector) Future use. X-coordinates of functions data
(input vector) Future use. Y-coordinates of functions data
(input vector) Future use. Number of points for curve

(
(
(
(
(

(input vector) Node temperatures (or temperature difference for nonlinear
problems) from previous iteration

(input vector) Node temperature derivatives. CHECK THIS

(input value) =0 linear problem; =1 nonlinear problem
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Routine FORMKF uses common blocks /v01/ and /v02/ which are calculated in routine
SHAPEV.

Conduction matrix (Eq. 2.9-16) is solved using function derivatives and Jacobian
determinants calculated in routine SHAPEV (stored in common block /v01/) and
material properties which are calculated in routine MATL. Conduction matrix is
calculated in four Gauss points and stored by following equation (for i-th element):
ek(1,i) ek(2,i) ek(4,i) ek(7,i) K, K, K; K,
ek(2,i) ek(3.i) ek(5.i) ek®.i)| |K, K, K, K,
ek(4,i) ek(5,i) ek(6,i) ek(9,0)| |K, K, Ky K,
ek(7,i) ek(8,i) ek(9,i) ek(10,i) |K, K, K, K,

Eq. 4.7-1

where K is calculated by equations (Eqg. 2.9-16) and (Eqg. 2.15-1) in Gauss integration

points. Internal heat generation matrix (Eq. 2.9-8) is also calculated in four Gauss point
and stored by following equation (for i-th element):

ef (LD [Q
o (2.0 |0, Eq. 4.7-2
ef D) |0
€f(4,l) Q4

where Q, is calculated by equations (Eqg. 2.9-8) and (Eq. 2.15-1) in Gauss integration

points. Note that equations (Eq. 4.7-1) and (Eq. 4.7-2) are calculates for both (linear and
nonlinear) types of problem. For linear problems equations (Eq. 4.7-1) and (Eq. 4.7-2)
are assembled by equation (Eqg. 2.9-6) into the global arrays. Each element of matrix ek
and vector ef is assembled to corresponding element of global arrays which depends of
node number. Matrix ek is assembled to left the left side of global matrix (Eq. 2.11-9)
and vector ef is assembled to the right side of global matrix (Eq. 2.11-9).

For nonlinear problems one more matrix is calculated:

egt(l,i) egt(2,i) egt(4,i) egt(7,i) 0, 0, 0, 0.
egt(2,i) egt(3,i) egt(5,i) egtB.D)| |0, O O Oy
egt(4,i) egt(5,0) egt(6,i) egtO.D)| 0, 0y 0Oy Ou
egt(7,i) egt(8,i) egt(9,i) egt(10,i) Q. 0, 0, 0.

Eq. 4.7-3

where Q. is calculated by equation (Eqg. 2.9-14) and (Eq. 2.15-1) in Gauss integration

points. For nonlinear problems equations (Eq. 4.7-1), (Eq. 4.7-2) and (Eq. 4.7-3) are
assembled by equation (Eq. 2.9-13) into the global arrays.
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enter

— number of passes = number of elemenD

\ 4

take material and element properties for
all elements into the local arrays

A 4

calculate additional element properties
which depends of mean element

v

number of passes = number of Gauss
points (=4)

A 4

calculate element matrices for linear
problem

YES
is a nonlinear problem?

\ 4

calculate additional element
matrices for nonlinear problems

assembling matrices into the global arrays

exit
Figure 4-7: Program Flow for Routine FORMKF
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4.8. Routine BCCONV

Routine BCCONYV calculates convection boundary condition using equations (Eg.
2.12-3) for linear problems and equation (Eq. 2.12-14) for nonlinear problems. Integrate
these equations in two Gauss points (for line elements) and finally assembling all
coefficients into the global arrays.

List of arguments:

x —_
ndbc —

nctinf —
tinfm —

nch —
hm -

freex —
curvx —
curvy —
npc —
jdiag —
tn -

tnp —

gf -
nctcbc —
gk —
au—

ad -
ncbc —
nonl —
igeom —

(input vector) Array of nodal coordinates
(input vector) Node numbers of which is segment consist
EXAMPLE: ndbc(1,1,nseg) — first node of nseg™ segment
ndbc(1,2,nseg) — second node of nseg" segment
(input vector) Curve numbers
(input vector) Outside film temperatures at segment

EXAMPLE: tinfm(1,nseg) — outside temperature at first node of nseg"
segment

tinfm(2,nseg) — outside temperature at second node of nseg™ segment
(input vector) Curve numbers

(input vector) Segment film coefficients

EXAMPLE: hm(nseg) — film coefficient at nseg™ segment

(input vector)

(input vector) x-axe values of curves

(input vector) y-axe values of curves

(input vector) Number of points for curve

(input vector)

(input vector) Node temperatures (or temperature difference) from current
iteration

(input vector) Temperature derivatives. CHECK THIS

(output vector) Used for assembling right-hand side of equations
(input vector) Curve numbers

(output vector)

(output vector)

(output vector)

number of Convection Boundary Condition segments

type of problem (O=linear; 1=nonlinear)

type of geometry
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Matrix A (Eq. 2.12-4) is calculated for linear and nonlinear types of problem and results
are stored in:

bckl(1,1)  bckl(2,1)
bckl(2,1)  bckl(3,1)

e e

Al 1 A12
e e

A21 A22

Eq. 4.8-1

where =1 (always) and coefficients A; are calculated by equation (Eq. 2.12-4). Matrix
B (Eq. 2.12-5) is also calculated for linear and nonlinear types of problem and results
are stored:

bef (1,1)
bef (2,1)

By
B;

Eq. 4.8-2

where |=1 (always) and coefficients B; are calculated by equation (Eq. 2.12-5). If

problem type is linear, assembling matrices A and B is done by equation (Eq. 2.12-3)
or in matrix notation (Eq. 2.12-6).

For nonlinear type of problem there is three additional matrices which are calculated.
First matrix is:

bckn(1,l) bckn(2,1)
bckn(2,1) bckn(3,1)

Cl 1 Cl 2
C21 C22

Eq. 4.8-3

where |=1 (always) and coefficients C, are calculated by equation (Eq. 2.12-11).

Second matrix is:

bcknp(1,1)  bcknp(2,1)
bcknp(2,1)  bcknp(3,1)

Dll D12
D21 D22

Eq. 4.8-4

where I=1 (always) and coefficients D, are calculated by equation (Eq. 2.12-12).

Third matrix is:

bekf (1,1)  bekf (2,1)
bekf (2,1)  bekf (3,1)

Ell ElZ
EZl E22

Eq. 4.8-5

where |=1 (always) and coefficients E, are calculated by equation (Eq. 2.12-13).

For nonlinear type of problem, matrices are assembled by equation (Eqg. 2.12-14).
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enter
number of passes = number of
convection segments
v

set local arrays to zero and take node numbers
and material properties for current segment

v

number of passes = number of Gauss point
for integration (=2 for line segment)

v
calculate determinant and average temperatures
for current segment. Calculate film coefficient
for average temperature of current segment

A 4

calculates matrices A and B for current
segment and current gauss point

is a nonlinear problem?

calculates matrices C, D
and E

YES

is a nonlinear problem?

\ 4

assembling matrices into the

global arrays (linear type) assembling matrices into the
global arrays (nonlinear type)

e .

exit

Figure 4-8: Program Flow for Routine BCCONV
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4.9. Routine BCFLUX

Routine BCFLUX calculates flux boundary condition using equations (Eq. 2.12-15) for
linear problems and equation (Eq. 2.12-19) for nonlinear problems. Integrate these
equations in two Gauss points (for line elements) and finally assembling all coefficients
into the global arrays.

List of arguments:

X — (input vector) Array of nodal coordinates

ndbc — (input vector) Node numbers of which is segment consist
EXAMPLE: ndbc(1,1,nseg) — first node of nseg" segment
ndbc(1,2,nseg) — second node of nseg" segment

ncf — (

fbcm — (

curvx — (input vector) x-axe values of curves

curvy — (input vector) y-axe values of curves

npc — (input vector) Number of points for curve

jdiag — (input vector)

tn - (input vector) Node temperatures (or temperature difference) from current
iteration

tnp - (input vector) Temperature derivatives. CHECK THIS

of — (output vector) Used for assembling right-hand side of equations

nctfbc — (input vector) Curve numbers

gk — (output vector)

au — (output vector)

ad - (output vector)

nbc — number of Flux Boundary Condition segments

nonl — type of problem (O=linear; 1=nonlinear)

igeom — type of geometry

Matrix Q (Eqg. 2.12-16) is calculated for linear and nonlinear types of problem and
results are stored in:

bef (LD| _Q
bef (2,0 O,

where |=1(always) and coefficients Q, are calculated by Eq. 2.12-16. Eqg. 4.9-1 are
assembled into the right-hand side of global matrices.

Eq. 4.9-1
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For nonlinerar type of problem there is additional matrix which is calculated:

bekf(1,1)  bekf (2,1)
bekf (2,1)  bekf (3,1)

LTI %
F21 F22

Eq. 4.9-2

where I=1 (always) and coefficients F; are calculated by Eq. 2.12-22. For nonlinear
type of problem, assembling is done according to Eq. 2.12-21.
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enter

\ 4

number of passes = number of flux
segments

v

and material properties for current segment

set local arrays to zero and take node numbers

v

»

'\for integration (=2 for line segment)

A 4

number of passes = number of Gauss point

for average temperature of current segment

calculate determinant and average temperatures
for current segment. Calculate flux coefficient

\ 4

calculates matrix (0 for current segment and

current gauss point

is a nonlinear problem?

calculate matrix F'

is a nonlinear problem?

A 4

assembling matrix into the
global arrays (linear type)

assembling matrix into the
global arrays (nonlinear type)

exit

Figure 4-9: Program Flow for Routine BCCONV
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4.10. Routine BCRAD1

Routine BCRAD1 calculates black body boundary condition using linearized equation
(Eqg. 2.12-23) for nonlinear problems (radiation makes problem nonlinear) and integrate
these equations in two Gauss points (for line elements) and finally assembling all
coefficients into the global arrays.

List of arguments:

x —_
ndbc —

nctinf —
tinfm —

nch —
hm -

curvx —
curvy —
npc —
jdiag —
tn -

tnp -

gf -
nctrbc —
gk —

au -

ad -
hbc -
igeom —

(input vector) Array of nodal coordinates

(input vector) Node numbers of which is segment consist
EXAMPLE: ndbc(1,1,nseg) — first node of nseg™ segment
ndbc(1,2,nseg) — second node of nseg" segment

(input vector) Curve numbers — for temperature multiplier
(input vector) Outside film temperatures at segment

EXAMPLE: tinfm(1,nseg) — outside temperature at first node of nseg"
segment

tinfm(2,nseg) — outside temperature at second node of nseg™ segment
(input vector) Curve numbers — for linearized film coeficient

(input vector) equal with o¢ . (¢&,,, =segment emissivity)

nseg \ Enseg
(input vector) x-axe values of curves
(input vector) y-axe values of curves
(input vector) Number of points for curve
(input vector)

(input vector) Node temperatures (or temperature difference) from current
iteration

(input vector) Temperature derivatives. CHECK THIS

(output vector) Used for assembling right-hand side of equations
(input vector) Curve numbers

(output vector)

(output vector)

(output vector)

number of Black Body Radiation Boundary Condition segments
type of geometry

Matrices calculated in routine BCRAD1 are stored in following arrays:
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bekl(1,1)  bekl2,D)| |4, A,
= Eq. 4.10-1

bckl(2,1)  beki(3,D)| A, A,
where A, is calculated by equation (Eqg. 2.12-28),

bef (1,1 B

o LD _1B, Eq. 4.10-2
bef (2,1)| ||B,
where B, is calculated by equation (Eq. 2.12-29),

bckn(1,l) bckn(2,1) _ ¢, C, Eq. 4.10-3
bckn(2,l) bckn(3,0)| |C,, C,,
where C; is calculated by equation (Eq. 2.12-30),

bcknp(1,1)  bcknp(2,1) _ D,, D, Eq. 4.10-4
bcknp(2,1)  bcknp(3,1)| |D,, D,
where D, is calculated by equation (Eq. 2.12-31), and finally

bekf (L1)  bekf 20| _|Ey  E, Eq. 4,105
bekf (2,1)  bekf 3,0 |E,,  E,,

where E, is calculated by equation (Eq. 2.12-32) and I=1 in all previous equations in
this chapter. Assembling is done according to Eq. 2.12-33.
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enter

number of passes = number of black body
radiation segments

A 4

set local arrays to zero and take node numbers and
material properties for current segment

A 4

number of passes = number of Gauss point for
integration (=2 for line segment)

\ 4

calculate determinant and average temperatures for
current segment. Calculate linearized radiation
coefficient for average temperature of current
segment

v
calculates matrices A, B, C, D and E for

current segment and current gauss point

assembling matrices into the global arrays

exit

Figure 4-10: Program Flow for Routine BCRAD1

4.11. Routine RADIN2

Routine RADIN2 is input routine which get data for radiation enclosure boundary
condition calculation. Routine RADIN2 also performed some calculations which are
used in radiation enclosure boundary condition calculations.
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List of arguments:

x —_
nodes —
nrcond —

ncrad —
thole —
emis —
ipvt —
work —
area —
aef —
nband —
hecurv —
sigma —
irtype —
itmaxb —
tolb —
igeom —
nrdim —

nebc —
Icount —
longo —
labele —
iconv —

emise —

(input vector) Node coordinates

(output vector) Node numbers of radiation enclosure segments
(output vector) Shows which part of radiation enclosure segment belongs
eq.0:segment is part of conduction el,

eq.1: segment is not part of conduction el

Not used in this routine

(output vector) Radiation enclosure surface temperature

Not used in this routine

(output vector) The pivot vector from sgeco or sgefa
(input/output vector) Working vector. Contents destroyed.
(output vector) Segment length

(input/output vector) View factor matrix/Inverse AEF matrix
Not used in this routine

Not used in this routine

Stefan-Boltzmann constant 5.6693 107 [W/(m?K%)]
=4 always

maximum number of radiosity iterations

radiosity convergence tolerance

type of geometry

number of column in aef and afrow matrices Used only for definition aef
and afrow!!!!

number of radiation enclosure surfaces
number of column in input text

output type

gray body radiation bc edge id

type of temperature scale

eq.1: Celsius (tscale='c' or 'C")

eq.2: Farenheit (tscale='f' or 'F')

eq.-1: Kelvin (tscale='k' or 'K")

eq.-2: Rankin (tscale='r' or'R')
emissivity of the surface

iordr — reading flag
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afrow — (input vector) View factor matrix CHECK THIS

Calculation which is performed in routine RADIN2 is to calculate inverse matrix [AEF, ]
according to equation (Eq. 2.12-35 and Eq. 2.12-36) and to store this matrix in:

aefl)  aefl2) ... aeflneby| |AEF AEER ... AEF,,.
aef2))  aef2?) ... aef2neby| | AEF AEE ... AEE,,

aefnebd) aefnebd) ... aefnebmeb) AElfe‘bd AEEM2 AEﬁbmeb—

-1

Eq. 4.11-1
AEF,  AEE ... AEE,,

AEE  AEE ... AEFE,

ebc

- . . . _[AE} .

AEﬁe‘bd AEﬁe‘b& o AEEbmeb

start

.

reading radiation enclosure data

A 4

calculate inverse matrix [AEF,]™'

!

exit

Figure 4-11: Program Flow for Routine RADIN2

4.12. Routine BCRAD2

Routine BCRAD2 calculates radiation enclosure (gray body) boundary conditions and
assemble results into the global arrays.

List of arguments:
X — (input vector) Array of nodal coordinates
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ndbc —

ad —

nebc —

igeom —

sigma —

nrdim —

emise —

nrcond —

(input vector) Node numbers of which is segment consist
EXAMPLE: ndbc(1,1,nseg) — first node of nseg™ segment
ndbc(1,2,nseg) — second node of nseg" segment

(input vector) Not used in this routine

(input vector) Radiation enclosure surface temperature

(input vector) Not used in this routine

(input vector) heat flow density of radiation enclosure segment
(input vector) Segment temperature used for calculation

(input vector) inverse AEF matrix calculated in routine RADIN2
(output vector) “radiation” matrix

(input vector)

(input vector) Node temperatures (or temperature difference) from current
iteration

(input vector) Temperature derivatives. CHECK THIS

(output vector) Used for assembling right-hand side of equations
(output vector)

(output vector)

(output vector)

number of Enclosure (Gray Body) Radiation Boundary Condition segments
type of geometry

Stefan-Boltzmann constant 5.6693x107* [W/(m?K%)]

number of column in aef and afrow matrices CHECK THIS

(input vector) Radiation enclosure surface emissivity

(input vector) Shows which part of radiation enclosure segment belongs
eq.0:segment is part of conduction el,

eq.1: segment is not part of conduction el

Matrices calculated in routine BCRAD2 are stored in following arrays:

b(1)
b(2)

b(n)

{K;}

Kl
KZ
ln = =[AEF; " *0*{Tpp, Eq. 4.12-1
i#]j i#j
Kn
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which is equal with equation (Eq. 2.12-37).
Second matrix:

bekli(1,1)  bckl(2,1)
bckl(2,1)  bckl(3,1)

Gl 1 Gl 2
G21 G22

where G, is calculated by equation (Eq. 2.12-50).

Third matrix:
bef (LD| N,
bef (2,0 |N,

where N, is calculated by equation (Eq. 2.12-57).

Fourth matrix:

bckn(1,1)  bckn(2,1)
bckn(2,1) bckn(3,1)

Hll H12
H21 H22

where H is calculated by equation (Eq. 2.12-51).

Fifth matrix:
bcknp(L,1) ~ beknp(2,1)| |1, 1),
bcknp(2,1)  beknpG,D)| ||, 1,

where I, is calculated by equation (Eq. 2.12-52).

Sixth matrix:
bekf (LD)  bekf 2,0 M, M,
bekf (2,1)  bekf 3,0 My, M,

Eq. 4.12-2

Eq. 4.12-3

Eq. 4.12-4

Eq. 4.12-5

Eq. 4.12-6

where M is calculated by equation (Eq. 2.12-56), and I=1 (always) in all previous

equations.
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start

—@ber of passes = number of enclosure segments )

A 4

calculate segment temperatures

calculate matrix {K; }

A 4

@ber of passes = number of enclosure segments )

\ 4

set local arrays to zero and get segment data

calculate matrices
G,N,H,I, M and L in Gauss

points and assemble in global arrays

exit

Figure 4-12: Program Flow for Routine BCRAD2

4.13. Routine BCTEMP1

Routine BCTEMP1 introduces temperature boundary conditions and assemble it into
the global arrays. Assembling into the global matrices (Eq. 2.11-9 and Eq. 2.11-10) for
i™ node (at which temperature is defined and equal T,,,,, ) is working according to next

equations (for i node):
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4.13.1. Linear Problem
K, *T\+K,,*T,+..+ K, *T, +..+ K, *T, = P, Eq. 4.13-1

and after assembling (in BCTEMP1) temperature for i" node equation (Eq. 4.13-1)
becomes:

K, *T,+ K, *T, +..+1el8*T, + .+ K, *T, = el 8 * Ty pun Eq. 4.13-2
which lead that in global matrix solution:
T =Tinown Eq. 4.13-3

because following equation is satisfied:

K., K, K,,<<lel8 Eq. 4.13-4
4.13.2. Nonlinear Problem
K, *AT, + K, *AT, +..+ K, *AT, +...+ K, *AT, = P, Eq. 4.13-5

and after assembling (in BCTEMP1) temperature for i node equation (Eq. 4.13-1)
becomes:

AT, =0 Eq. 4.13-6
because temperature difference for node at which is temperature defined is zero.
List of arguments:

ndbc — (input vector) Segment (Node) at which temperature is defined
ncbc — (input vector) Curve number

tbecm — (input vector) Segment (node) temperatures
curvx — (input vector) x-axe values of curves

curvy — (input vector) y-axe values of curves

npc — (input vector) Number of points for curve

jdiag —

gf -

gk —

au -

ad -

ntbc — Number of segments (Nodes) with temperature bc
nonl — type of problem (O=linear; 1=nonlinear)
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start

|

—@er of passes = number of nodes with temperature bc )

\ 4

take node number

is a nonlinear problem?

YES

A 4

assembling equations
(linear type)

assembling equations
(nonlinear type)

exit

Figure 4-13: Program Flow for Routine BCTEMP1

4.14. Routine VARH

Routine VARH calculates convective and radiative part of surfaces which have

interaction with gasses (or gas mixtures), like surfaces inside IGU. Equations used in

routine VARH are described in section 1.3.3.4.

List of arguments:

wl — (input value) Glazing cavity (IGU) width

X — (input value) Segment distance from Starting (Departing) Corner
t1 - (input value) Temperature of side number 1

t2 - (input value) Temperature of side number 2

el - (input value) Emissivity of side number 1

e2 - (input value) Emissivity of side number 2

is — (input value) Flag for cavity orientation

eq.1 — Frame Cavity orientation DOWN

eq.-1 — Frame Cavity orientation UP
height — (input value) Height of IGU
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cond — (output value) Thermal conductivity (gas property)

dvisc — (output value) Dynamic viscosity (gas property)

rho — (output value) Density (gas property)

cp - (output value) Specific heat (gas property)

pr— (output value) Prandtl number (gas property)

tm — (input value) Gas mean temperature

sigma—  (input value) Stefan-Boltzmann constant 5.6693x10~* [W/(m?K*)]
grav — (input value) Gravity acceleration constant 9.81 [m/s?]

h - (output value) Film coefficient of segment

icrrad — (input value) radiation flag (eq.1 — include radiation; eq.0 — omit radiation)
tscale — (input value) Temperature scale

tscale='c' or 'C' - Celsius
tscale='f" or 'F' - Fahrenheit
tscale='k' or 'K' - Kelvin
tscale='"r' or 'R' - Rankin
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start

l

Calculate gas properties at mean
temperature of the segment and
CRITERIA

YES CRITERIA < 500

A 4

Conduction Regime Boundary Layer
calculations Regime calculations

Calculate radiative part
of film coefficient

l

exit
Figure 4-14: Program Flow for Routine VARH
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Figure 4-15: Conduction Regime Calculation Program Flow
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Boundary Layer Regime calculations

YES NO

Is Starting Corner?

A 4 A 4

Calculate film coefficient Calculate film coefficient
of Starting Corner of Departing Corner

exit

Figure 4-16: Boundary Layer Regime Calculation Program Flow

4.15. Routine BANDW

Routine BANDW implement bandwidth minimization described in 3.1. This routine
determine does minimization take effect or not and if there is any effect. If there is effect
then this routine determines two vectors which is used for renumbering.

List of arguments:

nrv — (output vector) nodal reorder vector — transformation from reorder to
original numbering system

id — (output vector) inverse nodal reorder vector — transformation from original
to reorder numbering system

Icount — (input value) number of column in input text

longo — (input value) output type
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start
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NO

A 4

\ 4

Calculate nodal
reorder vector (nrv)

Read nodal reorder
vector (nrv) from input
file

Calculate inverse nodal
reorder vector (id)

l

exit

Figure 4-17: Program Flow for Routine BANDW

4.16. Routine RENUM

Routine RENUM is used to renumber input data (node, element and boundary

conditions data) from original to reorder numbering system.

List of arguments:

X — (input/output vector) Node coordinates

km — (input/output vector) Element information

ndtbc — (input/vector vector) Nodes with temperature boundary conditions

ndfbc — (input/vector vector) Nodes with flux boundary conditions

ndcbc — (input/vector vector) Nodes with convection boundary conditions

ndrad — (input/vector vector) Nodes with black body radiation boundary conditions
ndrbc — (input/vector vector) Nodes with enclosure radiation boundary conditions
id — (input vector) Inverse nodal reorder vector

theta — (input/vector vector) Node temperatures

dum2d - () Reference vector

numnp —  (input value) Number of node points

numelt —  (input value) Number of elements
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start
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Renumber node coordinates

A 4

Renumber node temperatures

A 4
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\ 4
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boundary condition data

|

exit
Figure 4-18: Program Flow for Routine RENUM

4.17. Routine IRENUM
Routine IRENUM is used to renumber boundary conditions data from original to reorder
(bandwidth) numbering system.

4.18. Routine CALCEFFK1

Routine CALCEFFK1 is used to renumber data used for frame cavity calculations from
reorder (bandwidth) to original numbering system, to call routine CALCEFFK which
calculates frame cavity properties (calculations are performed in original numbering
system) and after that to renumber data from original to reorder numbering system.

List of arguments:

X — (input vector) Node coordinates
km — (input vector) Element information
frcav - (input vector) Flag which is used to show if element side belong to edge of

frame cavity, and if side belong to edge than to show which side of
equivalent rectangularized frame cavity this side belong. This array contain
4 flags for each element (first for side between nodes km1 and km2,
second for side between node km2 and km3, third side between km3 and
km4, fourth side between km4 and km1). Depending of value side is
transformed to one of sides of rectangularized frame cavity:

eq.1: transform to left side
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sideemis -
cond1 -

theta -
id —

nrv —

idir -

iscr -

tc -

ec -

pressure -
nmix -
iprop -

frct -
cavmod -

eq.2: transform to down side
eq.3: transform to right side
eg.4:transform to upper side

(input vector) Show element side emissivity if side belong to edge of frame
cavity, and equal with zero if not.

(input/output vector) used to store results — effective conductivitues of
frame cavities.

(input vector) node temperatures.

(input vector) inverse nodal reorder vector — transformation from original to
reorder numbering system.

(input vector) nodal reorder vector — transformation from reorder to original
numbering system.

(input/output vector) stored initial gravity heat flow direction and after
calculations, stored calculated heat flow direction (it depends of frame
cavity type).

(input/output vector) stored initial screen heat flow direction and after
calculations, stored calculated heat flow direction (it depends of frame
cavity type).

(input/output vector) initial temperatures of rectangularized frame cavities
and after calculations, stored calculated temperatures (it depends of frame
cavity type).

(input vector) emissivity of element side. Equal with zero if side not belong
to edge.

(input vector) gas (or gas mixture) pressure in frame cavity.
(input vector) number of gases in gas mixture.

(input vector) Indicate which gasses are implement in gas mixtures. Built in
values:

eq.1: Air

eq.2: Argon

eq.3: Krypton

eqg.4: Xenon

(input vector) Fraction part of gasses in gas mixture
(input vector) Cavity model:

eq.0: NFRC97

eq.1: CENISO

eq.2: CENISO VENTILATED
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eq.3: USER DIMENSION
eq.4: 1ISO15099
eq.5:1SO15099 VENTILATED

cheight - (input vector) jambheight of frame cavity (see
Figure 3-16)
radiationflag - (input vector) flag for radiation calculations

eq.0: omit radiation

eq.1: include radiation
MaxXDimension - (input vector) Equivalent “x” dimension of rectangularized cavity
MaxYDimension - (input vector) Equivalent “y” dimension of rectangularized cavity
CavArea - (input vector) frame cavity area

t1old, t2o0ld - (input/output vector) used to store side (of rectangularized frame cavity)
temperatures from previous iteration.

Innum - (input vector) frame cavity 1D

Nusselt -  (output vector) Calculated Nusselt number

CavKeff -  (output vector) Calculated Effective conductivity

changehf - (input/output vector) detect change of heat flow direction
eq.0: heat flow direction in current iteration is same as in previous
eq.1: heat flow direction in current iteration is not same as in previous

oscillate - (input/output vector) sign that heat flow direction on frame cavity side
oscillate (change in every iteration). This flag is used to stop oscillations
and cause that solution converge.

iconv - (input value) temperature scale:
eq.1: Celsius
eq.2: Fahrenheit

eq.-1: Kelvin
eq.-2: Rankin
numnp - (input value) number of node points
numel - (input value) number of elements
iband - (input value) is bandwidth minimization performed

ed.0: no bandwidth minimization
eg.1: bandwidth minimization is performed
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start

is bandwidth minimization
performed?

A\ 4
reorder data from bandwidth
to original numbering system

effective conductivities of frame cavities
calculations (Routine CALCEFFK)

is bandwidth minimization YES
performed?

A 4

reorder data from original to
original numbering system

A

exit

Figure 4-19: Program Flow for Routine CALCEFFK1

4.19. Routine CALCEFFK

Routine CALCEFFK perform calculations described in ISO15099 standard [1].
List of arguments:

see Routine CALCEFFK1
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start

@umber of passes = number of frame cavitieD

is initial state?

SUBBLOCKI1

calculates effective conductivity of frame cavity
for initial conditions and calculate properties for
next iteration (needed for ISO type of cavities)

exit
Figure 4-20: Program Flow for Routine CALCEFFK
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SUBBLOCKI1
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SUBBLOCK2
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v

calculate heat flow direction

v

calculate effective conductivity of frame
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v
SUBBLOCK3

A

exit

Figure 4-21: SUBBLOCK1
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SUBBLOCK?2
4
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side belong to edge of frame
cavity?
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\ 4

check if current element nodes have maximal or minimal
coordinates

\ 4

add segment temperature and emissivity to corresponding
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exit

Figure 4-22: SUBBLOCK2
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SUBBLOCK3

|

check if temperature difference from current and from

previous iteration is less than 1 °C .

\ 4

check if heat flow direction is changed. If heat flow is
changed than increment counter (which count number
of changes) - oscillate.

is oscillate = Oscill

return frame cavity properties from iteration
in which conductivity has larger value.

remember frame cavity properties for next
iteration

exit

Figure 4-23: SUBBLOCK3

5. Description of Viewer Subroutines
This chapter describes routines which are used by viewer.

5.1. Routine SEE

Routine SEE is used to calculate self shadowing between two surfaces using equations
and algorithm described in chapter 3.4.2.

List of arguments:

X — (input vector) x-coordinates of nodes
y- (input vector) y-coordinates of nodes
z- (input vector) z-coordinates of nodes (not used in this version)
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Xn — (input vector) x-coordinates of surface normal
yn - (input vector) y-coordinates of surface normal
zn - (input vector) z-coordinates of surface normal (not used in this version)
km - (input vector) node numbers of which are segment consist
iseg -
(input value) number of iseg-th segment
jseg -
(input value) number of jseg-th segment
ndim - (input value) type of problem (2 = two dimensional)
iedge - (output value) number of same nodes of i-th and j-th surfaces
isee - (output value) flag which shows self shadowing type
eq.-1: partial shadowing
eq.0: total shadowing
eg.1: no shadowing
ibug - (output value) debug information

€q.0: no debug information
eq.1: minimal debug information
eg.2: maximum debug information
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no
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Calculates if nodes “see” each other

Calculate type of
self shadowing

Figure 5-1: Program Flow of Routine See

5.2. Routine INTSEC2

Routine INTSEC2 is used to determine if two lines has intersection point. Algorithm

used in this routine is described in chapter 3.4.3.

List of arguments:

X1 — (input value) x-coordinate of first node in line1
Y1 — (input value) y-coordinate of first node in line1
X2 — (input value) x-coordinate of second node in line1
Y2 — (input value) x-coordinate of second node in line1
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X3 — (input value) x-coordinate of first node in line2

Y3 — (input value) y-coordinate of first node in line2

X4 — (input value) x-coordinate of second node in line2
Ya— (input value) x-coordinate of second node in line2
int - (output value) show if intersection exist

eq.0: no intersection
eq.1: intersection exist

5.3. Routine GRL2D

Routine GRL2D is used to determine number and coordinates of grid cells that line pass
through (see Figure 3-35 and Figure 3-36).

List of arguments:

X1 — (input value) x-coordinate of first node

y1— (input value) y-coordinate of first node

X2 — (input value) x-coordinate of second node

Y2 — (input value) x-coordinate of second node

xgrid - (input vector) x-coordinates of grid net

ygrid - (input vector) y-coordinates of grid net

Xp - (output vector) x-coordinates of intersection points between grid net and
line

yp - (output vector) y-coordinates of intersection points between grid net and
line

nwk1 - (output vector) cells coordinates that line pass through: nwk1(1,i) contain

cell coordinate of grid net and dimension of nwk1 is (1,numcell) where
numcell is number of cells that line pass through.

nwk2 - (output vector) cells coordinates that line pass through (in different form
than in nwk1): nwk2(1,j) = 1 if line pass through cell with coordinate j and
nwk2(1,j) if not. Dimension of nwk2 is (1,NumberOfCellsIinGrid).

nxg - (input value) number of grid cells in x direction
nyg - (input value) number of grid cells in y direction
numcell -  (output value) number of cells that line pass through
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A
i exit E

Figure 5-2: Program Flow for Routine Gri2d

5.4. Routine GRID

Routine GRID is used to determine through which grid cells blocking surfaces pass.
This is used for “Grid” Algorithm which is described in chapter 3.3.

List of arguments:

zp -

nwk1 -

(input vector) x-coordinates of nodes

(input vector) y-coordinates of nodes

(input vector) z-coordinates of nodes (not used in this version)
(input vector) blocking surfaces information array

(input vector) blocking surfaces number

(input vector) x-coordinates of grid net

(input vector) y-coordinates of grid net

(input vector) z-coordinates of grid net (not used in this version)

(input vector) x-coordinates of intersection points of ray between surfaces
with x, y and z grid planes

(input vector) y-coordinates of intersection points of ray between surfaces
with x, y and z grid planes

(input vector) z-coordinates of intersection points of ray between surfaces
with x, y and z grid planes (not used in this version)

(temporary used vector) cells coordinate that blocking surface pass
through
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nwk2 -

ngri -
ngr2 -
ngr3 -
igrid -
ndim -
nxg -
nyg -
hzg -
nxyz -
numnp -
numel -
nl -
nblk -
ibug -

(temporary used vector) cells coordinate that blocking surface pass
through

(output vector) staring reading positions form array ngr3

(output vector) number of blocking surfaces (for each grid cells)

(output vector) blocking surfaces numbers (for each grid cells)
(temporary used matrix) blocking surfaces number in grid cells

(input value) type of problem (2 = two dimensional)

(input value) number of grid cells in x direction

(input value) number of grid cells in y direction

(input value) number of grid cells in z direction (not used in this version)

(input value) number of node points

(input value)

(input value) number of blocking surfaces
(input value) debug information flag
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Figure 5-3: Program Flow for Routine Grid

5.5. Routine OBSTR

Routine OBSTR is used to determine if ray between two surfaces is blocked by third

(blocking) surface.
List of arguments:

xI1 — (input value) x-coordinate of beginning of ray
yl1 - (input value) y-coordinate of beginning of ray
zl1 - (input value) y-coordinate of beginning of ray
x12 - (input value) x-coordinate of end of ray

yl2 — (input value) y-coordinate of end of ray

zl2 - (input value) y-coordinate of end of ray

X — (input vector) x-coordinates of nodes

y - (input vector) y-coordinates of nodes
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z-
Xn —
yn -
zn -
km -
nwk1 -

ngri -
ngr2 -
ngr3 -
iseg -
jseg -
numcel -
ndim -
int -

(input vector) z-coordinates of nodes (not used in this version)

(input vector) x-coordinates of surface normal

(input vector) y-coordinates of surface normal

(input vector) z-coordinates of surface normal (not used in this version)
(input vector) blocking surfaces information array

(temporary used vector) cells coordinate that blocking surface pass
through

(input vector) staring reading positions form array ngr3

(input vector) number of blocking surfaces (for each grid cells)
(input vector) blocking surfaces numbers (for each grid cells)
(input value) number of i-th segment

(input value) number of j-th segment

(input value) number of grid cells

(input value) type of problem (2 = two dimensional)

(output value) show if intersection exist

eq.0: no intersection

eq.1: intersection exist
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Figure 5-4: Program Flow for Routine Obstr

5.6. Routine VIEW2D

Routine VIEW2D is used to calculate view factors by Eq. 1.3-49 for 2D planar
geometry. If third surface shadowing exists, surfaces are divided into the subsurfaces
which are used for partial view factor calculation (Eq. 1.3-50)

List of arguments:

X — (input vector) x-coordinates of nodes

y- (input vector) y-coordinates of nodes

z- (input vector) z-coordinates of nodes (not used in this version)

Xxn — (input vector) x-coordinates of surface normal

yn - (input vector) y-coordinates of surface normal

zn - (input vector) z-coordinates of surface normal (not used in this version)
XC — (input vector) x-coordinates of surfaces center
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yce - (input vector) y-coordinates of surfaces center

zc - (input vector) z-coordinates of surfaces center (not used in this version)

km - (input vector) node numbers of which are segment consist

area - (input vector) segment length

frow - ?

xgrid — (input vector) x-coordinates of grid net

ygrid - (input vector) y-coordinates of grid net

zgrid - (input vector) z-coordinates of grid net (not used in this version)

Xp — (input vector) x-coordinates of intersection points of ray between surfaces
with X, y and z grid planes

yp - (input vector) y-coordinates of intersection points of ray between surfaces
with X, y and z grid planes

zp - (input vector) z-coordinates of intersection points of ray between surfaces
with x, y and z grid planes (not used in this version)

nwk1 - (input vector) cells coordinate that line pass through

nwk2 - (input vector) cells coordinate that line pass through

ngri - (input vector) staring reading positions form array ngr3

ngr2 - (input vector) number of blocking surfaces (for each grid cells)

ngr3 - (input vector) blocking surfaces numbers (for each grid cells)

ibug - (input value) debug information flag

nrcond - (input vector) show to which enclosure segment belongs

eqg.n0: segment belong to n-th enclosure and it is part of conduction
element (type of enclosure is manual)

eqg.n1: segment belong to n-th enclosure and it is not part of conduction
element (type of enclosure is manual)

eg.n2: segment belong to n-th enclosure and it is part of conduction
element (type of enclosure is automatic)

eq.n3: segment belong to n-th enclosure and it is not part of conduction
element (type of enclosure is automatic)

nrdim - (input value) type of problem (2 = two dimensional)
f- (output vector) view factors
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Figure 5-5: Program Flow for Routine View2d
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Figure 5-6: Subblock1
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Figure 5-7: Subblock2

5.7. Routine GEOMVYW
Routine GEOMVW is used to calculate surfaces normal and center.
List of arguments:

X — (input vector) x-coordinates of nodes

y- (input vector) y-coordinates of nodes

z- (input vector) z-coordinates of nodes (not used in this version)
Xxn — (output vector) x-coordinates of surface normal
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yn - (output vector) y-coordinates of surface normal

zn - (output vector) z-coordinates of surface normal (not used in this version)
XC — (output vector) x-coordinates of surfaces center

yc - (output vector) y-coordinates of surfaces center

zc - (output vector) z-coordinates of surfaces center (not used in this version)
km - (input vector) node numbers of which are segment consist

area - (output vector) segment length

numel - (input value) number of radiation enclosure segments

ndim - (input value) dimension of problem (in this version is =2 or 2D planar)

Start of Geomvw
Routine

v

{Number of passes = number of enclosure surfaces)

A
Take surface coordinates and calculate surface
length

A

Calculate surface center and surface nornal

End of routine

Figure 5-8: Program Flow for Routine Geomvw

6. Examples

6.1. Bandwidth Minimization

Aim of bandwidth minimization is explained in section 3.1.
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Figure 6-1: Bandwidth Minimization Example in Original Numbering System (before
minimization)

In Table 6.1-1 are shown results obtained for this example. Vector nrv is used for
BWM ™' transformation and vector id is used for BWM transformation. For example,

node numbered with 3 in original numbering system becomes 4 in reorder numbering
system (Figure 6-2).
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Table 6.1-1: Nodal Reorder and Inverse Nodal Reorder Vectors

node number in

original numbering  nrv(1,i) id(1,1)-node number in

reorder numbering system

system

1 1 1

2 2 2

3 5 4
4 3 13
5 6 3
6 9 5
7 13 9
8 16 14
9 7 6
10 10 10
11 14 15
12 17 17
13 4 7
14 8 11
15 11 16
16 15 8
17 12 12
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8

13

Figure 6-2: Node Numbers in Reordering System

6.2. Assembling to Global Matrix Equation
Example which is used for assembling is shown in Figure 6-3:

Figure 6-3: Example

Elements with local nodes numbering are shown in Figure 6-4, Figure 6-6, Figure 6-7
and Figure 6-8.

For first element, node coordinates (signed in local domain) are:

x, =0.02712m, y, =-0.00515m
x, =0.0459m, y, =-0.00515m Eq. 6.2-1
x, =0.02754m, y,=-0.001194m

and material conductivity (all elements) cond = 0.2233%. Shape functions for
m

triangular element is calculated by Eq. 2.7-3 and for first element coordinates
coefficients (Eq. 2.7-4) are equal:
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@, =8.7E-05, a,=-0.00011, a, =9.67E-05,
B, =-0.00396, B, =0.003956, S, =0, Eq. 6.2-2
7, =-0.01836, 7, =-0.00042, ¥, =0.01878

To obtain conductivity matrix, first derivative of element shape functions are equal:

ay; 1,
ox 2Ae pi
Eq. 6.2-3
oy _ 1, .
dy 24, g
when replacing in Eq. 2.9-7 foIIowing equation is obtained:
4A2 j(ﬁﬁ +7,7,)dxdy = 4A2 BB +77, )dedy—
Eq. 6.2-4

4A2 — (BB +Vy)*A, —Te(ﬂ,ﬂj +7.7)

and for first element conductivity matrix is:

k! K. KL| [0.5298665 -0.011925 -0.51794
|k;|=ks K3, Ki=|-0011925 0.023774 -0.01184 Eq. 6.2-5
K! KL KL| [-0.517941 -0.011848 0.529789

~

Conduction matrix in Eq. 6.2-5 is obtained using shape element equations described in
section 2.7.1.3. Important note is that Conrad uses equations for linear rectangular
element to integrate over the triangular element. Local nodes numbering for triangular
element in therm is shown in Figure 6-5.

Figure 6-4: First Element in Local Node Numbering
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Figure 6-5: Local Node Numbering in Conrad
Conduction matrix obtained in Conrad (using equations for rectangular element) is:

0.52998 —1.193¢—2 —0.52998 1.193¢—2
o F1193¢—2 2378¢-2 1.193¢—2 —2.378¢-2
|k = Eq. 6.2-6
~0.52998 1.193¢e—2  1.0837  —0.5657

1.193e -2 —-2378¢e—-2 —0.5657 0.5775

i

and this local system of linear equations for triangular element can be presented as:
0.52998 —1.193¢—-2 -0.52998 1.193¢-2 | |T'| |0

—_

~1.193¢ -2 2378¢-2 1.193¢—2 -2.378¢-2| |1} [0
72 = Eq. 6.2-7

~052998  1.193¢-2  1.0837  -05657 | [7}| [0

1.193¢ -2 —2378¢-2 -05657 05775 | |r/| [o

because T, =T/, Eq. 6.2-7 can be presented as following system:

0.52998  —1.193¢—2 —0.51805 || |7;'|| [
—1.193¢—2 2378¢—-2 —1.185¢—2|*|T,)| =0 Eq. 6.2-8
—0.51805 —1.185¢-2 0.5298 T/l O

where conduction matrix is approximately equal with conduction matrix in Eq. 6.2-5.
Replacing notation from local to global Eq. 6.2-8 becomes:

0.52998  —1.193¢e—-2 —-0.51805 | |75 |O
—1.193e -2 2.378¢—-2 —1.185¢—2|*||T,| =0 Eq. 6.2-9
—0.51805 —1.185¢—-2 0.5298 T, |0

which leads that conductivity coefficients are assembled into the global matrix by
following:
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K,, =0.52998, K, =-1.193¢-2, K,, =—0.51805,
K,=-1193¢-2, K, =2378¢-2, K, =—1.185¢~2, Eq. 6.2-10

K,, =—0.51805, K, =—-1.185¢—2, K,, =0.5298

To obtain element conductivity matrices is explained in chapter 2.9. For rectangular

element shown in Figure 6-6 following results are obtained from equations described in
2.9:

Figure 6-6: Second Element in Local Node Numbering

Node coordinates of element number 2 in local domain notation:
x, =0.02712m, y, =-0.00515m,

x, =0.02754m, y, =-0.001194m,

x, =-0.0019m, y, =0.00515m,

x,=0m, y,=-0.00515m

Eq. 6.2-11

Gauss point integration is calculated in following points:
Table 6.2-1: Gauss Points for Numerical Integration

point g n
| 0.57735027 0.57735027

Il 0.57735027 -0.5773503
1 -0.5773503 0.57735027
v -0.5773503 -0.5773503

Inverse Jacobian Matrices in Gauss points are:
POINT 1

39.6591972 -71.016513 Eq. 6.2-12
229.470604 -1 1.174225”

_1_
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POINT 11
= 65.4098248 - 69.24406 Eq. 6.2-13
" |378.465351 -0.9187015
POINT 111
7 10.9226275 -72.994492) Eq. 6.2-14
224.948995 -11.485454
POINT 1V
= 18.3464512  -72.4835 Eq. 6.2-15
|377.840934 -0.961681

Shape function derivatives in local domain are:

Table 6.2-2: Function Derivatives in Local Domain (for element numbered with 2)

point | point Il point i point IV
-0.1056624 -0.3943376 -0.1056624 -0.3943376
oy  0.10566243  Jy7  0.39433757  JyF  0.10566243 9y  0.39433757
9& 039433757 g 010566243  5F  0.39433757 & 0.10566243
-0.3943376 -0.1056624 -0.3943376 -0.1056624
-0.1056624 -0.1056624 -0.3943376 -0.3943376
oY 03943376 9V, 03943376 O¥;  -0.1056624 OP;  -0.1056624
W 0.39433757 on 0.39433757 on 0.10566243 on 0.10566243
0.10566243 0.10566243 0.39433757 0.39433757

Table 6.2-3: Function Derivatives in Global Domain (for element numbered with 2)

point | point Il point i point IV

3.31329026 -18.477055 27.6303592 21.3482721

oy 32.1949662  Jy 53.0990854  Jy  8.86688704 Oy’  14.8934779
o -12.365368 gy -20.394173 5,  -3.4055733 5,  -5.7202523
-23.142889 -14.227857 -33.091673 -30.521498
-23.065726 -149.14603 -19.239512 -148.61765

dy; 286528388 OYW, 149605384 OV, 24982239 OV,  149.098488
dy 86.0824631 dy 39.6272912 Oy 87.4922585 oy 39.8219787
-91.669575 -40.086642 -93.234985 -40.302819

Conduction matrices at gauss points are:
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0.007649
-0.00781
-0.02854
0.028703

g

H K first

0.192892
-0.19894 0.215228
-0.04726 0.041383
0.053306

H K second

)

0.015535
-0.00323
-0.02436
0.012052

third
K

0.183921
-0.17819 0.18318
-0.04928 0.047746
0.043552

H K Sfourth —

i

and finally

i

_ first
|| =|x

after substituting

0.399997
-0.38817
-0.14944
0.137613

|1

second
+|x;

-0.00781
0.026164
0.029135
-0.04749

-0.00323
0.00963
0.02954

-0.03594

-0.38817
0.434203
0.147803
-0.19384

-0.19894

-0.05767

-0.17819

-0.05274

third
+ HKJ

- 0.02854
0.029135
0.106531
-0.10712

-0.02436
0.02954
0.105061
-0.11024

i

+ H K Jourth

- 0.14944
0.147803
0.24176
-0.24012

-0.04726
0.041383
0.016963
-0.01109

-0.04928
0.047746
0.013205
-0.01167

0.028703

-0.04749

-0.10712
0.12591

0.053306
-0.05767
-0.01109
0.015453

0.012052
-0.03594
-0.11024
0.134132

0.043552
-0.05274
-0.01167
0.020853

0.137613
-0.19384
-0.24012
0.296347

Therefore, local system of linear equation is:

0.399997
-0.38817
- 0.14944
0.137613

-0.38817
0.434203
0.147803
-0.19384

-0.14944  0.137613

n
T,

0.147803
0.24176
-0.24012

-0.19384) |7/
-0.24012) 1"
0.296347 |

which is in global notation equal:

0
o
o

0

Eq. 6.2-16

Eq. 6.2-17

Eq. 6.2-18

Eq. 6.2-19

Eq. 6.2-20

Eq. 6.2-21

Eq. 6.2-22
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0.399997 -0.38817 -0.14944 0.137613|| |7,
-0.38817 0.434203 0.147803 -0.19384 T,
-0.14944 0.147803 0.24176 -0.24012| |T,
0.137613 -0.19384 -0.24012 0.296347| |T5| |0

Eq. 6.2-23

S o O

Eqg. 6.2-23 is calculated by equations (using EXCEL spreadsheet) presented in previous

chapters. Results from Conrad (in global notation) are:
0.3999 -0.3881 -0.1494 0.13758| |T;|| |O
—0.3881 0.4341 0.14777 -0.1938 y T, |0
—0.1494 0.14777 0.2417 -0.2401) |T,|| O
0.13758 -0.1938 —-0.2401 0.2963 || |T5|| |O

Eq. 6.2-24

which leads that conductivity coefficients are assembled into the global matrix by
following:

K, =03999, K, =-03881, K, =—0.1494, K, =0.13758,
K,, =-0.3881, K,, =0.4341, K,, =0.14777, K,, =-0.1938,
K, =-0.1494, K, =0.14777, K,, =0.2417, K, =-0.2401,
K., =0.13758, K, =—-0.1938, K., =—0.2401, K, =0.2963

Eq. 6.2-25

Third element calculations are same as for second element. Node coordinates (in local
domain) are:

x, =-0.027m, 1y, =-0.00515m,
x,=0m, y,=-0.00515m,

x, =-0.0019m, y,=0.00515m,
x, =-0.02754m, y, =-0.00085m

Eq. 6.2-26

[1
Figure 6-7: Third Element in Local Node Numbering
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Using same equations as for previous element, following system of linear equation is
obtained:

0.372469 0.122276 -0.15791 -0.33684| |7;""| |0
0.122276 0.235493 -0.21067 -0.1471| |7,”"| |0
* = Eq. 6.2-27
-0.15791 -0.21067 0.248329 0.120245| |T,"| |0
-0.33684 -0.1471 0.120245 0.363696| |7,”| |0
or in global notation
0.372469 0.122276 -0.15791 -0.33684|| |T;| |0
0.122276  0.235493 -0.21067 -0.1471| |T5| |O
#2 = Eq. 6.2-28
-0.15791 -0.21067 0.248329 0.120245| |7,/ [0
-0.33684 -0.1471 0.120245 0.363696| |, |O:

Eq. 6.2-28 is calculated using excel spreadsheet, and results from Conrad are:

0.37246  0.12249 -0.15779 -0.33716| |T,| [0
0.12249  0.23568 -0.21078 -0.1475| _|T,|l [0
dNE Eq. 6.2-29
-0.15779 -0.21078 0.24829  0.12028 | |T,| [0
033716 -0.1475 0.12028 0.36428 | |T.| [0

[=)}

which leads that conductivity coefficients are assembled into the global matrix by
following:

K,, =0.37246, K,. =0.12249, K., =-0.15779, K, =-0.33716,
K., =0.12249, K., =0.23568, K, =-0.21078, K., =—-0.1475,
K, =-0.15779, K, =-0.21078, K, =0.24829, K, =0.12028,
K, =-033716, K, =—-0.1475, K,, =0.12028, K, =0.36428

Figure 6-8: Fourth Element in Local Node Numbering

Fourth element is triangular and same equations as for first element are used. Node
coordinates (in local domain) are:
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x, =—=0.02754m, y, =—0.00085m,
x, =—0.0459m, y, =—-0.00515m, Eq. 6.2-31
x, =-0.02702m, y,=-0.00515m

and system of linear equation (from EXCEL spreadsheet) is:

0.490142411 -0.013422876 -0.476719535| |T;"V| [0
-0.013422876  0.025800453  -0.012377576| *||T,” || = (0 Eq. 6.2-32
-0.476719535 -0.012377576  0.489097111 | |T.”|| |0

or in global domain:

0.490142411 -0.013422876 -0.476719535| |T,| |O
-0.013422876  0.025800453 -0.012377576| *||T | = ||O! Eq. 6.2-33
-0.476719535 -0.012377576  0.489097111| |7, ||O
and results from Conrad (in global domain)
0.4903 —1.3427¢-2  —0.4903 1.34271e-2| |T,| |0
—-1.3427e—-2 2.5784e—-2 1.3427le—2 —2.578e—2|| || |O
dINE Eq. 6.2-34
—0.4903 1.34271e -2 1.00637 —0.52951 || |[T,|| |O
1.34271e—2 —-2.578¢—-2  —0.52951 0.54186 T, [0
which is equal with:
0.4903 -1.3427¢-2 —-0.4769| |T,| |0
—1.3427¢-2 2.5784e—-2 —0.01235|*|T,| = (0 Eq. 6.2-35
-0.4769 —-0.01235 0.48921 | [T,| |O

and this is assembled by following:

K, =0.4903, K, =-13427¢-2, K, =—0.4769,

Ky =—13427¢-2, K, =2.5784e -2, K, =—-0.01235, Eq. 6.2-36
K, =-04769, K,, =-0.01235, K, =0.48921

All previous matrices are assembled into the Left-Hand side of global matrix. Next step
is assembling boundary conditions. This example contains only convection boundary
condition. Equations for convection boundary condition are linear type and main
equation is Eqg. 2.12-6 which solution is assembled into the Left and Right-Hand sides of
global matrix. Example contain hot and cold surfaces (Figure 6-9 and Figure 6-10) with
following properties:

Cold Surface:

h =78 V_,
K *m"2

T.=-16°C
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Hot Surface:

h =32 [—

]

K *m"2
T.=21°C

Figure 6-9: Cold Surface

Figure 6-10: Hot Surface

Solutions of matrix equation for cold and hot segment are:
Segment with nodes 1 and 2:

Node coordinates (in global domain):
x, =0.0459m, y, =-0.00515m,

x, =0.02712m, y, =-0.0011938m
From EXCEL spreadsheet:

HO.488316 0.244158H* _H188.3559H
0.244158 0.488316 188.3559
det =0.009390702

and results from Conrad are:

Eq. 6.2-37

T,
T2
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L

0.24415 0.48831|| |T,

0.48831 0.24415 N
188.356

~ H188.356H

which is assembled into the global matrix by:

K, =0.48831, K, =0.24415,

K, =0.24415, K,, =0.48831

P, =188.356,

P, =188.356

Segment with nodes 2 and 4:

Node coordinates (in global domain):
x, =0.02712m, y, =-0.0011938m
x, ==0.0019m, y, =0.00515m

From EXCEL spreadsheet:

HO.782988 0.391494H* T, _H302.0181H
0.391494 0.782988| |T,| [302.0181
det = 0.015057467

and results from Conrad are:

0.783 0.3915H* T, _H302.026H
0.3915 0.783| |T,| [302.026

which is assembled into the global matrix by:

K, =0.783, K,, =0.3915,
K, =0.3915, K, =0.783

P, =302.026,

P, =302.026

Segment with nodes 4 and 6:

Node coordinates (in global domain):
x, =-0.0019m, y,=0.00515m,

x, =—0.02754m, y, =—0.00085m

From EXCEL spreadsheet:

HO.280882 0.140441H* _H123.9321H
0.140441 0.280882 123.9321
det =0.013166336

and results from Conrad are:

T,
T

Eq. 6.2-38

Eq. 6.2-39

Eq. 6.2-40

Eq. 6.2-41

Eq. 6.2-42

Eq. 6.2-43

Eq. 6.2-44

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation

Page 150

T,

0.28089  0.14044|
T()

0.14044 0.28089

_[123.934
11123.934

which is assembled into the global matrix by:

K,, =0.28089, K, =0.14044,
K, =0.14044, K, =0.28089
P, =123.934,
P, =123.934

Segment with nodes 6 and 8:

Node coordinates (in global domain):
x, =—0.02754m, y, =-0.00085m,

x, =—0.0459m, y, =—0.00515m
From EXCEL spreadsheet:

Ho.201139 0.10057 H LT H88.74773H
0.10057  0.201139 88.74773
det = 0.009428409

and results from Conrad are:

0.20113 0.10057 88.7455
0.10057 0.20113 88.7455

T()
I

T
Ty

*

which is assembled into the global matrix by:

K, =0.20113, K, =0.10057,
K, =0.10057, K, =0.20113
P, =88.7455,
P, =88.7455

Eq. 6.2-45

Eq. 6.2-46

Eq. 6.2-47

Eq. 6.2-48

Eq. 6.2-49

Assembling all previous equations into the global matrix, following matrices are

obtained:
5.12E-01 2.32E-01 -1.19E-02 0 0 0 0 0
232E-01 223521 -0.90615 0.53927 -0.1938 0 0 0
-1LI9E-02 -0.90615 0.92988  -0.1494  0.13758 0 0 0
Left Side - 0 0.53927  -0.1494  1.55388 -0.45088 0.26072 -0.15779 0
0 -0.1938  0.13758  -0.45088 0.53198 -0.1475  0.12249 0
0 0 0 026072 -0.1475 13366 -0.81406 8.71E-02
0 0 0 -0.15779  0.12249 -0.81406 0.86167 -0.01235
0 0 0 0 0 8.71E-02 -0.01235 2.27E-01
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188.4
490.4
0
426
0
212.7
0
88.75

Right Side=

which lead to temperature solution (in Celsius):

T =-14.715°C, T, =-18.9567 °C, T, =-18.7447°C, T, =-4.70532°C,

T, =-4.50922°C, T, =24.8956 °C, T, = 23.5935°C, T, =19.638 °C,

and results from Conrad (THERMS) are:

T, =-14.70458°C, T, =-18.99834°C, T, =-18.77889 °C, T, =-4.692912°C,
T, =-4.574031°C, T, =24.92907 °C, T, =23.62488°C, T, =19.78036°C,

6.3. Speed of View Factors Calculation

This chapter presents speed of view factor calculation on several examples with
different density of net grid.
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6.3.1. B928mro04

automatic enclosure surface

Figure 6-11: Example 1

Table 6.3-1
number of enclosure radiation bc segments 652
number of blocking surfaces 236
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Table 6.3-2
Nyrig= S Calculation Time
o e [seconds]
1 1 12
2 2 12
3 3 8
5 5 10
7 7 6
10 10 6
15 15 5
20 20 4
25 25 5
30 30 6
40 40 7
50 50 11
100 100 40

6.3.2. Trr99_mr_manual
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Figure 6-12: Example 2

Table 6.3-3
number of enclosure radiation bc segments 621
number of blocking surfaces 614
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Table 6.3-4
Nyrig= S Calculation Time
o e [seconds]
1 1 41
2 2 21
3 3 15
5 5 12
7 7 11
10 10 9
15 15 9
20 20 9
25 25 10
30 30 12
40 40 15
50 50 24
100 100 86
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6.3.3. Pfm01_h_rf_manual

=TT
=
1
I
1
1
N2

Figure 6-13: Example 3

Table 6.3-5
number of enclosure radiation bc segments 286
number of blocking surfaces 282
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Table 6.3-6
Nyrig= S Calculation Time

o e [seconds]
1 1 15

2 2 11

3 3 10

5 5 7

7 7 4

10 10 4

15 15 4

20 20 6

25 25 6

30 30 7

40 40 12
50 50 17
100 100 63
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6.3.4. trrO1sill_CI (CI run)

11 11T
11 11T L1
1T 1]

Figure 6-14: Example 4

Table 6.3-7
number of enclosure radiation bc segments | 1297
number of blocking surfaces 551
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Table 6.3-8
Nyrig= N Calculation Time

e el [seconds]
1 1 79

2 2 51

3 3 32

5 5 26

7 7 18

10 10 17
15 15 14
20 20 17
25 25 20
30 30 24
40 40 36
50 50 53
100 100 191
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6.3.5. trr99_mr_CI (Cl run)

Figure 6-15: Example 5

Table 6.3-9
number of enclosure radiation bc segments | 1279
number of blocking surfaces 801
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Table 6.3-10
Nyrig= S Calculation Time
e el [seconds]
1 1 256
2 2 135
3 3 95
5 5 73
7 7 59
10 10 49
15 15 41
20 20 43
25 25 47
30 30 54
40 40 76
50 50 107
100 100 447
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