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1. Governing Equations

1.1. Introduction

Heat Transfer is a branch of engineering that deals with the transfer of thermal energy
from one point to another within a medium or from one medium to another due to the
occurrence of a temperature difference. Heat transfer may take place in one or more of
its three basic forms: conduction, convection and radiation.

1.2. Governing Equation

The Governing Equation of two-dimensional heat conduction in a two-dimensional
orthotropic medium Q, under the assumption of constant physical properties, is derived
from the general energy equation and is given by the following partial differential
equation:

o°T o°T

(kyy —5+k

nae 2 PR ——)+0(x,y)=0 in Q Eq. 1.2-1

where ki1 and koo are conductivities in the x and y directions, respectively, and Q(x, y) is
the known internal heat generation per unit volume. For a nonhomogeneous conducting
medium, the conductivities kj are functions of position (X, y). For an isotropic medium,
we set ki1=koo=k in equation (Eq. 1.2-1) and obtain the Poisson equation:

o0 or, 9  dT
—(k—)+—k—)+ ,)=0 Eq. 1.2-2
ax( ax) ay( ay) O(x,y) q
9°T 9°T _
ke 5 )+0(x,y)=0 in Q Eq. 1.2-3
For medium without internal heat generation equation (Eqg. 1.2-3) becomes:
0’ T o°T
Ko+ 5 —5)=0 Eq. 1.2-4

1.3. Boundary Conditions

To complete description of the general problem posed in the previous sections, suitable
boundary and initial conditions are required. Boundary Conditions are most easily
understood and described by considering the fluid mechanics separate from other
transport processes. The magnitude of heat flux vector normal to the boundary is given
by Fourier's law:

aT — aT — JT —

+q,+q, =—k(— ,t—=—n, Eq. 1.3-1

There are three types of boundary conditions:
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1.3.1. With Defined Temperature (Dirichlet or essential condition)

This is referring to boundary conditions with defined temperature on boundary surface
as function of time and space:

T=f(tx,y,z) onlt Eq. 1.3-2

where T is temperature on surface, t is time and x, y, z are surface coordinates, or
special case with constant temperature on boundary surface:

T=T,

const

=const. on 't Eq. 1.3-3

1.3.2. With Defined Flux (Neumann or natural condition)

This is referring to boundary conditions with defined flux on boundary surface as
function of time and space:

q;=f(t,x,y,2) onlq Eq. 1.3-4

where g is heat flux on surface, t is time and x, y, z are surface coordinates, or special
case with Constant Flux on boundary surface:

dy = Qeony = const. on T Eq. 1.3-5

there is one special case of this boundary condition known as Adiabatic Boundary
condition defined with following equation:

q9;=9,=0 Eq. 1.3-6

This means that there is no heat flux exchange between adiabatic surface and
surrounding space.
1.3.3. Newton’s Law

This is referring to boundary conditions with defined surrounding space temperature and
defined law of heat flux exchange between surface of the body and that surrounding
space. In most cases this is defined with Newton’s law of convection heat transfer:

q, =*h(T,(t) =T,(1) Eq. 1.3-7

where q, is heat flux on surface, h is heat transfer coefficient, T4(t) is temperature on
body surface and T,(t) is temperature of surrounding space. There are several cases of
boundary conditions which refer on Newton’s Law:

1.3.3.1.  Convection Boundary Condition

Convection boundary condition is defined by following equation:

q.=h.(T,t,x,y,2)*(T -T,) Eq. 1.3-8

where qc is convective heat flux, h; is the convective heat transfer coefficient which, in
general, depends on the location on the boundary (x,y,z), temperature (T) and time (1),

Carli, Inc. is Your Building Energy Systems and Technology Choice
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and T is a reference (or sink) temperature for convective transfer. In most of cases
coefficient hc is constant and in that case equation (Eq. 1.3-8) becomes:

q.=h(T-T) Eq. 1.3-9

1.3.3.2 Radiation Boundary Condition (without enclosure)
Radiation boundary condition (without enclosure) is defined by following equation:
g =eo(T* =T Eq. 1.3-10

where q is radiative part of heat flow, € is boundary emissivity, o is Stefan-Boltzmann
constant and T, is a reference temperature for radiative transfer. Equation (Eq. 1.3-10)
also can be shown in following shape:

q,=h{T,t,x,y,2)*(T -T) Eq. 1.3-11

where h; is the linearized effective radiation heat transfer coefficient calculated by
equation:

h(T,t,x,y,z) =€ (T+T.)NT* +T7) Eq. 1.3-12

Note that this boundary condition is appropriate when a body or surface radiates to a
black body environment that can be characterized by a single temperature.

1.3.3.3. Material Interface

Another condition that is of concern when a material interface between two or more
solid region is the problem of gap or contact resistance. The boundary or interface
conditions in this situation are the usual continuity conditions on temperature and heat
flux since the gap resistance is dictated by property variations. A more mathematical
representation of contact resistance provides that the heat flux across the interface be
described by an internal boundary condition:

=h, (T, .t,xy,2)T, —T,) Eq. 1.3-13

qgap gap \" gap?

where hgyp is an effective heat transfer coefficient for the contact surface, and Tgap is @an
average temperature between Ty and Ts. The subscripts M and S designate the
“master” and “slave” sides of the contact surface, a distinction that is important in the
numerical implementation of this condition.

1.3.3.4. Condensation Resistance Modeling

Heat flux on indoor surfaces of the fenestration systems can also be presented as
convection:

G fonestation = yn (T8, %, ¥, 2, 8as _ properties) * (T, = T,) Eq. 1.3-14

where Qrenestration 1S heat flux through indoor side of fenestration system, hye, is
condensation resistance factor which depend of mean temperature (Tr), time (1),
location on the inside boundary (x,y,z) and gas properties (density, thermal conductivity,

Carli, Inc. is Your Building Energy Systems and Technology Choice
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dynamic viscosity, specific heat), T1 (hot side) and T,(cold side) temperatures of indoor
sides of the fenestration system (Figure 1-1).

The method is based on the use of the variable convective heat transfer coefficients on
the vertical sides of IGU cavity and the simple radiative heat transfer exchange between
the cavity sides.

——

—*

T

T,

warm side
cold side

=

Figure 1-1: IGU of the Fenestration System

There are two criteria for condensation resistance factor calculations which depend of
laminar or turbulent regime of heat flow:

H

Conduction Regime (G P, < SOOT)

H

Boundary Layer Regime (G, P. >500f)

where Gy is Grashoff number and P, is Prandtl number. Grashoff number is calculated
by following equation:

Grl =

gBATL

,UZ

Eq. 1.3-15

Carli, Inc. is Your Building Energy Systems and Technology Choice
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where is g =9.807ﬂ2 (acceleration due to gravity), thermal expansion coefficient
S

B :Ti, AT =|T, - T,|, L is cavity width (Figure 1-1) and v is kinematics viscosity which

m

is equal:

V="— Eq. 1.3-16
P

where p is dynamic viscosity and p is density (gas properties).
Prandtl number is equal:

P = Eq. 1.3-17

rl

where p is dynamic viscosity and temperature conductivity coefficient a is:

k
oa=—

where K is thermal conductivity, p is density and G, is specific heat.

Eq. 1.3-18

In order to calculate condensation resistance, starting and departing corners must be
determined. To determine which corner is starting and which is departing see Figure 1-2
and Figure 1-3:

Starting Corner Departing Corner
T, T,
Departing Corne Starting Corner
Ti<T,

Figure 1-2: Gas (Gas Mixtures) Flow Direction in case T;<T,

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Departing Cornerj Starting Corner
T, T,
Starting Corner Departing Corner
T>T,

Figure 1-3: Gas (Gas Mixtures) Flow Direction in case T,>T,

Lengths of starting and departing corners are determined by following equations:

x, =0.0077 * L*(G,,)"®" Eq. 1.3-19
and
x, =0.00875* L*(G,)"" Eq. 1.3-20

where xs and Xq are length of starting and departing corners (Figure 1-4).

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Departing Corner
]

Xd

Xs

Starting Corner

Figure 1-4: Starting and Departing Regions (Warm Side)

Therefore, in depending of regime, condensation resistance factor in fenestration

system is:

a) Convective Part

i) Conduction Regime G,P. < 500%
- starting corner

0.72 rl

h,=h, = O.256LL(G )P x® 0<x<x

h,=— x, <x<0.1
L

- departing corner

h =h,= 2.58%(@,)’0'1%0'2 0<x<x,
h, _k x, <x<0.1
L

Eq. 1.3-21

Eq. 1.3-22

Eq. 1.3-23

Eq. 1.3-24

Carli, Inc. is Your Building Energy Systems and Technology Choice
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ii) Boundary Layer Regime (G,P. >500%)

- starting corner

0.3
h,=h =0.231%k *%x—o-l(ow -0.6 *ﬁ)” Eq. 1.3-25
- departing corner
0.3 _
h =h,=0231%k *GL(H —x)"'(0.83 - o.6u)” Eq. 1.3-26
o % AL
where A= H
L
b) Radiative Part
h=4—9  s7° Eq. 1.3-27
1 1
(—+—-1
81 82
and finally:
By =h. +h, Eq. 1.3-28

) Gas (Mixture) Properties

Purpose of gas property calculations is to find coefficients of convective/conductive heat
transfer in gas filled space between isothermal solid layers. Gas (mixture) properties are
thermal conductivity, dynamic viscosity, density, specific heat and Prandtl number.

a) Gas Properties
i) Density
The density of fill gases in windows is calculated using the perfect gas law:
pM
= — E " 1.3'29
P RT q
where p is density, p is pressure, M is molecular mass, R is universal gas constant
(=8314,51 ;) and T, is mean gas fill temperature.
kmol * K

ii) ii) Specific heat capacity (Cp), dynamic viscosity (u) and thermal conductivity (k)

The specific heat capacity, Cp, and the transport properties p and k are evaluated using
linear functions of temperature. For example, the viscosity can be expressed as:

H=a+bT, Eq. 1.3-30

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Values of a and b coefficients appropriate for calculating Cp, p and k for a variety of fill
gases are listed in ISO15099 Standard (Annex B).

b) Gas Mixtures

The density, conductivity, viscosity and specific heat of gas mixtures can be calculated
as a function of corresponding properties of individual constituents.

i) Molecular mass
M, =Y xM, Eq. 1.3-31
i=1

where x; is mole fraction of the i gas component in a mixture of n gases.

ii) Density
pM .
=—"% Eq. 1.3-32
P RT q

iii) Specific Heat

= Lom Eq. 1.3-33
pmix ~ Mmix q. .
where:
Cpmix = Z'xic_p,i Eq. 1.3'34
i=1
and molar specific heat of the i gas is:
C,.=C,M, Eq. 1.3-35
iv) Viscosity
_N Hi
,umix = Zn—_x Eq. 1.3-36
Toeen )
=X
J#I
where
u M. !
[+ (D)2 (=) )
u, M,
¢! = L L Eq. 1.3-37
, vl
22 #[1+ =112
M

J

Carli, Inc. is Your Building Energy Systems and Technology Choice
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V) Thermal conductivity
k. =k. +k. Eq. 1.3-38

mix mix

where k is the monatomic thermal conductivity and k- is included to account for
additional energy moved by the diffusional transport of internal energy in polyatomic
gases.

k= ki Eq. 1.3-39
i=1 {1+Zl//l]7

jil

and,
kLomo L
[1+(f’)2(:’)“]2 — — — —
k' M, (M, ~M )M, —0.142M ,)
V., = = *[1+2.41 V ) —] Eq. 1.3-40
2&*[1+<Ai‘j N (M, +M;)

J

and

Z Eq. 1.3-41
. Z

¢

where, the previous expression for ¢, . can also be written as

1+( ) (—]) I’
o = - Eq. 1.3-42
Zﬁ*[l+244 12

J

1.3.3.5. Radiation Enclosure Boundary Condition

Radiant energy exchange between neighboring surfaces of region or between a region
and its surroundings can produce large effects in the overall heat transfer problem.
Thought the radiation effects generally enter the heat transfer problem only thought the
boundary conditions, the coupling is especially strong due to the nonlinear dependence
of the radiation on the surface temperature.

Enclosure or surface-to-surface radiation is limited to diffuse gray, opaque, surfaces.
This assumption implies that all energy emitted or reflected from a surface is diffuse.
Further, surface emissivity €, absorbtivity a, and reflectivity p are independent of
wavelength and direction so that:

M) =aT)=1- p(T) Eq. 1.3-43

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Each individual area or surface that is considered in the radiation process must be at a
uniform temperature; emitted and reflected energy are uniform over each such surface.
Heat flux through i enclosure (qy) surface is given by following equation:

4, = ‘9;07;4 —o,H, Eq. 1.3-44

where & emissivity of i surface, T; is temperature of i surface, a; is absorbtivity of i"
surface, o is Stefan-Boltzmann constant and H; is irradiation of the surface, and for it"
surface it is equal to:

H, = %(Bi —goT') Eq. 1.3-45
— 8[

where B; is radiosity of the surface “I” and it is equal:

B =¢oT'+(1-¢)) F,B, Eq. 1.3-46
j=1

where F; designates view factor between i"" and j"" surface. Equation (Eq. 1.3-46)
represents a system of n linear algebraic equations which is solved for B;.

1.3.3.6. View Factors

The view factor is defined as the fraction of energy leaving a surface that arrives at a
second surface. For surfaces with finite areas, the view factors are defined by

1 cos g, cos b,
Fk—j :A— j ITdAde/ Eq. 1.3-47

k A A

where S is distance from a point on surface A; to a point on surface A, . The angles 6,

and 6, are measured between the line S and the normal to the surface as shown in
Figure 1-5.

Carli, Inc. is Your Building Energy Systems and Technology Choice
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Surface k
Ay, &, Tx

Surface |
Aj, Sj, Tj

Figure 1-5: Nomenclature for enclosure radiation
From equation (Eq. 1.3-47), following equation is obtained:
AF_,=AF, Eq. 1.3-48

There are several ways to calculate view factors. One of them is “cross-string” rule
which is illustrated in Figure 1-6

o

Iy

-

Figure 1-6: Cross-string rule

Carli, Inc. is Your Building Energy Systems and Technology Choice
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and given by following equation:

Fo=le +ry — (4 1y)
Y 2L,

1

Eq. 1.3-49

When partial, or third shadowing exist, the two radiating surfaces are subdivided into n
finite subsurfaces and contribution to the summation in equation

F; = izn: Fy Eq. 1.3-50
k=1 =1

of those subsurfaces in which ray r, intersects a shadowing surface is excluded (Figure
1-7).

k=1
~ k=2
T~ |
s : I
Blocking Surfale~ ken
———— e
|=1 |=2 _—e— o

— ] ——— —
Lj l=n

Figure 1-7: Third Surface Shadowing

2. Basic Concepts of the Finite-Element Method

Regardless of the physical nature of the problem, a standard finite-element method
primarily involves the following steps:

Definition of the Problem and its Domain
Discretization of the Domain

Identification of State Variable(s)

Formulation of the Problem

Establishing Coordinate Systems

Constructing Approximate Functions for the Elements

N o O s~ b~

Obtain Element Matrices and Equations

Carli, Inc. is Your Building Energy Systems and Technology Choice
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8. Coordinate Transformations

9. Assembly of Element Equations

10.  Introduction of Boundary Conditions

11.  Solution of the Final Set of Simultaneous Equations
12.  Interpretation of the results

2.1. Definition of the Problem and its Domain

In finite element methods, there are primarily three sources of approximation. The first
one is the definition of the domain (physically and geometrically); the other two are the
discretization and solution algorithms. The approximation used in defining the physical
characteristics of different regions. In case of heat transfer through material domain,
governing equations are defined in previous chapter.

2.2. Discretization of the Domain

Since the problem is usually defined over a continuous domain, the governing
equations, with the exception of essential boundary conditions, are valid for entirety of,
as well as for any portion of, that domain. This allows idealization of the domain in the
form of interconnected finite-sized domains (elements) of different size and shape.

In finite-element idealization of the domain, we shall, in general, make reference to the
following elements: finite element Q, and master element<, .

Finite elements are those which, when put together, result in discrete version of the
actual continuous domain. Their geometric approximations are controlled by the number
of nodes utilized at the exterior of the elements to define their shape. The physical

approximations are controlled by the total number of nodes utilized in defining the trial
functions (shape functions) for state variable.

For a moment let us assume that it is possible to systematically generate the
approximation temperature field function for the elementQ, :

T(x,y) =T (x,y) =D . T/Wi(x, ) Eq. 2.2-1

j=1
where T“(x, y) represents an approximation of 7'(x, y) over the element Q,, T, denote
the values of function 7°(x, y) at selected number of points, called element nodes, in
the element Q,, and ¥ (x, y) are the approximation functions associated with the
element.

Master elements are those which are used in place of finite elements in order to
facilitate computations in the element domain. Figure 2-1 illustrates an actual finite

element Q, and corresponding master element &, with associated coordinate axes.
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1 2

Figure 2-1: Demonstration of Coordinate for a Rectangular Finite Element

In general, the master elements are straight lines, right triangles or prisms, squares, and
cubes. They are defined in reference to normalized coordinate axes (¢, n, ¢). The actual
elements can be of any shape and size.

2.3. Identification of State Variables

Until this step, no reference has been made to the physical nature of the problem.
Whether it is a heat-transfer problem, fluid or solid-mechanics problem, etc., comes into
the picture at this stage. The mathematical description of steady-state physical
phenomena, for instance, leads to an elliptic boundary-value problem in which the
formula contains the state variable and the flux. These variables are related to each
other by a constitutive equation representing a mathematical expression of a particular
physical law.

For heat transfer presented in previous chapter (and in Conrad) state variables are
temperatures in element nodes (7) or temperature distribution T(x, y).

2.4. Formulation of the Problem
Vary often a physical problem is formulated either via a set of differential equations:

Lu=f Eq. 2.4-1
with boundary conditions or by an integral equation:

= j G(x,y, z,u)dQ + j g(x,y, z,u)dl Eq. 2.4-2
Q r

where u present state variable(s).
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For heat transfer governing equation (Eq. 1.2-1):

0 or. 9 oT
=k, =)+~ (kyy —)] = Eq. 2.4-3
[ax(“ ax)+ay( » ay)] o q

The weak form of differential equation is weighted-integral statement that is equivalent
to the governing differential equation as well as associated boundary conditions:

0 oT d
0= ———(k, —)— |dxd Eq. 2.4-4
iw[ o) a<zza>Q<xy>xy q

The expression in square brackets of the above equation represents a residual of the
approximation of differential equation and it is called weighted-residual statement of
equation (Eq. 1.2-1).

Note the following identities for any differentiable functionsw(x, y), F,(x,y), and

Fy(x, y):

0w oF, oF, Jdw 0
—(wF)=—F +o— —0—=—F —— (F, Eq. 2.4-5
ax( 2 ox | ox o ox ox | ax( 2 9
0 0w oF oF, Jw 0
L (wF)=22F +0%2 —0=2="2"F - (oF Eq. 2.4-6
dy (@F) dy @ dy or @ dy dy ° dy (@F) 9
and gradient (divergent) theorem:
| %(a)ﬂ)dxdy = § (0F )n.ds Eq. 2.4-7
Q. T,
9 -
| S (@F, )dxdy = § (@F,)n,ds Eq. 2.4-8
o, 9 I,

where n. and n, are the components of unit normal vector. Using equations (Eq.
2.4-5),(Eq. 2.4-6), (Eq. 2.4-7), (Eq. 2.4-8) and (Eq. 2.4-4) with:

F =k, ar and F, =k, ar Eq. 2.4-9
ox dy
we obtain
aw oT aw oT oT
0= I( i gy g, ke gy @Oy - §a)(kll - etk O > n,)ds  Eq.2.4-10

2.5. Establishing Coordinate Systems

There are primarily two reasons for choosing special coordinate axes for elements in
addition to the global axes for entire system. The first is case of constructing the trial
functions for the elements and the second is ease integration over the elements.
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Once the coordinate axes are established, the element equations are ordinarily
computed first in master elementQ . They are then transformed into Q_ and finally into
the global system for assembly.

2.6. Constructing Approximate Functions for the Elements

Once the state variable(s) and the local coordinate system have been chosen, the
functions can be approximated in numerous ways. The reader is reminded that there
are two entities that need to be approximated. The first is physical (the state variable)
and the second is geometrical (the shape of element). The analyst must decide whether
to approximate physics and geometry equally or give preference to one or the other in
various regions of the domain. This leads to the three different categories of elements
with m and n representing the degree of approximation for element shape and state
variable, respectively:

Subparametric (m<n)
Isoparametric (m=n)
Superparametric (m>n)

2.7. Linear Elements

2.7.1.1.  Shape Functions for Master Line
Master line element is shown in Figure 2-2:

2;1\

Figure 2-2: Master Linear Line Element
and shape functions are:

il_Ljt=e Eq. 2.7-1
el 2 1+¢ o
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2.7.1.2.  Shape functions for master rectangular element
Master rectangular element is shown in Figure 2-3:

s
4 1 3
-1 1
I| -
1 1 2

Figure 2-3: Master Linear Rectangular Element
and shape functions for this element are:
Vi A=-&1-m)
72 1 1-
il _1]a+od-m Eq. 2.7-2
gy 4 |A+HA+m)
v, 1-5HA+n)

2.7.1.3.  Shape Functions for Triangular element
The linear interpolation functions in global coordinate system for the three-node
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yA

X
Figure 2-4 : The Linear Triangular Element in Global Coordinates

triangle (see Figure 2-4 ) are (see [3]):

/8 :ﬁ(a’ie+ﬁfx+7fy):Li i=1,23 Eq.2.7-3

where A, is the area of the triangle, and «;, B’ and y’ are geometric constants
known in terms of the nodal coordinates (x;, y,):

O =Xy, = XY
B; =Y~ W Eq. 2.7-4

€

Vi =—(x;—x)

Here the subscripts are such that i # j # k, and /, jand k permute in natural order. Eq.
2.7-3 is used to mapping from global to local coordinate system where L, presents

nodal function in local coordinate system. Inverse mapping is presented by following
equations:

x:ixilﬁ; y:ZYiLi Eq.2.7-5

i=1 i=1

Note also equation for calculating triangle area:

L x y
24, =1 x, Yy, Eq. 2.7-6
L xy oy
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2.7.1.4. Shape functions for master 3D rectangular element
Master 3D rectangular element is shown in Figure 2-5:

(1,11) 5

(-1--1,-1)§5 ~2: (1,-1,-1)

Figure 2-5: Master Linear 3D Rectangular Element
and shape functions are:

v 1-5Hd-ma-7)
7, 1+5HA-m1-7)
s 1+5A+m1-{)
wi| _1]d=g)+mi=¢) Eq.2.7.7
s 1-5Hd-ma+{)

Ve 1+5HA-md+{)
v 1+5A+m1+E)
Vs 1= +md+{)

oo |

2.8. Quadratic Elements

2.8.1.1.  Shape Functions for Master Line
Master Quadratic line element is shown in Eq. 2.8-1:

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 25

N
29 (1 ,0)
o - Master Nodes
e - Slave Nodes
3 e
1¢ (-1,0)

Figure 2-6: Master Quadratic Line Element
and shape functions for line element are:

7 -{1-%)

W, r==1 61+9) Eq. 2.8-1
22 )

788 21-¢9)

2.8.1.2.  Shape functions for master rectangular element
Master rectangular element is shown in Figure 2-7:
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Na
o - Master Nodes
e - Slave Nodes
4 7 3
@ * )
8¢ @ =
6 g
® o &
1 5 2

Figure 2-7: Master Rectangular Quadratic Element
and shape functions are:

e A-EA-m(E-n-1)

7 A+&HA-mE-n-1)

7, A+5HA+mME+n-1)

7| _1]A=HA+mE+n-1) Eq. 2.8:2
ge| 4 200-&*)1-m)

7 20+ 61-n%)

7 201 +1m)

7 20-&)1-n*)

2.8.1.3. Shape functions for master 3D rectangular quadratic
element

Master 3D rectangular element is shown in Figure 2-8:
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n
(-1,1,1) £ I 15 (1,1,1]:,;/'

14
o - Master Nodes
, 6 -7
(-1,-1,1) 5 (1,44,1) e - Slave Nodes
$20 ' |t 19
! N e ——bE
! 18
174 4y o ,------- D (1,1,-1)
- { 1 1,_1} 11 3 LS ]
1?.,
. 10
(-1,-1,-1) &= * & (1,-1,-1)
1 9 2

Figure 2-8: Master 3D Rectangular Quadratic Element
and shape functions are:

e A=-5HA-mA-O(=E-n-¢-2)
7 1+HA-A-OE-n-{ -2)
7 A1+ OA+MA-OE+17-{ -2)
e A=-5HA+mUA-O(E+1n-{-2)
7 A=-5HA-mA+O(E-n+{-2)
e A+ OHA-A+OE-n+{ -2)
7 A+ OHA+mA+OE+7+E-2)
e A=-HA+mA+O(E+n+{-2)
e 20-&H1-m1-4)
A 20-7°)1+&)1- )
7 20-EHA+mA-¢)

e, 20-7)A-E1-{)

v, 20-&HA-m+{)

v, 20-7*)1+E)1+¢)

v, 200-&HA+m1+¢)

v, 20-7)1-5H1+E)

78 20-HU-5HU-1)

v 201~ +E)1 1) £q. 283
v, 20-¢HA+EHA+1)

78 200-¢HA-EHA+1)
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2.9. Obtain Element Matrices and Equations

At this stage assume that the modeling of the problem has been completed. Let the
approximate function for a steady-state problem be written as:

i, (x,y,2) = N(x,y,2) *u, Eq. 2.9-1

where N(x,y,z) is referred to as the shape function. It is called shape function because

it contains not only the approximation made for state variables but also the coordinates
of the element nodes which define the shape function of the element. The shape
function can be written as:

N(x,y,2)=[N, N, .. N,] Eg. 2.9-2

where n represents the number of nodes of the element and N; is the shape function
corresponding to node i. Substituting equation (Eq. 2.4-10) into the equation (Eq. 2.9-1)
written for Q,, where the first term is often a quadratic form of u and its derivatives,

yields:
7, = [u!B" DBu,dQ, + [u] N" pdl Eq. 2.9-3
Q, r

Matrix B contains the shape function and its derivatives as well as the constitutive
relationships of the problem. Matrix D represents the physical parameters of the
domain, and p represents disturbances at the boundaries. Carrying out the integrations
(often numerically) results in the following matrix equation:

ku,+p,=0 Eq. 2.9-4

2.9.1. Linear Problem

For heat transfer described in previous chapter weak form of equation (Eq. 2.4-10)
combined with (Eq. 2.2-1) and without boundary conditions gives:

0w & OV dw. & OV
" ki 217 = )5 ok 2 T = 5) — 0dxd Eq. 2.95
i[ ax( 11; J ax ) ay( 22; j y ) (()Q] xdy q

9

This equation must hold for any weight function @ . Since we need n independent
equations to solve for the n unknowns, 7\, 7,, ..., T, , we choose n independent

algebraic equations to solve for w: w =y ,y;.... ;. For each choice of @ we obtain an
algebraic relation among (7,7, ,...,T,") . We label the algebraic equation resulting from
substitution of ¥ for @ into equation (Eq. 2.9-5) as the first algebraic equation. The i"
algebraic equation is obtained by substituting @ = y; into equation (Eq. 2.9-5):

Z} KiT; =0Qf Eq. 2.9-6
=
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where the coefficients K and Q; are defined by

: oy oY; . 9yl oY
K; k +k dxd Eq. 2.9-7
.[( 11 ax ax 22 ay ay ) X y q
O = [ Q! (x, y)dxdy Eq. 2.98
Qe

In matrix notation, equation (Eq. 2.9-6) takes the form

[K f]{Te}= {Q} Eq. 2.9-9

The matrix [K°] is called the coefficient matrix, or conductivity matrix. Equation (Eq.
2.9-9) is solved by {T°}.

2.9.2. Nonlinear problem
For nonlinear problem following equation will be replaced in equation (Eq. 2.4-10):
T()C, )’) + AT()C, )’) = Te(-x’ y) + ATe(x’ y) = ZY}EW?(X’ y) +ZA’T;‘//§(X’ )’) Eq' 2'9-10

j=1 j=l

substituting (Eqg. 2.9-10) into the (Eq. 2.4-10) without boundary conditions:

0= j[a“’{kn@re +ZAT€ iy 22 {anT“ ,}_

Eq. 2.9-11
a)Q(T + AT)]dxdy
where Q(T + AT) must be substituted with following equation:
00 _ QT +AT)-Q(T) 0Q
— = T+AT)=0Q(T +—AT Eq. 2.9-12
T AT = O( )=0(T) 3T q

The i algebraic equation is obtained by substituting @ = y; into equation (Eq. 2.9-11):
ST+ KAT: =0f +Y QAT Eq. 2.9-13

=] j=1 -

where K; and Qf are defined by equations (Eqg. 2.9-7) and (Eq. 2.9-8) and:

Q; = j Q'Y (x, Y)Y (x, y)dxdy Eq. 2.9-14

In mat;ix notation, equation (Eq. 2.9-13) takes the form

— o MAT }={o* }- 1k UT) Eq. 2.9-15

The matrix [K°] is called the coefficient matrix, or conductivity matrix. Equation (Eq.
2.9-15) is solved by {AT“}.
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NOTE: To obtain ¥/ (x,y) and ¥ (x,y) in equations (Eq. 2.9-8) and (Eq. 2.9-14)
substitute equations (Eq. 2.10-1) and transformation to master element is obtained

For isotropic materials k,, = k,, and conduction matrix becomes:

dy IV dyr oyl
K= 1k L S 4 ! I Ndxd Eq. 2.9-16
~J<ax o oy oy P 9

e

2.10. Coordinate Transformations

Coordinate transformations of physical entities such as vectors and matrices follow well
defined rules. They are often done in the form of a Jacobian matrix.

2.10.1. Rectangular Element

For instance, let us assume that there are two different coordinate systems, for example
X, y located in the element domain and &, n, located in the master element:
7. = x(§,m)

: Eq. 2.10-1
y=y(&.n)

The transformation between actual element Q, and the master element Q. [or
equivalently between (x, y) and(&,7)] is accomplished by a coordinate transformation of
the form:

x=2XPED, y=2 yFED Eq. 2.10-2
Jj=1 Jj=1

where ¥ denote the finite element interpolation functions of the master element Q, .

An infinitesimal line segment (or area and volume) in one coordinate system can be
transformed into another by following the usual rules of differentiation:

ag:] [ax ] oy

o6 |_| 9 9& || ax !
3 1=l av o * e Eq. 2.10-3

i —

on | Lom on] | dy

The matrix on right-hand side of this equation is known as Jacobian. Equation (Eq.
2.10-3) transforms the line segments in &, into line segments inQ, . The inverse
transformation which defines mapping of element Q_ back into the master element Q
follows a similar rule. This refer to as the inverse transformation
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Iy I
o0x 4| 08
=J % Eq. 2.10-4
oy 27 q
dy on
where J7' is the inverse matrix of the Jacobian:
9y 9y
-1 L 87] 85 :
e S Eq. 2.10-5
an  dI¢

This implies that condition of |J| >0 must be satisfied for every point in both domains.
For example, consider the element coefficients:

o oy
ox Oox

oy, oY

ky, (x,
+ ko (X, y) dy dy

K= j [k, (x, ) ldxdy Eq. 2.10-6
Qe

The integrand (i.e., expression in square brackets under the integral) is a function of
global coordinates x and y. We must rewrite it in terms of &,7 using the transformation

(Eq. 2.10-4).

The functions ¥ (x,y) can be expressed in terms of the local coordinates& and 7 by
means equation (Eq. 2.10-4). Hence, by the chain rule of partial differentiation, we have:

OP; _dy; ox Jy; dy

- Eq. 2.10-7
9 ax oF  dy oF

IP; _dy; ox oy dy
on ox dn dy 9@

Eq. 2.10-8

which gives the relation between the derivatives of i with respect to the global and

local coordinates. Equations (Eq. 2.10-7) and (Eq. 2.10-8) can be expressed in following
form:

o oy;
& ox
_ Eq. 2.10-9
VA vy 9
on dy

where J is Jacobian matrix or inverse transformation:
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oy, 17
ox ) 9E
e Eq. 2.10-10
oy o 9
dy on

Equations (Eq. 2.10-2)-(Eq. 2.10-10) provide the necessary relations to transform
integral expressions on any element Q_ to an associated master element Q . Suppose

that the finite element Q_ can be generated by master element Q. Under the previous
transformations we can write:

€

0 ¢ oy
= [l (x, ) o V’ Vi Vit 2 Y gy = [F, & md&in  Eq. 2.10-11
Ks a 0x dy dy 5

and equation (Eq. 2.9-14) in local coordinate system becomes
O = [Qy! (x, y)dxdy = [Q* ! (&, 1) *det* d&dn Eq. 2.10-12
Q, Q,

2.10.2. Line Element

2.10.2.1. Linear Line Element

For line element consider following equation:
T:s=s(x,y)= sW(&) Eq. 2.10-13
J=1

where s present line element in global coordinates, s are coordinates of line in global

coordinates and (&) are functions of master line element (Eq. 2.7-1). Note also that
for line elements m=2. Substituting equations (Eq. 2.7-1) in (Eq. 2.10-13):

s=%(sl+s2)+%§(s2—sl) Eq. 2.10-14

An infinitesimal line segment in one coordinate system can be transformed into another
by following the usual rules of differentiation:

ds = det* d& Eq. 2.10-15
and substituting equation (Eq. 2.10-13) into the (Eq. 2.10-15):

ds 1
det = de& 2(s2 5\/()c2 —x) + (v, —y,) Eq. 2.10-16

2.10.2.2. Quadratic Line Element

Same approximation is used for quadratic line segment (see Eq. 2.10-13) just different
shape functions Eq. 2.8-1 are used, which lead to:
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s=—%*ﬂ*f*(l—é>+%*sz*é*<l+é>+s3*(1—§2> Eq. 2.10-17

and corresponding determinant is:

ds 1
= =—(s,—8)+&(s, +5,—25,) =

det=—
dé 2

Eq. 2.10-18

1
:5\/(x2 —x) +(y,—y) +§\/(x1 +x,-2x) +(y, +y,—2y,)°

2.11. Assembly of Element Equations

The assembly of element matrix equations (p, = k,u,) is done according to the

topological configuration of the elements after this equation is transformed into the
global system. The assembly is done through the nodes as the interfaces which are
common to the adjacent elements. At these nodes the continuities are established in
respect to the state variable and possibly in respect to its derivatives. Sometimes this
assembly is done through certain nodes only, referred to as the primary nodes (e.g.
corner nodes), instead of to all the nodes at the interfaces. This reduces the overall size
of the assembled matrix. The nodes that are not used in the assembly, the so-called
secondary nodes, are used together with the primary nodes to increase the degree of
approximation at the element level. Assume that the complete element matrix is
partitioned as follows:

{PI } - [K” Ko }{U’ } Eq. 2.11-1
PII KII,I KII,II UII
in which subscripts | and Il identify the portions of the equations corresponding to

primary and secondary nodes, respectively. This equation can be brought to the
following form:

PI - KI,IIKI_I{IIPII = [KI,I - KI,IIKI_I{IIKII,I ]UI Eq' 2.11-2
which, in short, can be written as
F,=KU, Eq. 2.11-3

this is the final equation to be assembled. It contains the unknown value of the function
at the primary nodes only. To illustrate the assembly, let assume that domain Q in 2D
space consist of three elements (rectangular, triangular and line elements), as shown in
Figure 2-9:
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2
Y
O Rimary nodes
Qy e Secondary nodes
1 3
) Hement designation
i ] q r
o 1 5 4 3
5 4
3 2 1
X
> n 2 4
0

Figure 2-9: Assembly of three elements

The element submatrices are identified as the dyadic product of element designations
using primary nodes (i, j, g, r are the numbers assigned to nodes)

i
i j q 1=
q

r

ii ij ig ir
JjuogjoJa o Jr
qi g qq9 qr
ri rj rq rr

Eq. 2.11-4

which for example shown in Figure 2-9 leads to following element submatrices:

Pl |K; K;
R|_|K, K|
})4 K;z qj
P

KI

L™ 3 ri 7
p] [k! K
P |=|K] KI
P| |K, K,

11 biig
K" K]

biik biik
K K

Kii] Ktlr Ul
1 1
Ki, K| |Us
1 1
K, K, U,
Krlq Krlr U3
K| U,
1
qu * U2
/4
K, U,

Eq. 2.11-5

Eq. 2.11-6

Eq. 2.11-7

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 35

With this designation, the assembled version of the complete matrix of the configuration
shown in Figure 2-9 will be:

Tpl [ w! i I/ 1 I/ 1 T 7
P, K;+K, K, K, +K, K, K; U,
i m n il
P, K; +K; K K; 0 U,
P, |= K +K/ K, K, |*| U, Eq.2.11-8
1 ur 1
P, K,+K; K, U,
| F] | Symm. K;j_ Uy |

Final results of assembling all these elements are system of linear equation which is
solved by unknown nodal values (temperatures in Conrad):

|K|*{T}={P} Eq. 2.11-9
which is solved by unknown nodal values {T}, or in equation form:

K, *T)+K,*T,+..+ K, *T,+..+ K, *T, = P,

K, *T\+K,,*T, +..+K,, *T, +..+ K, , *T, = P,

Eq. 2.11-10

1

Ki’l*Tl+K[,2*T2+...+KU *T, +..+K,, *T =P

K, *T+K, ,*T,+..+K,  *T,+..+ K, *T =P,

2.12. Introduction of Boundary Conditions

At this stage, the essential boundary conditions are introduced. As result of this, the
complete set of equations will be reduced or condensed to its final form.

There are several boundary conditions presented in previous chapter. Using weighted-
residual method for boundary conditions, following equation is obtained:

[@h (T ~T_)dT, + [ woe(T* ~T)dT, — [ g, T,
r

g & " Eq. 2.12-1
~ [wloe(r* -T2~ a,H 1T, =0
r"

2.121. Convection Boundary Condition

Convection Boundary Condition is presented by first term of equation (Eq. 2.12-1).
There is also linear and nonlinear type of problems in boundary condition presentation.
2.12.1.1. Linear Problem

Using first term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for i" algebraic
equation (w=y;) convection boundary condition is:
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[@h (T —T.)dT, = [w! (x. ) *h, QO Ty (x,y)~T.)dT, =
I, i

L,

= [FE() % h, *dets Y[ (&) *T{ 1T, — [ § (€)% h, * T, * det* dF,
f, = f,

Eq. 2.12-2

where ¥/ ($) and ¥ ($) are line functions for master line element (Eq. 2.7-1), det is
determinant obtained from equation (Eq. 2.10-16) and T is segment in master element.

Equation must hold for any weight function @ . Since we need n independent equations
to solve for the n unknowns, 7, T,, ..., T.', we choose n independent algebraic

equations to solve for w: w=vy;,y;,....¥. . For each choice of @ we obtain an algebraic
relation among (7,7, ....,T,) . We label the algebraic equation resulting from substitution
of y¢ for w into equation (Eq. 2.12-2) as the first algebraic equation. The i algebraic
equation is obtained by substituting @ = y; into equation (Eq. 2.12-2):

n

D AT —B =0 Eq. 2.12-3
j=l
where:
A= [§ () * () *h, * det* T, Eq. 2.12-4
i
Bf = [§;(§)* h *T, *det*dT, Eq.2.12-5
In

these equations must be assembled into the equation (Eq. 2.11-9) to obtain system of
linear equation with introduced convection boundary conditions. In matrix notation,
equation (Eq. 2.12-3) becomes:

[A; UT;}={B;} Eq. 2.12-6

Therefore, equation (Eq. 2.12-6) must be assembled into equation (Eqg. 2.11-9).

2.12.1.2. Nonlinear Problem
Equation for convection boundary condition for nonlinear problems takes following form:

[@*h (T + AT)*[(T + AT) - T_1dT;, =0 Eq. 2.12-7

r/l

Convection boundary condition for nonlinear problems uses following approximations:

ahc _ hc (T + AT) - hc (T) = hc (T + AT) = hc (T) + AT ahL
o AT or

and

Eq. 2.12-8
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m m

T(x,y)+AT(x,y) =T*(x, y) + AT (x,y) = D T{Wi (x, 1) + 3 ATS 5 (x, ) Eq. 2.12-9
j=1

j=1
Using these two approximations and w =y, equation (Eq. 2.12-7) becomes:

oh,
ot

jwf (x, y)*[h (T)+ (Zm: ATy (x, ) —=1*I(T,, + AT,,) - T.1dT, Eq. 2.12-10
T, Jj=l

where T,, and AT,, are temperatures from previous iteration.

Linear part of equation (Eq. 2.12-10) obtain same result as equations (Eq. 2.12-4), (Eq.
2.12-5) and (Eqg. 2.12-6). Note also that for linear part of equation (Eq. 2.12-7) is not
used (T,, +AT,,) but equation (Eg. 2.12-9) .Nonlinear parts of equation (Eq. 2.12-7) are:

C, = jv75 ) *PF(E)* aa};c *det*T,, *dI, Eq. 2.12-11
I

D. = [ (&) * 7 *ahc*d * AT *dl Eq. 2.12-12

,,—fjwi(é) 7o) 5 det* AT, *dL, q.2.12-

E. = [ & *ye *ah"*d T %l Eq. 2.12-13

ii—fjva(f) V()= det T *dT, q. 2.12-

Convection boundary condition for nonlinear problem in matrix form:
[CU]{AT, } + [Dl,]{ATJ } - [EU]{ATJ } = {Bl } - [AU]{TJ } =

Eq. 2.12-14
= {[C,,]+[D,,]_[El,]}*{AT,}:{B,}_[AU]{T,}

2.12.2. Flux Boundary Condition

Flux Boundary Condition is presented by third term of equation (Eq. 2.12-1). There is
also linear and nonlinear presentation of this boundary condition.

2.12.2.1. Linear Problem

Using third term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for i" algebraic
equation (w =y ) flux boundary condition is:

[@q,dU, = [y (x.y)%q, *dU, = [§{(&)*q, *dT, Eq. 2.12-15
T, T,

r‘i q

Q= [ (&)*q, *det*dT, Eq. 2.12-16
fq

this matrix must be assembled into the (Eqg. 2.11-9).

2.12.2.2. Nonlinear Problem

Nonlinear part uses following approximations:
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%)
qf(T+AT)=qf(T)+AT% Eq. 2.12-17
and
AT(x,y) = AT (x,y) = Y ATy (x, y) Eq. 2.12-18
j=1

Therefore, flux boundary condition for i-th equation is:
[@*q (T +AT)*dT, = [y! (x,y)* [qf(T>+ ZAT W (x, )]
K 5 K Eq. 2.12-19
= [7:(&) *1q, (D) + gf > AT/ (1" et T,

L,
or
Z FiAT, +Q,=0 Eq. 2.12-20
or in matrix from
[F; {AT;}-{Q,} =0 Eq. 2.12-21
where

- . dq -
Ff = J'l//ie (&)* 78 (&) * a_tf *det* dT, Eq. 2.12-22
T,

and Q, is given by equation (Eq. 2.12-16).

2.12.3. Radiation Boundary Condition
Radiation (black body) boundary condition is given by second term of equation (Eq.
2.12-1):

[woe(T* —T2)dr, =0 Eq. 2.12-23

I

Because radiation makes problem nonlinear, this equation will be calculated only for
nonlinear case. Before transformation equation (Eq. 2.12-23) must be linearized about
temperature from previous iteration:

(T* =T = Tpppy +T) Ty +TNT =T.,) Eq. 2.12-24

where T,,., is temperature from previous iteration. Substituting equation (Eq. 2.12-24)
into the (Eq. 2.12-23):

[ 00E Ty + T )Ty +T2NT ~T.)dT, = [@*h, *(T =T.)*dl,,  Eq.2.12-25

I Ik
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where

h, = CE(Tpppy +T.) Ty +T2) Eq. 2.12-26

oo

is linearized about T, .

Equation (Eq. 2.12-25) is same as equation (Eqg. 2.12-2) but only for nonlinear case
(because radiation makes problem nonlinear). Therefore, element matrices and
equations are same as for convection boundary condition for nonlinear case:

th(T T,)dr, = jw(w)*h(ZTc//(xy) T.)dl, =
g Eq. 2.12-27
=I ‘(&) *h, *det*Z[v/@‘)*T]dF j C(E) ¥R *T. *det* dl,

which leads to same matrix equations as convection boundary condition for nonlinear
case:

Al = j C(E)*PE(E) *h, *det* T, Eq. 2.12-28
B = [§(&)*h, *T, *det*dT, Eq. 2.12-29

T,
:I “(&)* ~e(g€)* oh, *det*T dﬁ Eq. 2.12-30

L,
— J‘ <(&)* ’“e(g&)* h, *det*AT *dl, Eq. 2.12-31

I
— J‘ Sk "e(g&)* oh, *det*T *dF Eq. 2.12-32

Iy

Or equation (Eqg. 2.12-27) in matrix form:

Eq. 2.12-33
= {[C;1+[D;1-[E; 1} *{AT,;} ={B,} -[A, T}

2.12.4. Enclosure Radiation Boundary Condition

Enclosure radiation (gray body) boundary condition is given by fourth term of equation
(Eq. 2.12-1):

[aloe T} —a,H AT, = [ olo€,(4* Ty * T, 3% Ty, ) — 0, H,1dT, Eq. 2.12-34
T, T,
where index “i” mean i-th surface in enclosure model and H, is calculated by equations

(Eqg. 1.3-45) and (Eq. 1.3-46). From equation (Eqg. 1.3-46) is obtained following system
of equations:

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 40

£ —1 -1 -1
[( : )Fn _i]Bl +..+ d FnBi +..+ 4 Flan = OTIA;’REV
6'1 6'1 6'1 6'1
e -1 e —1 —1
S lpp v & o tip e 5 p g —ort Eq. 2.12-35
& & g, g,
e —1 e —1 e —1
" —F.B+.+"—FB +..+[(-“—)F, —i]Bn =X .
£, £, £, £

where T,,,, is temperature of i-th surface from previous iteration. Or in matrix notation
[AEF,{B,} = 0{Tppy} = {B,}=[AEF,]" *0 *{Tp, Eq. 2.12-36

equation (Eq. 2.12-36) gives solution of radiosity matrix {B;}. For nonlinear iteration
using for calculation of enclosure radiation boundary condition following matrix equation
is used:
(B} =[AEF, 1" %0 *{Tppp } + {AEF i} * 0 *{T}} =

i#j i#J Eq. 2.12-37
={K ,}+{AEFi}* o *{T}'}
where {AEF™';} represent vector of elements tacked from diagonal of inverse matrix
[AEF,] and {Tj“} is vector of unknown temperatures. Therefore, radiosity for i-th surface
is:
B, = Z(AEF_l’ff to* T;I"REV )+ AEF i * o * Ti4 =

J=1

. Eq. 2.12-38
= Z(pSiij *O-*Ti;REV)—i_pSiii *o* T =K, + psi, * o *T
=
i

replacing this equation into the equation (Eq. 1.3-45), following equation is obtained:

H, :%(K; —(& - pSin‘)*G*Tiét) Eq. 2.12-39
_gi

and substituting this into (Eq. 2.12-34):
Jw[o-giTi4 -oH,]dl,, =
rer

c c Eq. 2.12-40
= Jw[—l(l — psi; )Ti4 _—iKi )ldr,,
r l-¢ 1-¢,

where «, = ¢, for gray and isothermal radiating surfaces. After Taylor approximation
about temperature T,,,, equation (Eqg. 2.12-40) becomes:
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[doeT! —aH )T, =
rel

E. E.
- Id_lg(l_pséi)g*47;;REv*T_ﬁ((l_pséi)o-*ﬂ;:mv+K,’)]drer = Eq. 2.12-41
I, G TG

1

= J‘aiher * T - rh ]d[;r
rﬂr

where

h, = ffg‘ (1- psi)o* 4T3 Eq. 2.12-42
and

r = 11[ ((1- psi,)o*3T  +K) Eq. 2.12-43

In order to obtain element equations and matrices, equation (Eq. 2.12-41) is used with
following approximations:

h, (T +AT)=h, (T)+AT aah; Eq. 2.12-44
and equations (Eq. 2.12-9) and (Eqg. 2.7-1). Consider first term of equation (Eq.
2.12-41):

[@*h, *T*dT, Eq. 2.12-45
rﬂr

to obtain element equation, equation (Eq. 2.12-45) is considered in two different forms:

[ (f)*(he,(T)+AT%)*(T+AT)*det*dl~“a =

rer

. ) ) Eq. 2.12-46
= [7:©)* (h, (D) + == YA ) * (LT 7€)+ AT 7)) *detdT,,
I, J=l j=l =l
and
. oh ~
[#:(&)* (h, (T)+ AT ) (T +AT)* detdl, =
e o Eq. 2.12-47
= | @ (&) * (h,(T)+ a—T"Z AT F4(E) * (T,,, +AT,,,) * det* dT,,
£, J=l
or
(G, +H; +I)AT +L =0 Eq. 2.12-48

or in matrix form:
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(G, +H, + [,{AT} +{L}=0 Eq. 2.12-49
where
G, = [W (& *h, * ;&) * det*dl, Eq. 2.12-50
T,
=[5 + O 7 () *T,,, *det* df, Eq. 2.12-51
I,
;= [ i« ey * 0 (E) * AT, *det* dl,, Eq. 2.12-52
I,

where T, and AT, are mean temperature (and temperature difference) on i-th

ign
segment from previous iteration, and:

L, =[G,1*{T;) Eq. 2.12-53

where {T} are matrix of node temperatures for i-th segment from previous iteration.
Now consider second term of equation (Eq. 2.12-41):

ja)*r #dr, —Iy/l (&)* (rh(T)+AT ")*det*dferz

Eq. 2.12-54
= [ (&)= (r(T) + 9IS G (E)AT*) * det* d,
1: aT = J J
or in matrix form
(M, {AT}+{N;} =0 Eq. 2.12-55
where
AN AGM I, L+ det T, Eq. 2.12-56
i,
= [W (&) *r, * det*dT, Eq. 2.12-57
L,

2.13. Solution of the Final Set of Simultaneous Equations

Until this step, we have made no reference to weather the problem is linear or
nonlinear, or weather it is an eigenvalue problem or not. Regardless of the nature of the
problem, the finite-element methods eventually yield the solution of a set of
simultaneous differential equations. The solution procedure for simultaneous equations
can in general, is categorized into the three parts: (1) direct, (2) iterative, and (3)
stochastic.
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2.13.1. Linear Method

Conrad improves two methods of solution which depends of problem type. For linear
type of problem Conrad uses direct method which means that solution is obtained after
solution of global matrices.

2.13.2. Nonlinear Method

For nonlinear type of problem Conrad uses iterative method to obtain final solution (this
mean that solution is obtained after couple of iterations). To obtain achieved
convergence Conrad uses following equations:

enorml = [T} + T} + T +..+T? Eq. 2.13-1

where 7,, T,, T, ..., T, are temperatures at nodes in current iteration which are obtained
as:

T =T +relax* AT/ 0<relax <1 Eq. 2.13-2

where 7" is temperature at i node form previous iteration and AT, is solution from
current iteration.

1) Convergence Criteria

If signed enorm2 as Eq. 2.13-1 from previous iteration, then solution is achieved when:

|en0rm1 - enorm2|

edif1 < tolerance Eq. 2.13-3

enorml

Eq. 2.13-3 is known as convergence criteria and edif1 is achieved convergence.

ll)  Divergence Criteria

Sign edif2 as achieved convergence in previous iteration. Solution diverged (for fixed
relax) if following condition is satisfied ten times for fixed value of relax parameter:

edif 2 < edif 1 Eq. 2.13-4

2.14. Interpretation of the Results

The previous step resulted in the approximate values of the state variable at discrete
points (nodes) of the domain. Normally these values are interpreted and used for
calculations of other physical entities, such as flux, either thought the domain or in
certain regions of it.

This is decision-making step and is probably the most important step in the entire
process. Two important questions must be answered at this point: How good are the
results? and What should be done with them? The first requires the estimation of error
bounds, and the second involves the physical nature of the problem.
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2.15. Numerical Integration

Numerical integration plays an important role in finite element methods. For instance,
evaluation of element matrices requires integration of certain functions over the element
domains. In order to facilitate these integrations and special coordinate systems are
normally chosen.

Integrals defined over a rectangular master element Q  can be numerically evaluated
using the Gauss-Legendre quadrature formulas:

N
Y F(&,.n,)WW, Eq. 2.15-1

J=

[ F&magdn = [ [ F(& maéin =

M
-1-1 1=

,_.
JUR

where M and N denote the number of Gauss quadrature points, (&,,77,) denote the

Gauss points coordinates, and W, and W, denote the corresponding Gauss weights as
shown in Table 2.1.

For two-point formula gauss points are shown in Figure 2-10:

A
4 1 3
[ o
O it 93
5 R
1 = 5 1
5 Vi 3
Cldl
g1 NE 92
1 -1 2

Figure 2-10: Gauss Points for Two-Point Numerical Integration

Table 2.15-1: Quadrature Weights and Points for Rectangular Elements

Points & r Weights Wi
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0.0000000000 One-point formula 2.0000000000
1+0.5773502692 Two-point formula 1.0000000000
0.0000000000 . 0.8888888889
Three-point formula
+0.7745966692 0.5555555555
+0.3399810435 : 0.6521451548
Four-point formula
+0.8611363116 0.3478548451
0.0000000000 0.5688888889
+0.5384693101 Five-point formula 0.4786286705
+0.9061798459 0.2369268850
+0.2386191861 0.4679139346
+0.6612093865 Six-point formula 0.3607615730
+0.9324695142 0.1713244924

3. Additional Algorithms and Descriptions

3.1. Bandwidth Minimization

A key numerical problem which arises throughout finite-element analysis (whether linear
or nonlinear, static or dynamic) is that of the solution of large sets of linear algebraic
equations such as, in matrix form,

At} = (b} Eq. 3.1-1

where the vector {b} and the square matrix ||4| are known, and the unknown vector {x}
is sought.

In finite element applications, | A| contains mostly zeros and efficiency in equation

solving is obtained by avoiding arithmetic operations (multiplications and additions) on
matrix terms that are known in advance to be zero. The computer execution time for
most equation solvers and triangular factorization routines is proportional to the order N
of the matrix. It is possible to choose an ordering for sparse matrices so that nonzeros
are located to allow subsequent matrix operations such as equation solving or
eigenvalue extraction. In general, a banded matrix has all its nonzero entries clustered
about the main diagonal (Figure 3-1).

Conrad uses the Gibbs-Poole-Stockmeyer algorithm (see [2]) to determine a nodal
numbering scheme which results in minimal bandwidth/profile.
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(a) (b)

Figure 3-1: Location of nonzero terms in a stiffness matrix: (a) before and (b) after
reordering (see [2]).

Sign transformation from original to reorder numbering system [Figure 3-1 from (a) to
(b)] as BWM , and inverse transformation or from reorder to original numbering system

as BWM .

3.2. Gravity Arrow Algorithm and Frame Cavity Transformations for
ISO15099 Calculations

3.2.1. Introduction

Gravity Arrow Algorithm is used to determine heat flow direction in frame cavities
according to gravity arrow. It is needed to perform calculations shown in [1]. Note that in
[1] frame cavity calculations are in 2D space and in THERMS frame cavity are
presented by 3 dimensions (or in 3D space). Therefore, purpose of this algorithm is to
transform frame cavity from 3D presentation into the 2D presentation according to heat
flow direction and Gravity Arrow direction.

3.2.2. Equivalent Gravity Arrow

Gravity Arrow is vector can point in any direction in 3D space and according to
algorithm described bellow it will be transformed to Equivalent Gravity Arrow which can

point only in the "x”, “y” or “z”-axes direction.

Gravity Arrow is presented in 3D (Figure 3-2) space by coordinates gy, gy and g;
respectively.
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y A

Figure 3-2: Gravity Arrow in 3D Coordinate System
Therefore, Gravity Arrow can be expressed by following equation:

g=8.x+g y+g.z Eq. 3.2-1

where coordinates g, g,, g. must satisfy following equation:

V8 +(g,) +(g.) =1 Eq. 3.2-2

In order to determine equivalent Gravity Arrow (this is gravity arrow which pointing in
one of the axes direction), 3D space is divided into the six equivalent spaces using six
surfaces which are shown in Figure 3-3, Figure 3-4 and Figure 3-5.
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surface equation:
y=-X

Figure 3-3: Surfaces Parallel With z-axis

surface equation:
z=X

surface equation:
Z=-X

Figure 3-4: Surfaces Parallel With y-axis

surface equation:
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surface equation:
y=-z

surface equation:
y=z
Figure 3-5: Surfaces Parallel With x-axe

Surfaces on Figure 2 and Figure 3 make pyramids in direction to the x-axis (Figure 3-6),
one in positive direction of x-axes (yellow) and the other in negative (blue).

Figure 3-6: x-axe Pyramids

Note that these pyramids have top angle equal with 90° (Figure 3-7 and Figure 3-8).

Carli, Inc. is Your Building Energy Systems and Technology Choice



CONRAD 5 and VIEWER 5 Documentation Page 50

9@ degrees

Figure 3-7: Pyramid Angle

90 degrees

Figure 3-8: Pyramid Angle

Therefore, these four surfaces make two pyramids in x-axes direction in order to
determine any gravity vector which belongs to pyramids space. According to surfaces
equation (see Figure 3-3, Figure 3-4 and Figure 3-5) gravity arrow belongs to positive x-
axes pyramid (yellow color in Figure 3-6) when following equations are satisfied:

y<x; y>—x; z<x and z>-x Eq. 3.2-3
when replacing gravity arrow orts
8,<8; 8,>8: 8.<8,and g.>-g, Eq. 3.2-4

If condition (Eq. 3.2-4) is satisfied, gravity arrow is replaced with it equivalent which
pointing in positive direction of x-axis and which orts are:

gx :1’ gy :0’ gZ :O Eq. 3.2'5
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Same explanation is for negative x-axis pyramid (blue color in Figure 3-6) but for
different equations.

To recover all directions in 3D space, there are also pyramids which belongs to “y” and
“z2” axis (Figure 3-9 and Figure 3-10)

AY

Figure 3-9: y-axis Pyramids

Z

Figure 3-10: z-axis Pyramids
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3.2.3. Summary of Pyramid Equations

3.2.3.1. X-Axis

1) Positive Direction

gx>gy; gx>_gy; gx>gz; gx>_gz

)] Negative Direction

2,.<8, 8:<-8,; 8, <8 & <-¢,
3.2.3.2. Y-Axis

1) Positive Direction

8,>8: 8,785 8,28 8§, >78.

)] Negative Direction

gy<gx; gy<_gx; gy<gz; gy<_gz
3.2.3.3. Z-Axis

1) Positive Direction

gz>gx; gz>_gx; gz>gy; gz>_gy

1) Negative Direction

8.<8,: 8. <78 8,<8,5 8. <78,

3.2.4. Frame Cavity Presentation and Heat Flow Direction

Eq. 3.2-6

Eq. 3.2-7

Eq. 3.2-8

Eq. 3.2-9

Eq. 3.2-10

Eq. 3.2-11

Frame Cavity in THERM5 can be drawn only in 2D and third dimension is given by

variable “jambheight” (see

Figure 3-16). Irregularly shaped Frame Cavities are rectangularized according to
procedure given in [1]. Rectangularized Frame Cavity in THERMS is presented by

Figure 3-11:
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L

|A »
|‘ >

Figure 3-11: Rectangularized Frame Cavity (needed for calculation)

Heat Flow direction is calculated in Conrad and according to screen, heat flow direction
can be “RIGHT” (Figure 3-12), “LEFT” (Figure 3-13), “VERTICAL DOWN?” (Figure 3-14)
and “VERTICAL UP” (Figure 3-15) which depends of temperatures on rectangularized
frame cavity sides.

A

L

I o

le >l

Figure 3-12: RIGHT Heat Flow Direction (According to Screen)

A

L

I i

le >l

Figure 3-13: LEFT Heat Flow Direction (According to Screen)
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I~ o

Figure 3-14: VERTICAL DOWN Heat Flow Direction (According to screen)

A

| L

d Ll
I~ o

Figure 3-15: VERTICAL UP Heat Flow Direction (According to Screen)
Frame cavity in THERM5 is presented by three dimensions (

Figure 3-16) but only two dimensions can be seen. Third dimension is presented by
value “jambheight”.

jambheight
A o
»

L

Figure 3-16: Frame Cavity Presentation in THERM

According to gravity arrow direction (in 3D space) and screen heat flow direction, heat
flow direction in 3D (or according to gravity arrow) can be: “HORIZONTAL”, “VERTICAL
UP”, VERTICAL DOWN”, “JAMB HORIZONTAL” and “JAMB VERTICAL".
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FZ .

T

i A
Figure 3-17: HORIZONTAL Heat Flow Direction (According to Gravity Arrow)

B .

oo |

MO[J TBOH

A 4

Figure 3-18: VERTICAL UP Heat Flow Direction (According to Gravity Arrow)

jambheight
4 >

y

v

Figure 3-19: VERTICAL DOWN Heat Flow Direction (According to Gravity Arrow)

8

B .

Ll

oo |

A 4

Figure 3-20: JAMB HORIZONTAL Heat Flow Direction (According to Gravity Arrow)
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I WA =

i_ jambheigV

Y

=
MO[J 18y

\ 4

Figure 3-21: JAMB VERTICAL Heat Flow Direction (According to Gravity Arrow)

Important part of this algorithm is Frame Cavity transformation form 3D (or therm)

presentation to 2D (needed for calculation) presentation. This transformation is
presented by Figure 3-11 and

Figure 3-16.

start

)

BLOCK1
Calculate heat flow
direction according to

screen

BLOCK2
Calculate equivalent gravity
arrow

)

BLOCKS
Calculate heat flow
according to gravity arrow

}

BLOCK4
Frame Cavity dimension
transformations needed for
1SO15099 calculations

)

exit

Figure 3-22: Gravity Arrow Algorithm
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T

up

LEFT RIGHT

T

DOWN

Figure 3-23: Temperatures on Rectangularized Frame Cavity

Depends of temperatures on equivalent frame cavity sides (Figure 2-1), screen heat
flow direction is determined according to according to algorithm shown on

BLOCK1

TLEI-T - TRIGHT ‘ > ‘TUP - TDOWN

e

Screen Heat Flow Screen Heat Flow =

yes

“f =RIGHT VERTICAL DOWN rlo
Screen Heat Flow Screen Heat Flow =
=LEFT VERTICAL UP
» e

Figure 3-24: Screen Heat Flow Calculation Algorithm
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BLOCK2

8:>8> 8&:>78,> 8> 8.5 8.>§;

no g.=1 g,=0, g.=0
-
(<8, 8:<78, 8, <8 8,<-8. yes—l
no g.=-1 g,=0, g=0
I
y > 8 8,> 8 8,>8. 8§, >8, yes—l
no 8.=0,g,=1 g.=0
I

y <8 g_v<_g)(; gy<gz; g_v<_g'

no

8:>8: 8:>78: 8:>8, 8.8,

no 2.=0, g,=0, g.=1

8: <8 8, <78 8:<8,5 8. <8

, yes—l
no

A 4 gX:(), gy:O, gZ:—l
Error in Algorithm

Figure 3-25: Equivalent Gravity Arrow Calculation Algorithm
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BLOCK3

8:>8,5 8:>78,) 8:> 8.5 8,.>78;

yes—

Positive x-axe
no dlre(‘:tlon
<8y 8, <78 8:<8; 8 <78 yesj
Negative x-axe
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Figure 3-26: Gravity Heat Flow Algorithm
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Figure 3-27: Positive x-axe Direction
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Figure 3-28: Negative x-axe Direction
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Figure 3-29: Positive y-axe Direction
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Figure 3-30: Negative y-axe Direction
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Figure 3-31: Positive z-axe Direction
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Figure 3-32: Negative z-axe Direction
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Figure 3-33: Transformation from 3D (THERM presentation) to 2D Frame Cavity

3.3. “Grid” Algorithm — Used for speed up Viewer

“Grid” algorithm is used to speed up view factor calculation. Main factor which has
influence on program speed are calculation if blocking surfaces between two segments
exist. Example of enclosure radiation segment which are segments used in view factor
calculation are shown in Figure 3-34. View factor matrix can be very large and this
depends of number of radiation enclosure segments. If you note that number of
radiation enclosure segments is “n” than number of view factors are “n x n” and this can
be large number. To remained that view factor is calculated by Eq. 1.3-49 and if ray
intersection by third surface exist than by Eq. 1.3-50 (see Figure 1-7 also).
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