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1. Governing Equations 

1.1. Introduction 

Heat Transfer is a branch of engineering that deals with the transfer of thermal energy 
from one point to another within a medium or from one medium to another due to the 
occurrence of a temperature difference. Heat transfer may take place in one or more of 
its three basic forms: conduction, convection and radiation. 

1.2. Governing Equation 

The Governing Equation of two-dimensional heat conduction in a two-dimensional 
orthotropic medium Ω, under the assumption of constant physical properties, is derived 
from the general energy equation and is given by the following partial differential 
equation: 
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where k11 and k22 are conductivities in the x and y directions, respectively, and Q(x, y) is 
the known internal heat generation per unit volume. For a nonhomogeneous conducting 
medium, the conductivities kij are functions of position (x, y). For an isotropic medium, 
we set k11=k22=k in equation (Eq. 1.2-1) and obtain the Poisson equation: 
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For medium without internal heat generation equation (Eq. 1.2-3) becomes: 
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1.3. Boundary Conditions 

To complete description of the general problem posed in the previous sections, suitable 
boundary and initial conditions are required. Boundary Conditions are most easily 
understood and described by considering the fluid mechanics separate from other 
transport processes. The magnitude of heat flux vector normal to the boundary is given 
by Fourier’s law: 
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 There are three types of boundary conditions: 
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1.3.1. With Defined Temperature (Dirichlet or essential condition) 

This is referring to boundary conditions with defined temperature on boundary surface 
as function of time and space: 

),,,( zyxtfT =  on ΓT        Eq. 1.3-2 

where T is temperature on surface, t is time and x, y, z are surface coordinates, or 
special case with constant temperature on boundary surface: 

.constTT const ==  on ΓT       Eq. 1.3-3 

1.3.2. With Defined Flux (Neumann or natural condition) 

This is referring to boundary conditions with defined flux on boundary surface as 
function of time and space: 

),,,( zyxtfq f =  on ΓQ       Eq. 1.3-4 

where qf is heat flux on surface, t is time and x, y, z are surface coordinates, or special 
case with Constant Flux on boundary surface: 

.constqq constf ==  on ΓQ       Eq. 1.3-5 

there is one special case of this boundary condition known as Adiabatic Boundary 
condition defined with following equation: 

0== af qq          Eq. 1.3-6 

This means that there is no heat flux exchange between adiabatic surface and 
surrounding space. 

1.3.3. Newton’s Law 

This is referring to boundary conditions with defined surrounding space temperature and 
defined law of heat flux exchange between surface of the body and that surrounding 
space. In most cases this is defined with Newton’s law of convection heat transfer: 

))()(( tTtThq oaa −±=         Eq. 1.3-7 

 

where qa is heat flux on surface, h is heat transfer coefficient, Ta(t) is temperature on 
body surface and To(t) is temperature of surrounding space. There are several cases of 
boundary conditions which refer on Newton’s Law: 

1.3.3.1. Convection Boundary Condition 

Convection boundary condition is defined by following equation: 

)(*),,,,( ccc TTzyxtThq −=        Eq. 1.3-8 

where qc is convective heat flux, hc is the convective heat transfer coefficient which, in 
general, depends on the location on the boundary (x,y,z), temperature (T) and time (t), 
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and Tc is a reference (or sink) temperature for convective transfer. In most of cases 
coefficient hc is constant and in that case equation (Eq. 1.3-8) becomes: 

)( ccc TThq −=         Eq. 1.3-9 

1.3.3.2. Radiation Boundary Condition (without enclosure) 

Radiation boundary condition (without enclosure) is defined by following equation: 

)( 44

rr TTq −= εσ         Eq. 1.3-10 

where qr is radiative part of heat flow, ε is boundary emissivity, σ is Stefan-Boltzmann 
constant and Tr is a reference temperature for radiative transfer. Equation (Eq. 1.3-10) 
also can be shown in following shape: 

)(*),,,,( rrr TTzyxtThq −=        Eq. 1.3-11 

where hr is the linearized effective radiation heat transfer coefficient calculated by 
equation: 

))((),,,,( 22

rrr TTTTzyxtTh ++= εσ       Eq. 1.3-12 

Note that this boundary condition is appropriate when a body or surface radiates to a 
black body environment that can be characterized by a single temperature. 

1.3.3.3. Material Interface 

Another condition that is of concern when a material interface between two or more 
solid region is the problem of gap or contact resistance. The boundary or interface 
conditions in this situation are the usual continuity conditions on temperature and heat 
flux since the gap resistance is dictated by property variations. A more mathematical 
representation of contact resistance provides that the heat flux across the interface be 
described by an internal boundary condition: 

))(,,,,( SMgapgapgap TTzyxtThq −=       Eq. 1.3-13 

where hgap is an effective heat transfer coefficient for the contact surface, and Tgap is an 
average temperature between TM and TS. The subscripts M and S designate the 
“master” and “slave” sides of the contact surface, a distinction that is important in the 
numerical implementation of this condition. 

1.3.3.4. Condensation Resistance Modeling 

Heat flux on indoor surfaces of the fenestration systems can also be presented as 
convection: 

)(*)_,,,,,( 21 TTpropertiesgaszyxtThq mfennfenestatio −=    Eq. 1.3-14 

where qfenestration is heat flux through indoor side of fenestration system, hfen is 
condensation resistance factor which depend of mean temperature (Tm), time (t), 
location on the inside boundary (x,y,z) and gas properties (density, thermal conductivity, 
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dynamic viscosity, specific heat), T1 (hot side) and T2(cold side) temperatures of indoor 
sides of the fenestration system (Figure 1-1). 

The method is based on the use of the variable convective heat transfer coefficients on 
the vertical sides of IGU cavity and the simple radiative heat transfer exchange between 
the cavity sides. 

 

Figure 1-1: IGU of the Fenestration System 

There are two criteria for condensation resistance factor calculations which depend of 
laminar or turbulent regime of heat flow: 

Conduction Regime (
L

H
PG rrl 500≤ ) 

Boundary Layer Regime ( rrl PG >
L

H
500 ) 

where Grl is Grashoff number and Pr is Prandtl number. Grashoff number is calculated 
by following equation: 
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where is g =9.807
2

s

m
 (acceleration due to gravity), thermal expansion coefficient 

mT

1
=β , 21 TTT −=∆ , L is cavity width (Figure 1-1) and υ  is kinematics viscosity which 

is equal: 

ρ

µ
υ =           Eq. 1.3-16 

where µ is dynamic viscosity and ρ is density (gas properties). 

Prandtl number is equal: 

α

µ
=rlP          Eq. 1.3-17 

where µ is dynamic viscosity and temperature conductivity coefficient α is: 

pC

k

ρ
α =          Eq. 1.3-18 

where k is thermal conductivity, ρ is density and Cp is specific heat. 

In order to calculate condensation resistance, starting and departing corners must be 
determined. To determine which corner is starting and which is departing see Figure 1-2 
and Figure 1-3: 

 

Figure 1-2: Gas (Gas Mixtures) Flow Direction in case T1<T2 

T1 T2 

Starting Corner 

Starting Corner Departing Corner 

Departing Corner 

T1< T2 
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Figure 1-3: Gas (Gas Mixtures) Flow Direction in case T1>T2 

Lengths of starting and departing corners are determined by following equations: 

8571.0)(**0077.0 rls GLx =        Eq. 1.3-19 

and 

75.0)(**00875.0 rld GLx =        Eq. 1.3-20 

where xs and xd are length of starting and departing corners (Figure 1-4). 

 

T1 T2 

Starting Corner 

Starting Corner 

Departing Corner 

Departing Corner 

T1> T2 
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Figure 1-4: Starting and Departing Regions (Warm Side) 

Therefore, in depending of regime, condensation resistance factor in fenestration 
system is: 

a) Convective Part 

i) Conduction Regime 
L

H
PG rrl 500≤  

- starting corner 
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- departing corner 
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ii) Boundary Layer Regime ( rrl PG >
L

H
500 ) 

- starting corner 
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- departing corner 
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where 
L

H
A =  

b) Radiative Part 

3

21
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4 mr Th
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εε

σ
       Eq. 1.3-27 

and finally: 

rcfen hhh +=          Eq. 1.3-28 

II) Gas (Mixture) Properties 

Purpose of gas property calculations is to find coefficients of convective/conductive heat 
transfer in gas filled space between isothermal solid layers. Gas (mixture) properties are 
thermal conductivity, dynamic viscosity, density, specific heat and Prandtl number. 

a) Gas Properties 

i) Density 

The density of fill gases in windows is calculated using the perfect gas law: 

mT

pM

ℜ
=ρ          Eq. 1.3-29 

where ρ is density, p is pressure, M is molecular mass, ℜ  is universal gas constant 

(=8314,51 
Kkmol

J

*
) and Tm is mean gas fill temperature. 

ii) ii) Specific heat capacity (Cp), dynamic viscosity (µ) and thermal conductivity (k) 

The specific heat capacity, Cp, and the transport properties µ and k are evaluated using 
linear functions of temperature. For example, the viscosity can be expressed as: 

mbTa +=µ          Eq. 1.3-30 
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Values of a and b coefficients appropriate for calculating Cp, µ and k for a variety of fill 
gases are listed in ISO15099 Standard (Annex B). 

b) Gas Mixtures 

The density, conductivity, viscosity and specific heat of gas mixtures can be calculated 
as a function of corresponding properties of individual constituents. 

i) Molecular mass 

∑
=

=
n

i

iimix MxM
1

        Eq. 1.3-31 

where xi is mole fraction of the ith gas component in a mixture of n gases. 

ii) Density 

m

mix

T

pM

ℜ
=ρ          Eq. 1.3-32 

iii) Specific Heat 

mix

pmix

pmix
M

C
C =          Eq. 1.3-33 

where: 

∑
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ipipmix CxC
1

,         Eq. 1.3-34 

and molar specific heat of the ith gas is: 

iipip MCC ,, =          Eq. 1.3-35 

iv) Viscosity 
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v) Thermal conductivity 

,,,

mixmixmix kkk +=         Eq. 1.3-38 

where ,
k  is the monatomic thermal conductivity and ,,

k  is included to account for 
additional energy moved by the diffusional transport of internal energy in polyatomic 
gases. 
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and, 
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where, the previous expression for ji ,φ  can also be written as 
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1.3.3.5. Radiation Enclosure Boundary Condition 

Radiant energy exchange between neighboring surfaces of region or between a region 
and its surroundings can produce large effects in the overall heat transfer problem. 
Thought the radiation effects generally enter the heat transfer problem only thought the 
boundary conditions, the coupling is especially strong due to the nonlinear dependence 
of the radiation on the surface temperature. 

Enclosure or surface-to-surface radiation is limited to diffuse gray, opaque, surfaces. 
This assumption implies that all energy emitted or reflected from a surface is diffuse. 
Further, surface emissivity ε, absorbtivity α, and reflectivity ρ are independent of 
wavelength and direction so that: 

)(1)()( TTT ραε −==         Eq. 1.3-43 



CONRAD 5 and VIEWER 5 Documentation Page 15  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

Each individual area or surface that is considered in the radiation process must be at a 
uniform temperature; emitted and reflected energy are uniform over each such surface. 
Heat flux through ith enclosure (qri) surface is given by following equation: 

iiiiri HTq ασε −= 4
        Eq. 1.3-44 

where εi emissivity of ith surface, Ti is temperature of ith surface, αi is absorbtivity of ith 
surface, σ is Stefan-Boltzmann constant and Hi is irradiation of the surface, and for ith 
surface it is equal to: 

)(
1

1 4

iii

i

i TBH σε
ε

−
−

=        Eq. 1.3-45 

where Bi is radiosity of the surface “i” and it is equal: 

∑
=

−+=
n

j

jijiiii BFTB
1

4 )1( εσε        Eq. 1.3-46 

where Fij designates view factor between ith and jth surface. Equation (Eq. 1.3-46) 
represents a system of n linear algebraic equations which is solved for Bi. 

1.3.3.6. View Factors 

The view factor is defined as the fraction of energy leaving a surface that arrives at a 
second surface. For surfaces with finite areas, the view factors are defined by 

∫ ∫=−

k jA A

jk

jk

k

jk dAdA
SA

F
2

coscos1

π

θθ
      Eq. 1.3-47 

where S is distance from a point on surface jA  to a point on surface kA . The angles jθ  

and kθ  are measured between the line S and the normal to the surface as shown in 

Figure 1-5. 
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Figure 1-5: Nomenclature for enclosure radiation 

From equation (Eq. 1.3-47), following equation is obtained: 

kjjjkk FAFA −− =         Eq. 1.3-48 

There are several ways to calculate view factors. One of them is “cross-string” rule 
which is illustrated in Figure 1-6 

 

Figure 1-6: Cross-string rule 
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and given by following equation: 

i

ij
L

rrrr
F

2

)( 22112112 +−+
=        Eq. 1.3-49 

When partial, or third shadowing exist, the two radiating surfaces are subdivided into n 
finite subsurfaces and contribution to the summation in equation 

∑∑
= =

=
n

k

n

l

klij FF
1 1

         Eq. 1.3-50 

of those subsurfaces in which ray klr  intersects a shadowing surface is excluded (Figure 

1-7). 

k=1
k=2

k=n

l=1 l=2

l=n

Li

Lj  

Figure 1-7: Third Surface Shadowing 

2. Basic Concepts of the Finite-Element Method 

Regardless of the physical nature of the problem, a standard finite-element method 
primarily involves the following steps: 

1. Definition of the Problem and its Domain 

2. Discretization of the Domain 

3. Identification of State Variable(s) 

4. Formulation of the Problem 

5. Establishing Coordinate Systems 

6. Constructing Approximate Functions for the Elements 

7. Obtain Element Matrices and Equations 

Blocking Surface 
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8. Coordinate Transformations 

9. Assembly of Element Equations 

10. Introduction of Boundary Conditions 

11. Solution of the Final Set of Simultaneous Equations 

12. Interpretation of the results 

2.1. Definition of the Problem and its Domain 

In finite element methods, there are primarily three sources of approximation. The first 
one is the definition of the domain (physically and geometrically); the other two are the 
discretization and solution algorithms. The approximation used in defining the physical 
characteristics of different regions. In case of heat transfer through material domain, 
governing equations are defined in previous chapter. 

2.2. Discretization of the Domain 

Since the problem is usually defined over a continuous domain, the governing 
equations, with the exception of essential boundary conditions, are valid for entirety of, 
as well as for any portion of, that domain. This allows idealization of the domain in the 
form of interconnected finite-sized domains (elements) of different size and shape. 

In finite-element idealization of the domain, we shall, in general, make reference to the 

following elements: finite element eΩ  and master element mΩ
~

. 

Finite elements are those which, when put together, result in discrete version of the 
actual continuous domain. Their geometric approximations are controlled by the number 
of nodes utilized at the exterior of the elements to define their shape. The physical 
approximations are controlled by the total number of nodes utilized in defining the trial 
functions (shape functions) for state variable. 

For a moment let us assume that it is possible to systematically generate the 

approximation temperature field function for the element eΩ : 

∑
=

=≈
n

j

e

j

e

j

e
yxTyxTyxT

1

),(),(),( ψ       Eq. 2.2-1 

where ),( yxT e  represents an approximation of ),( yxT  over the element eΩ , e

jT  denote 

the values of function ),( yxT e  at selected number of points, called element nodes, in 

the element eΩ , and ),( yx
e

jψ  are the approximation functions associated with the 

element. 

Master elements are those which are used in place of finite elements in order to 
facilitate computations in the element domain. Figure 2-1 illustrates an actual finite 

element eΩ  and corresponding master element mΩ
~

 with associated coordinate axes. 
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34

 

Figure 2-1: Demonstration of Coordinate for a Rectangular Finite Element 

In general, the master elements are straight lines, right triangles or prisms, squares, and 
cubes. They are defined in reference to normalized coordinate axes (ξ, η, ζ). The actual 
elements can be of any shape and size. 

2.3. Identification of State Variables 

Until this step, no reference has been made to the physical nature of the problem. 
Whether it is a heat-transfer problem, fluid or solid-mechanics problem, etc., comes into 
the picture at this stage. The mathematical description of steady-state physical 
phenomena, for instance, leads to an elliptic boundary-value problem in which the 
formula contains the state variable and the flux. These variables are related to each 
other by a constitutive equation representing a mathematical expression of a particular 
physical law. 

For heat transfer presented in previous chapter (and in Conrad) state variables are 

temperatures in element nodes ( e

jT ) or temperature distribution T(x, y). 

2.4. Formulation of the Problem 

Vary often a physical problem is formulated either via a set of differential equations: 

fuL =          Eq. 2.4-1 

with boundary conditions or by an integral equation: 

∫ ∫
Ω Γ

Γ+Ω= duzyxgduzyxG ),,,(),,,(π      Eq. 2.4-2 

where u present state variable(s). 

η 

ξ 

1−T  

T  

eΩ  

mΩ
~
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For heat transfer governing equation (Eq. 1.2-1): 

Q
y

T
k

yx

T
k

x
=

∂

∂

∂

∂
+

∂

∂

∂

∂
− )]()([ 2211       Eq. 2.4-3 

The weak form of differential equation is weighted-integral statement that is equivalent 
to the governing differential equation as well as associated boundary conditions: 

dxdyyxQ
y

T
k

yx

T
k

x
e

)],()()([0 2211 −
∂

∂

∂

∂
−

∂

∂

∂

∂
−= ∫

Ω

ω     Eq. 2.4-4 

The expression in square brackets of the above equation represents a residual of the 
approximation of differential equation and it is called weighted-residual statement of 
equation (Eq. 1.2-1). 

Note the following identities for any differentiable functions ),( yxω , ),(1 yxF , and 

),(2 yxF : 

x

F
F

x
F

x ∂

∂
+

∂

∂
=

∂

∂ 1
11)( ω

ω
ω   or )( 11

1 F
x

F
xx

F
ω

ω
ω

∂

∂
−

∂

∂
=

∂

∂
−   Eq. 2.4-5 

y

F
F

y
F

y ∂

∂
+

∂

∂
=

∂

∂ 2
22 )( ω

ω
ω   or )( 22

2 F
y

F
yy

F
ω

ω
ω

∂

∂
−

∂

∂
=

∂

∂
−   Eq. 2.4-6 

and gradient (divergent) theorem: 

∫ ∫
Ω Γ

=
∂

∂

e e

dsnFdxdyF
x

x)()( 11 ωω       Eq. 2.4-7 

∫ ∫
Ω Γ

=
∂

∂

e e

dsnFdxdyF
y

y)()( 22 ωω       Eq. 2.4-8 

where xn  and yn  are the components of unit normal vector. Using equations (Eq. 

2.4-5),(Eq. 2.4-6), (Eq. 2.4-7), (Eq. 2.4-8) and (Eq. 2.4-4) with: 

x

T
kF

∂

∂
= 111  and 

y

T
kF

∂

∂
= 222       Eq. 2.4-9 

we obtain 

dsn
y

T
kn

x

T
kdxdyQ

y

T
k

yx

T
k

x
yx

ee

)()(0 22112211
∂

∂
+

∂

∂
−−

∂

∂

∂

∂
+

∂

∂

∂

∂
= ∫∫

ΓΩ

ωω
ωω

  Eq. 2.4-10 

2.5. Establishing Coordinate Systems 

There are primarily two reasons for choosing special coordinate axes for elements in 
addition to the global axes for entire system. The first is case of constructing the trial 
functions for the elements and the second is ease integration over the elements. 
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Once the coordinate axes are established, the element equations are ordinarily 

computed first in master element mΩ
~

. They are then transformed into eΩ  and finally into 

the global system for assembly. 

2.6. Constructing Approximate Functions for the Elements 

Once the state variable(s) and the local coordinate system have been chosen, the 
functions can be approximated in numerous ways. The reader is reminded that there 
are two entities that need to be approximated. The first is physical (the state variable) 
and the second is geometrical (the shape of element). The analyst must decide whether 
to approximate physics and geometry equally or give preference to one or the other in 
various regions of the domain. This leads to the three different categories of elements 
with m and n representing the degree of approximation for element shape and state 
variable, respectively: 

Subparametric (m<n) 

Isoparametric (m=n) 

Superparametric (m>n) 

2.7. Linear Elements 

2.7.1.1. Shape Functions for Master Line 

Master line element is shown in Figure 2-2: 

1

-1
1

2

 

Figure 2-2: Master Linear Line Element 

and shape functions are: 









+

−
=









ξ

ξ

ψ

ψ

1

1

2

1
~

~

2

1

e

e

        Eq. 2.7-1 

ξ 
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2.7.1.2. Shape functions for master rectangular element 

Master rectangular element is shown in Figure 2-3: 

1

1-1

-11 2

34

 

Figure 2-3: Master Linear Rectangular Element 

and shape functions for this element are: 










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


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
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
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
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)1)(1(

4
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~
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~
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4

3
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1

ηξ

ηξ

ηξ

ηξ

ψ

ψ

ψ

ψ

e

e

e

e

       Eq. 2.7-2 

2.7.1.3. Shape Functions for Triangular element 

The linear interpolation functions in global coordinate system for the three-node  

 

ξ 

η 
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1
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Figure 2-4 : The Linear Triangular Element in Global Coordinates 

triangle (see Figure 2-4 ) are (see [3]): 

3,2,1)(
2

1
==++= iLyx

A
i

e

i

e

i

e

i

e

e

i γβαψ      Eq. 2.7-3 

where eA  is the area of the triangle, and e

i

e

i βα , and e

iγ are geometric constants 

known in terms of the nodal coordinates ( ii yx , ): 

)( kj

e

i

kj

e

i

jkkj

e

i

xx

yy

yxyx

−−=

−=

−=

γ

β

α

        Eq. 2.7-4 

Here the subscripts are such that kji ≠≠ , and i, j and k permute in natural order. Eq. 

2.7-3 is used to mapping from global to local coordinate system where iL  presents 

nodal function in local coordinate system. Inverse mapping is presented by following 
equations: 

∑∑
==

==
3

1

3

1

;
i

ii

i

ii LyyLxx        Eq. 2.7-5 

Note also equation for calculating triangle area: 

33

22

11

1

1

1

2

yx

yx

yx

Ae =         Eq. 2.7-6 



CONRAD 5 and VIEWER 5 Documentation Page 24  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

2.7.1.4. Shape functions for master 3D rectangular element 

Master 3D rectangular element is shown in Figure 2-5: 

 

Figure 2-5: Master Linear 3D Rectangular Element 

and shape functions are: 
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      Eq. 2.7-7 

2.8. Quadratic Elements 

2.8.1.1. Shape Functions for Master Line 

Master Quadratic line element is shown in Eq. 2.8-1: 
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Figure 2-6: Master Quadratic Line Element 

and shape functions for line element are: 
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       Eq. 2.8-1 

2.8.1.2. Shape functions for master rectangular element 

Master rectangular element is shown in Figure 2-7: 
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Figure 2-7: Master Rectangular Quadratic Element 

and shape functions are: 





































−−

+−

−+

−−

−+−+−

−+++

−−−+

−−−−−

=





































)1)(1(2

)1)(1(2

)1)(1(2

)1)(1(2

)1)(1)(1(

)1)(1)(1(

)1)(1)(1(

)1)(1)(1(

4

1

~

~

~

~

~

~

~

~

2

2

2

2

8

7

6

5

4

3

2

1

ηξ

ηξ

ηξ

ηξ

ηξηξ

ηξηξ

ηξηξ

ηξηξ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

e

e

e

e

e

e

e

e

     Eq. 2.8-2 

2.8.1.3. Shape functions for master 3D rectangular quadratic 
element 

Master 3D rectangular element is shown in Figure 2-8: 
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Figure 2-8: Master 3D Rectangular Quadratic Element 

and shape functions are: 
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    Eq. 2.8-3 
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2.9. Obtain Element Matrices and Equations 

At this stage assume that the modeling of the problem has been completed. Let the 
approximate function for a steady-state problem be written as: 

ee uzyxNzyxu *),,(
~

),,(~ =        Eq. 2.9-1 

where ),,(
~

zyxN  is referred to as the shape function. It is called shape function because 

it contains not only the approximation made for state variables but also the coordinates 
of the element nodes which define the shape function of the element. The shape 
function can be written as: 

]...[),,(
~

21 nNNNzyxN =       Eq. 2.9-2 

where n represents the number of nodes of the element and Ni is the shape function 
corresponding to node i. Substituting equation (Eq. 2.4-10) into the equation (Eq. 2.9-1) 

written for eΩ , where the first term is often a quadratic form of u and its derivatives, 

yields: 

∫ ∫
Ω Γ

Γ+Ω=
e

pdNudDBuBu
TT

eee

TT

eeπ       Eq. 2.9-3 

Matrix B contains the shape function and its derivatives as well as the constitutive 
relationships of the problem. Matrix D represents the physical parameters of the 
domain, and p represents disturbances at the boundaries. Carrying out the integrations 
(often numerically) results in the following matrix equation: 

0=+ eee puk          Eq. 2.9-4 

2.9.1. Linear Problem 

For heat transfer described in previous chapter weak form of equation (Eq. 2.4-10) 
combined with (Eq. 2.2-1) and without boundary conditions gives: 

dxdyQ
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   Eq. 2.9-5 

This equation must hold for any weight functionω . Since we need n independent 

equations to solve for the n unknowns, eT1 , eT2 , …, e

nT , we choose n independent 

algebraic equations to solve for :ω  e

n

ee ψψψω ,...,, 21= . For each choice of ω  we obtain an 

algebraic relation among ),...,,( 21

e

n

ee
TTT . We label the algebraic equation resulting from 

substitution of e

1ψ  for ω  into equation (Eq. 2.9-5) as the first algebraic equation. The ith 

algebraic equation is obtained by substituting e

iψω =  into equation (Eq. 2.9-5): 
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        Eq. 2.9-6 
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where the coefficients e

ijK  and e

iQ  are defined by 

∫
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     Eq. 2.9-7 

∫
Ω

=
e

dxdyyxQQ
e

i

e

i ),(ψ        Eq. 2.9-8 

In matrix notation, equation (Eq. 2.9-6) takes the form 

{ } { }eee QTK =][         Eq. 2.9-9 

The matrix ][ eK  is called the coefficient matrix, or conductivity matrix. Equation (Eq. 

2.9-9) is solved by }{ eT . 

2.9.2. Nonlinear problem 

For nonlinear problem following equation will be replaced in equation (Eq. 2.4-10): 
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substituting (Eq. 2.9-10) into the (Eq. 2.4-10) without boundary conditions: 
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  Eq. 2.9-11 

where )( TTQ ∆+  must be substituted with following equation: 
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   Eq. 2.9-12 

The ith algebraic equation is obtained by substituting e

iψω =  into equation (Eq. 2.9-11): 
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     Eq. 2.9-13 

where e

ijK  and e

iQ are defined by equations (Eq. 2.9-7) and (Eq. 2.9-8) and: 

∫
Ω

=
e

dxdyyxyxQQ
e

j

e

iij ),(),(,, ψψ       Eq. 2.9-14 

In matrix notation, equation (Eq. 2.9-13) takes the form 

{ } { } }]{[][ , eeeeee TKQTQK −=∆−       Eq. 2.9-15 

The matrix ][ eK  is called the coefficient matrix, or conductivity matrix. Equation (Eq. 

2.9-15) is solved by }{ eT∆ . 
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NOTE: To obtain ),( yx
e

iψ  and ),( yx
e

jψ  in equations (Eq. 2.9-8) and (Eq. 2.9-14) 

substitute equations (Eq. 2.10-1) and transformation to master element is obtained 

For isotropic materials 2211 kk =  and conduction matrix becomes: 

∫
Ω ∂

∂

∂

∂
+

∂

∂

∂

∂
=

e

dxdy
yyxx

kK

e

j
e

i

e

j
e

ie

ij )(
ψψψψ

     Eq. 2.9-16 

2.10. Coordinate Transformations 

Coordinate transformations of physical entities such as vectors and matrices follow well 
defined rules. They are often done in the form of a Jacobian matrix.  

2.10.1. Rectangular Element 

For instance, let us assume that there are two different coordinate systems, for example 
x, y located in the element domain and ξ, η, located in the master element: 

),(

),(
:

ηξ

ηξ

yy

xx
T

=

=
        Eq. 2.10-1 

The transformation between actual element eΩ  and the master element mΩ
~

 [or 

equivalently between (x, y) and ),( ηξ ] is accomplished by a coordinate transformation of 

the form: 

∑
=

=
m

j

e

j

e

jxx
1

),(~ ηξψ , ∑
=

=
m

j

e

j

e

jyy
1

),(~ ηξψ      Eq. 2.10-2 

where e

jψ~  denote the finite element interpolation functions of the master element mΩ
~

. 

An infinitesimal line segment (or area and volume) in one coordinate system can be 
transformed into another by following the usual rules of differentiation: 
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∂

∂
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∂
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∂

∂

∂
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i

e

i

e

i

ψ

ψ

ηη

ξξ

η

ψ
ξ

ψ

*~

~

      Eq. 2.10-3 

 

The matrix on right-hand side of this equation is known as Jacobian. Equation (Eq. 

2.10-3) transforms the line segments in mΩ
~

 into line segments in eΩ . The inverse 

transformation which defines mapping of element eΩ  back into the master element mΩ
~

 

follows a similar rule. This refer to as the inverse transformation 

 



CONRAD 5 and VIEWER 5 Documentation Page 31  

Carli, Inc. is Your Building Energy Systems and Technology Choice 



















∂

∂

∂
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i

e

i
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i

e

i

J
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x
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*1        Eq. 2.10-4 

where 1−
J  is the inverse matrix of the Jacobian: 












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





∂

∂
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−
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∂
−

∂
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ξη

ξη
xx
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J *
det

11
       Eq. 2.10-5 

This implies that condition of 0>J  must be satisfied for every point in both domains. 

For example, consider the element coefficients: 

dxdy
yy

yxk
xx

yxkK

e

j
e

i

e

j
e

ie

ij

e

]),(),([ 2211
∂

∂

∂

∂
+

∂

∂

∂

∂
= ∫

Ω

ψψψψ
   Eq. 2.10-6 

The integrand (i.e., expression in square brackets under the integral) is a function of 
global coordinates x and y. We must rewrite it in terms of ηξ ,  using the transformation 

(Eq. 2.10-4). 

The functions ),( yx
e

iψ  can be expressed in terms of the local coordinatesξ  and η  by 

means equation (Eq. 2.10-4). Hence, by the chain rule of partial differentiation, we have: 
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       Eq. 2.10-7 
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∂
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∂
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e
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e

i

e

i
~

       Eq. 2.10-8 

which gives the relation between the derivatives of e

iψ  with respect to the global and 

local coordinates. Equations (Eq. 2.10-7) and (Eq. 2.10-8) can be expressed in following 
form: 
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~

        Eq. 2.10-9 

where J is Jacobian matrix or inverse transformation: 
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*1        Eq. 2.10-10 

Equations (Eq. 2.10-2)-(Eq. 2.10-10) provide the necessary relations to transform 

integral expressions on any element eΩ  to an associated master element mΩ
~

. Suppose 

that the finite element eΩ  can be generated by master element mΩ
~

. Under the previous 

transformations we can write: 

∫∫
ΩΩ

=
∂

∂

∂

∂
+

∂

∂

∂

∂
=

me

ddFdxdy
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yxk
xx

yxkK ij

e

j
e

i

e

j
e

ie

ij
~

2211 ),(]),(),([ ηξηξ
ψψψψ

 Eq. 2.10-11 

and equation (Eq. 2.9-14) in local coordinate system becomes 

∫∫
ΩΩ

==
me

ddQdxdyyxQQ
e

i

e

i

e

i
~

det**),(~*),( ηξηξψψ     Eq. 2.10-12 

2.10.2. Line Element 

2.10.2.1. Linear Line Element 

For line element consider following equation: 

∑
=

==
m

j

e

j

e

jsyxssT
1

)(~),(: ξψ        Eq. 2.10-13 

where s present line element in global coordinates, e

js  are coordinates of line in global 

coordinates and )(~ ξψ e

j  are functions of master line element (Eq. 2.7-1). Note also that 

for line elements m=2. Substituting equations (Eq. 2.7-1) in (Eq. 2.10-13): 

)(
2

1
)(

2

1
1221 sssss −++= ξ        Eq. 2.10-14 

An infinitesimal line segment in one coordinate system can be transformed into another 
by following the usual rules of differentiation: 

ξdds det*=          Eq. 2.10-15 

and substituting equation (Eq. 2.10-13) into the (Eq. 2.10-15): 

2

12

2

1212 )()(
2

1
)(

2

1
det yyxxss

d

ds
−+−=−==

ξ
    Eq. 2.10-16 

2.10.2.2. Quadratic Line Element 

Same approximation is used for quadratic line segment (see Eq. 2.10-13) just different 
shape functions Eq. 2.8-1 are used, which lead to: 
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)1(*)1(***
2

1
)1(***

2

1 2

321 ξξξξξ −+++−−= ssss    Eq. 2.10-17 

and corresponding determinant is: 

2

321

2

321

2

12

2

12

32112

)2()2()()(
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1

)2()(
2

1
det

yyyxxxyyxx

sssss
d

ds

−++−++−+−=

=−++−==

ξ

ξ
ξ

  Eq. 2.10-18 

2.11. Assembly of Element Equations 

The assembly of element matrix equations )( eee ukp =  is done according to the 

topological configuration of the elements after this equation is transformed into the 
global system. The assembly is done through the nodes as the interfaces which are 
common to the adjacent elements. At these nodes the continuities are established in 
respect to the state variable and possibly in respect to its derivatives. Sometimes this 
assembly is done through certain nodes only, referred to as the primary nodes (e.g. 
corner nodes), instead of to all the nodes at the interfaces. This reduces the overall size 
of the assembled matrix. The nodes that are not used in the assembly, the so-called 
secondary nodes, are used together with the primary nodes to increase the degree of 
approximation at the element level. Assume that the complete element matrix is 
partitioned as follows: 

















=









II

I

IIIIIII

IIIII

II

I

U

U

KK

KK

P

P

,,

,,
       Eq. 2.11-1 

in which subscripts I and II identify the portions of the equations corresponding to 
primary and secondary nodes, respectively. This equation can be brought to the 
following form: 

IIIIIIIIIIIIIIIIIIIIIII UKKKKPKKP ][ ,

1

,,,

1

,,

−− −=−      Eq. 2.11-2 

which, in short, can be written as 

eee UKP =          Eq. 2.11-3 

this is the final equation to be assembled. It contains the unknown value of the function 
at the primary nodes only. To illustrate the assembly, let assume that domain Ω  in 2D 
space consist of three elements (rectangular, triangular and line elements), as shown in 
Figure 2-9: 
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Figure 2-9: Assembly of three elements 

The element submatrices are identified as the dyadic product of element designations 
using primary nodes (i, j, q, r are the numbers assigned to nodes) 
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     Eq. 2.11-4 

which for example shown in Figure 2-9 leads to following element submatrices: 
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     Eq. 2.11-5 
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      Eq. 2.11-6 
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With this designation, the assembled version of the complete matrix of the configuration 
shown in Figure 2-9 will be: 
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 Eq. 2.11-8 

Final results of assembling all these elements are system of linear equation which is 
solved by unknown nodal values (temperatures in Conrad): 

}{}{* PTK =         Eq. 2.11-9 

which is solved by unknown nodal values }{T , or in equation form: 

nnnniinnn

inniiiiii

nnii

nnii

PTKTKTKTK
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=+++++
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.
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.
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2,2,2222121

1,1,1212111

   Eq. 2.11-10 

2.12. Introduction of Boundary Conditions 

At this stage, the essential boundary conditions are introduced. As result of this, the 
complete set of equations will be reduced or condensed to its final form. 

There are several boundary conditions presented in previous chapter. Using weighted-
residual method for boundary conditions, following equation is obtained: 

0])([

)()(

44

44

=Γ−−−

Γ−Γ−+Γ−

∫
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Γ

∞

Γ Γ

∞∞

Γ

r

R qh

rii

qfRhc

dHTT

dqdTTdTTh

ασεω

ωωσεω

    Eq. 2.12-1 

2.12.1. Convection Boundary Condition 

Convection Boundary Condition is presented by first term of equation (Eq. 2.12-1). 
There is also linear and nonlinear type of problems in boundary condition presentation. 

2.12.1.1. Linear Problem 

Using first term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for ith algebraic 

equation )( e

iψω =  convection boundary condition is: 
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∫∫ ∑

∫ ∑∫

Γ

∞

Γ =

Γ =
∞∞

Γ

Γ−Γ=

=Γ−=Γ−

hh

hh

hc

e

i

n

j
h

e

j

e

jc

e

i

n

j
h

e

j

e

jc

e

ihc

dThdTh

dTyxThyxdTTh

~~ 1

1

~
det****)(~~

]*)(~[det***)(~

)),((*),()(
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 Eq. 2.12-2 

where )(~ ξψ e

i  and )(~ ξψ e

j  are line functions for master line element (Eq. 2.7-1), det is 

determinant obtained from equation (Eq. 2.10-16) and hΓ  is segment in master element. 

Equation must hold for any weight functionω . Since we need n independent equations 

to solve for the n unknowns, eT1 , eT2 , …, e

nT , we choose n independent algebraic 

equations to solve for :ω  e

n

ee ψψψω ,...,, 21= . For each choice of ω  we obtain an algebraic 

relation among ),...,,( 21

e

n

ee
TTT . We label the algebraic equation resulting from substitution 

of e

1ψ  for ω  into equation (Eq. 2.12-2) as the first algebraic equation. The ith algebraic 

equation is obtained by substituting e

iψω =  into equation (Eq. 2.12-2): 

0
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e
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e

j

e

ij BTA         Eq. 2.12-3 

where: 

∫
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Γ=
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e
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e
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~

~
det***)(~*)(~ ξψξψ       Eq. 2.12-4 

∫
Γ

∞ Γ=
h

hc

e

i

e

i dThB
~

det****)(~ ξψ       Eq. 2.12-5 

these equations must be assembled into the equation (Eq. 2.11-9) to obtain system of 
linear equation with introduced convection boundary conditions. In matrix notation, 
equation (Eq. 2.12-3) becomes: 

}{}]{[ ijij BTA =         Eq. 2.12-6 

Therefore, equation (Eq. 2.12-6) must be assembled into equation (Eq. 2.11-9). 

2.12.1.2. Nonlinear Problem 

Equation for convection boundary condition for nonlinear problems takes following form: 

0])[(*)(* =Γ−∆+∆+∫
Γ

∞

h

hc dTTTTThω      Eq. 2.12-7 

Convection boundary condition for nonlinear problems uses following approximations: 
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h c
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  Eq. 2.12-8 

and 
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Using these two approximations and e

iψω = , equation (Eq. 2.12-7) becomes: 
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ψψ   Eq. 2.12-10 

where gnT and gnT∆  are temperatures from previous iteration. 

Linear part of equation (Eq. 2.12-10) obtain same result as equations (Eq. 2.12-4), (Eq. 
2.12-5) and (Eq. 2.12-6). Note also that for linear part of equation (Eq. 2.12-7) is not 

used )( gngn TT ∆+  but equation (Eq. 2.12-9) .Nonlinear parts of equation (Eq. 2.12-7) are: 
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Convection boundary condition for nonlinear problem in matrix form: 

}]{[}{}{*]}[][]{[

}]{[}{}]{[}]{[}]{[

jijijijijij

jijijijjijjij

TABTEDC
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⇒−=∆−∆+∆
   Eq. 2.12-14 

2.12.2. Flux Boundary Condition 

Flux Boundary Condition is presented by third term of equation (Eq. 2.12-1). There is 
also linear and nonlinear presentation of this boundary condition. 

2.12.2.1. Linear Problem 

Using third term of equation (Eq. 2.12-1) and equation (Eq. 2.2-1) for ith algebraic 

equation )( e

iψω =  flux boundary condition is: 

∫∫∫
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∫
Γ
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q
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e

ii dqQ
~

~
det***)(~ ξψ        Eq. 2.12-16 

this matrix must be assembled into the (Eq. 2.11-9). 

2.12.2.2. Nonlinear Problem 

Nonlinear part uses following approximations: 



CONRAD 5 and VIEWER 5 Documentation Page 38  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

t

q
TTqTTq

f

ff
∂

∂
∆+=∆+ )()(       Eq. 2.12-17 
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Therefore, flux boundary condition for i-th equation is: 
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or 
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or in matrix from 
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and iQ  is given by equation (Eq. 2.12-16). 

2.12.3. Radiation Boundary Condition 

Radiation (black body) boundary condition is given by second term of equation (Eq. 
2.12-1): 

0)( 44 =Γ−∫
Γ

∞

R

RdTTωσε        Eq. 2.12-23 

Because radiation makes problem nonlinear, this equation will be calculated only for 
nonlinear case. Before transformation equation (Eq. 2.12-23) must be linearized about 
temperature from previous iteration: 

))()(()( 2244

∞∞∞∞ −++≅− TTTTTTTT PREVPREV     Eq. 2.12-24 

where PREVT  is temperature from previous iteration. Substituting equation (Eq. 2.12-24) 

into the (Eq. 2.12-23): 

∫ ∫
Γ Γ

∞∞∞∞ Γ−=Γ−++
R R

RrRPREVPREV dTThdTTTTTT *)(**))()(( 22 ωωσε  Eq. 2.12-25 
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where 

))(( 22

∞∞ ++= TTTTh PREVPREVr σε       Eq. 2.12-26 

is linearized about PREVT . 

Equation (Eq. 2.12-25) is same as equation (Eq. 2.12-2) but only for nonlinear case 
(because radiation makes problem nonlinear). Therefore, element matrices and 
equations are same as for convection boundary condition for nonlinear case: 
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which leads to same matrix equations as convection boundary condition for nonlinear 
case: 
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∫
Γ

∞ Γ=
r

rr

e

i

e

i dThB
~

det****)(~ ξψ       Eq. 2.12-29 
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Or equation (Eq. 2.12-27) in matrix form: 

}]{[}{}{*]}[][]{[

}]{[}{}]{[}]{[}]{[
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−=∆−+⇒

⇒−=∆−∆+∆
   Eq. 2.12-33 

2.12.4. Enclosure Radiation Boundary Condition 

Enclosure radiation (gray body) boundary condition is given by fourth term of equation 
(Eq. 2.12-1): 

∫∫
ΓΓ

Γ−−≅Γ−
rr

riiPREViPREViriiii dHTTTdHT ])*3**4([][ 434 ασεωασεω        Eq. 2.12-34 

where index “i” mean i-th surface in enclosure model and iH  is calculated by equations 

(Eq. 1.3-45) and (Eq. 1.3-46). From equation (Eq. 1.3-46) is obtained following system 
of equations: 
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  Eq. 2.12-35 

where iPREVT  is temperature of i-th surface from previous iteration. Or in matrix notation 

}{**][}{}{}]{[ 414

iPREVijjiPREVjij TAEFBTBAEF σσ −=⇒=   Eq. 2.12-36 

equation (Eq. 2.12-36) gives solution of radiosity matrix }{ jB . For nonlinear iteration 

using for calculation of enclosure radiation boundary condition following matrix equation 
is used: 
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where }{ 1
iiAEF −  represent vector of elements tacked from diagonal of inverse matrix 

][ ijAEF  and }{ 4

jT  is vector of unknown temperatures. Therefore, radiosity for i-th surface 

is: 
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replacing this equation into the equation (Eq. 1.3-45), following equation is obtained: 
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and substituting this into (Eq. 2.12-34): 
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where ii εα =  for gray and isothermal radiating surfaces. After Taylor approximation 

about temperature iPREVT  equation (Eq. 2.12-40) becomes: 
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In order to obtain element equations and matrices, equation (Eq. 2.12-41) is used with 
following approximations: 
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and equations (Eq. 2.12-9) and (Eq. 2.7-1). Consider first term of equation (Eq. 
2.12-41): 
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to obtain element equation, equation (Eq. 2.12-45) is considered in two different forms: 
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or in matrix form: 
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where ignT  and ignT∆  are mean temperature (and temperature difference) on i-th 

segment from previous iteration, and: 
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where }{ e

jT  are matrix of node temperatures for i-th segment from previous iteration. 

Now consider second term of equation (Eq. 2.12-41): 
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or in matrix form 
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2.13. Solution of the Final Set of Simultaneous Equations 

Until this step, we have made no reference to weather the problem is linear or 
nonlinear, or weather it is an eigenvalue problem or not. Regardless of the nature of the 
problem, the finite-element methods eventually yield the solution of a set of 
simultaneous differential equations. The solution procedure for simultaneous equations 
can in general, is categorized into the three parts: (1) direct, (2) iterative, and (3) 
stochastic. 
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2.13.1. Linear Method 

Conrad improves two methods of solution which depends of problem type. For linear 
type of problem Conrad uses direct method which means that solution is obtained after 
solution of global matrices. 

2.13.2. Nonlinear Method 

For nonlinear type of problem Conrad uses iterative method to obtain final solution (this 
mean that solution is obtained after couple of iterations). To obtain achieved 
convergence Conrad uses following equations: 

22

3

2

2

2

1 ...1 nTTTTenorm ++++=       Eq. 2.13-1 

where nTTTT ,...,,, 321  are temperatures at nodes in current iteration which are obtained 

as: 
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i
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i      Eq. 2.13-2 

where )1( −n

iT  is temperature at ith node form previous iteration and )(n

iT∆  is solution from 

current iteration. 

I) Convergence Criteria 

If signed enorm2 as Eq. 2.13-1 from previous iteration, then solution is achieved when: 

tolerance
enorm

enormenorm
edif <

−
=

1

21
1      Eq. 2.13-3 

Eq. 2.13-3 is known as convergence criteria and edif1 is achieved convergence. 

II) Divergence Criteria 

Sign edif2 as achieved convergence in previous iteration. Solution diverged (for fixed 
relax) if following condition is satisfied ten times for fixed value of relax parameter: 

12 edifedif <          Eq. 2.13-4 

2.14. Interpretation of the Results 

The previous step resulted in the approximate values of the state variable at discrete 
points (nodes) of the domain. Normally these values are interpreted and used for 
calculations of other physical entities, such as flux, either thought the domain or in 
certain regions of it. 

This is decision-making step and is probably the most important step in the entire 
process. Two important questions must be answered at this point: How good are the 
results? and What should be done with them? The first requires the estimation of error 
bounds, and the second involves the physical nature of the problem. 
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2.15. Numerical Integration 

Numerical integration plays an important role in finite element methods. For instance, 
evaluation of element matrices requires integration of certain functions over the element 
domains. In order to facilitate these integrations and special coordinate systems are 
normally chosen. 

Integrals defined over a rectangular master element mΩ
~

 can be numerically evaluated 

using the Gauss-Legendre quadrature formulas: 

∫ ∫ ∫ ∑∑
Ω − − = =

≈=
m
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JIJI WWFddFddF

~

1

1

1

1 1 1

),(),(),( ηξηξηξηξηξ    Eq. 2.15-1 

where M and N denote the number of Gauss quadrature points, ),( JI ηξ  denote the 

Gauss points coordinates, and WI and WJ denote the corresponding Gauss weights as 
shown in Table 2.1. 

For two-point formula gauss points are shown in Figure 2-10: 
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34

g2g1

g3g4

 

Figure 2-10: Gauss Points for Two-Point Numerical Integration 

 

Table 2.15-1: Quadrature Weights and Points for Rectangular Elements 

Points iξ  r Weights Wi 

3

1  

3

1  

3

1
−  

3

1
−  

η 

ξ 
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0.0000000000 One-point formula 2.0000000000 

±0.5773502692 Two-point formula 1.0000000000 

0.0000000000 0.8888888889 

±0.7745966692 
Three-point formula 

0.5555555555 

±0.3399810435 0.6521451548 

±0.8611363116 
Four-point formula 

0.3478548451 

0.0000000000 0.5688888889 

±0.5384693101 0.4786286705 

±0.9061798459 

Five-point formula 

0.2369268850 

±0.2386191861 0.4679139346 

±0.6612093865 0.3607615730 

±0.9324695142 

Six-point formula 

0.1713244924 

3. Additional Algorithms and Descriptions 

3.1. Bandwidth Minimization 

A key numerical problem which arises throughout finite-element analysis (whether linear 
or nonlinear, static or dynamic) is that of the solution of large sets of linear algebraic 
equations such as, in matrix form, 

}{}{* bxA =          Eq. 3.1-1 

where the vector }{b  and the square matrix A  are known, and the unknown vector }{x  

is sought. 

In finite element applications, A  contains mostly zeros and efficiency in equation 

solving is obtained by avoiding arithmetic operations (multiplications and additions) on 
matrix terms that are known in advance to be zero. The computer execution time for 
most equation solvers and triangular factorization routines is proportional to the order N 
of the matrix. It is possible to choose an ordering for sparse matrices so that nonzeros 
are located to allow subsequent matrix operations such as equation solving or 
eigenvalue extraction. In general, a banded matrix has all its nonzero entries clustered 
about the main diagonal (Figure 3-1). 

Conrad uses the Gibbs-Poole-Stockmeyer algorithm (see [2]) to determine a nodal 
numbering scheme which results in minimal bandwidth/profile. 
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Figure 3-1: Location of nonzero terms in a stiffness matrix: (a) before and (b) after 
reordering (see [2]).  

Sign transformation from original to reorder numbering system [Figure 3-1 from (a) to 
(b)] as BWM , and inverse transformation or from reorder to original numbering system 

as 1−
BWM . 

3.2. Gravity Arrow Algorithm and Frame Cavity Transformations for 
ISO15099 Calculations 

3.2.1. Introduction 

Gravity Arrow Algorithm is used to determine heat flow direction in frame cavities 
according to gravity arrow. It is needed to perform calculations shown in [1]. Note that in 
[1] frame cavity calculations are in 2D space and in THERM5 frame cavity are 
presented by 3 dimensions (or in 3D space). Therefore, purpose of this algorithm is to 
transform frame cavity from 3D presentation into the 2D presentation according to heat 
flow direction and Gravity Arrow direction. 

3.2.2. Equivalent Gravity Arrow 

Gravity Arrow is vector can point in any direction in 3D space and according to 
algorithm described bellow it will be transformed to Equivalent Gravity Arrow which can 
point only in the ”x”, “y” or “z”-axes direction. 

Gravity Arrow is presented in 3D (Figure 3-2) space by coordinates gx, gy and gz 
respectively. 
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Figure 3-2: Gravity Arrow in 3D Coordinate System 

Therefore, Gravity Arrow can be expressed by following equation: 

zgygxgg zyx ++=         Eq. 3.2-1 

where coordinates zyx ggg ,,  must satisfy following equation: 

1)()()( 222 =++ zyx ggg        Eq. 3.2-2 

In order to determine equivalent Gravity Arrow (this is gravity arrow which pointing in 
one of the axes direction), 3D space is divided into the six equivalent spaces using six 
surfaces which are shown in Figure 3-3, Figure 3-4 and Figure 3-5. 

g  
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Figure 3-3: Surfaces Parallel With z-axis 

 

 

Figure 3-4: Surfaces Parallel With y-axis 
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Figure 3-5: Surfaces Parallel With x-axe 

Surfaces on Figure 2 and Figure 3 make pyramids in direction to the x-axis (Figure 3-6), 
one in positive direction of x-axes (yellow) and the other in negative (blue). 

 

 

Figure 3-6: x-axe Pyramids 

Note that these pyramids have top angle equal with o90  (Figure 3-7 and Figure 3-8). 
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Figure 3-7: Pyramid Angle 

 

 

Figure 3-8: Pyramid Angle 

Therefore, these four surfaces make two pyramids in x-axes direction in order to 
determine any gravity vector which belongs to pyramids space. According to surfaces 
equation (see Figure 3-3, Figure 3-4 and Figure 3-5) gravity arrow belongs to positive x-
axes pyramid (yellow color in Figure 3-6) when following equations are satisfied: 

xzandxzxyxy −><−>< ;;       Eq. 3.2-3 

when replacing gravity arrow orts 

xzxzxyxy ggandgggggg −><−>< ;;      Eq. 3.2-4 

If condition (Eq. 3.2-4) is satisfied, gravity arrow is replaced with it equivalent which 
pointing in positive direction of x-axis and which orts are: 

0;0;1 === zyx ggg        Eq. 3.2-5 
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Same explanation is for negative x-axis pyramid (blue color in Figure 3-6) but for 
different equations. 

To recover all directions in 3D space, there are also pyramids which belongs to “y” and 
“z” axis (Figure 3-9 and Figure 3-10) 

 

 

Figure 3-9: y-axis Pyramids 

 

 

Figure 3-10: z-axis Pyramids 
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3.2.3. Summary of Pyramid Equations 

3.2.3.1. X-Axis 

I) Positive Direction 

zxzxyxyx gggggggg −>>−>> ;;;      Eq. 3.2-6 

II) Negative Direction 

zxzxyxyx gggggggg −<<−<< ;;;      Eq. 3.2-7 

3.2.3.2. Y-Axis 

I) Positive Direction 

zyzyxyxy gggggggg −>>−>> ;;;      Eq. 3.2-8 

II) Negative Direction 

zyzyxyxy gggggggg −<<−<< ;;;      Eq. 3.2-9 

3.2.3.3. Z-Axis 

I) Positive Direction 

yzyzxzxz gggggggg −>>−>> ;;;      Eq. 3.2-10 

II) Negative Direction 

yzyzxzxz gggggggg −<<−<< ;;;      Eq. 3.2-11 

3.2.4. Frame Cavity Presentation and Heat Flow Direction 

Frame Cavity in THERM5 can be drawn only in 2D and third dimension is given by 
variable “jambheight” (see  

Figure 3-16). Irregularly shaped Frame Cavities are rectangularized according to 
procedure given in [1]. Rectangularized Frame Cavity in THERM5 is presented by 
Figure 3-11: 
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Figure 3-11: Rectangularized Frame Cavity (needed for calculation) 

Heat Flow direction is calculated in Conrad and according to screen, heat flow direction 
can be “RIGHT” (Figure 3-12), “LEFT” (Figure 3-13), “VERTICAL DOWN” (Figure 3-14) 
and “VERTICAL UP” (Figure 3-15) which depends of temperatures on rectangularized 
frame cavity sides. 

 

Figure 3-12: RIGHT Heat Flow Direction (According to Screen) 

 

Figure 3-13: LEFT Heat Flow Direction (According to Screen) 
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Figure 3-14: VERTICAL DOWN Heat Flow Direction (According to screen) 

 

Figure 3-15: VERTICAL UP Heat Flow Direction (According to Screen) 

Frame cavity in THERM5 is presented by three dimensions ( 

Figure 3-16) but only two dimensions can be seen. Third dimension is presented by 
value “jambheight”. 

 

 

Figure 3-16: Frame Cavity Presentation in THERM 

According to gravity arrow direction (in 3D space) and screen heat flow direction, heat 
flow direction in 3D (or according to gravity arrow) can be: “HORIZONTAL”, “VERTICAL 
UP”, VERTICAL DOWN”, “JAMB HORIZONTAL” and “JAMB VERTICAL”. 
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Figure 3-17: HORIZONTAL Heat Flow Direction (According to Gravity Arrow) 

 

 

Figure 3-18: VERTICAL UP Heat Flow Direction (According to Gravity Arrow) 

 

Figure 3-19: VERTICAL DOWN Heat Flow Direction (According to Gravity Arrow) 

 

 

Figure 3-20: JAMB HORIZONTAL Heat Flow Direction (According to Gravity Arrow) 
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Figure 3-21: JAMB VERTICAL Heat Flow Direction (According to Gravity Arrow) 

Important part of this algorithm is Frame Cavity transformation form 3D (or therm) 
presentation to 2D (needed for calculation) presentation. This transformation is 
presented by Figure 3-11 and  

Figure 3-16. 
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Figure 3-22: Gravity Arrow Algorithm 
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Figure 3-23: Temperatures on Rectangularized Frame Cavity 

Depends of temperatures on equivalent frame cavity sides (Figure 2-1), screen heat 
flow direction is determined according to according to algorithm shown on  
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Figure 3-24: Screen Heat Flow Calculation Algorithm 
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BLOCK2

zxzxyxyx gggggggg −<<−<< ;;;

zyzyxyxy gggggggg −<<−<< ;;;

yzyzxzxz gggggggg −>>−>> ;;;

yzyzxzxz gggggggg −<<−<< ;;;

zyzyxyxy gggggggg −>>−>> ;;;

0,0,1 ===
zyx

ggg

Error in Algorithm

zxzxyxyx gggggggg −>>−>> ;;;

0,0,1 ==−= zyx ggg

0,1,0 ===
zyx

ggg

0,1,0 =−== zyx ggg

1,0,0 === zyx ggg

1,0,0 −=== zyx ggg

exit
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Figure 3-25: Equivalent Gravity Arrow Calculation Algorithm 
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zxzxyxyx gggggggg −<<−<< ;;;

zyzyxyxy gggggggg −<<−<< ;;;

yzyzxzxz gggggggg −>>−>> ;;;

yzyzxzxz gggggggg −<<−<< ;;;

zyzyxyxy gggggggg −>>−>> ;;;

Error in Algorithm

zxzxyxyx gggggggg −>>−>> ;;;
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Figure 3-26: Gravity Heat Flow Algorithm 
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Figure 3-27: Positive x-axe Direction 
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Figure 3-28: Negative x-axe Direction 
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Figure 3-29: Positive y-axe Direction 
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Figure 3-30: Negative y-axe Direction 
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Figure 3-31: Positive z-axe Direction 
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Figure 3-32: Negative z-axe Direction 
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BLOCK4
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Figure 3-33: Transformation from 3D (THERM presentation) to 2D Frame Cavity 

3.3. “Grid” Algorithm – Used for speed up Viewer 

“Grid” algorithm is used to speed up view factor calculation. Main factor which has 
influence on program speed are calculation if blocking surfaces between two segments 
exist. Example of enclosure radiation segment which are segments used in view factor 
calculation are shown in Figure 3-34. View factor matrix can be very large and this 
depends of number of radiation enclosure segments. If you note that number of 
radiation enclosure segments is “n” than number of view factors are “n x n” and this can 
be large number. To remained that view factor is calculated by Eq. 1.3-49 and if ray 
intersection by third surface exist than by Eq. 1.3-50 (see Figure 1-7 also).   
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Figure 3-34: Example of Radiation Enclosure Segments (used in View Factor 
Calculations) 

Therefore, in view factor calculation third surface intersection must be considered and 
for this purpose blocking surface are used. Any surface which can blocked ray of any 
other two segments must be signed as blocking surface and it is not always easy to 
determine in advance which surfaces are blocking. Sign number of blocking surfaces in 
one problem as “m”, and note that in most of cases m≈n. In calculation of view factor of 
any two surface program must pass through all surfaces which are signed as blocking 
to check if intersection exist (or simple – check if surface blocking ray between surfaces 
for which is currently calculate view factor). This leads that number of operations in view 

factor calculation is approximately equal 3
n (“n x n” view factors and “n” to determine 

number of blocking surfaces). 

“Grid” Algorithm steps: 

To speed up calculations algorithm set grid net (see Figure 3-35). Purpose of this net is 
that algorithm grouping blocking surfaces into the grid cells. Each cell contains blocking 
surfaces numbers that belong to this surface. 



CONRAD 5 and VIEWER 5 Documentation Page 68  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

In view factor calculation between two segments algorithm determine grid cells that ray 
between two surfaces passes through. 

Examine if there is surface that intercept ray. In this calculations algorithm uses only 
blocking surfaces which belong to cells that ray passes through (this rapidly decrease 
number of blocking surfaces which program will check). 

 

 

Figure 3-35: Grid Net 

For example in Figure 3-36 is shown example where is no interception between two 
surfaces, but without using algorithm program will pass through all blocking surfaces to 
check if interception exists. 
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Figure 3-36: Ray Between Two Surfaces 

 

 

Figure 3-37: Ray in Grid Net 

 

Same ray in grid net (see Figure 3-37) passes only through cells numbered 22, 27 and 
28 which cause that algorithm will examine blocking surfaces only in these three cells 
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and this mean much less number of blocking surfaces (cell 28 is empty) to 
consideration. 

There is no equation from which can be obtained grid net density (number of grid cells) 
because this also depends of problem geometry, number of segments and number of 
blocking surfaces. Note also that too much cells can decrease program speed and have 
very bad effects on program speed. For details see chapter 6.3. 

3.4. Shadowing 

Self shadowing and third surface shadowing are important rules in view factor 
calculations.  

3.4.1. Calculating Surface Normal 

Surface is presented by line between two points which are presented by coordinates 

),( 11 yx  - first point and ),( 22 yx  - second point. Surface normal is calculated by following 

equations: 

2

21

2

21 )()( yyxxl −+−=        Eq. 3.4-1 

l

yy
xn

12 −
=          Eq. 3.4-2 

l

xx
yn

12 −
−=          Eq. 3.4-3 

where nx  and ny  presents surface normal coordinates. 

3.4.2. Self Shadowing 

To check if segment can “see” any point (in 2D geometry) simple equations are applied. 
Note that line segment is presented by normal which point into the view surface 
direction (Figure 3-38). 
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Figure 3-38: Surface Normal 

Surface normal is moved in zero point of coordinate system and coordinate of normal 
must satisfy following equation: 

122 =+ nn yx          Eq. 3.4-4 

To calculate if surface can “see” point in 2D space, point also must be presented by 
vector (Figure 3-39). 
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Figure 3-39: Point vector 

To check if point belongs to view area (or can surface “see” the point) of surface 
following equations must be satisfied: 

 

Figure 3-40: Angles Between Vectors 

 

Sign coordinates of surface normal as nn yandx  and coordinates of point vector as 

pp yandx . 

Check if point belongs to view area: 

oo 9090 <−<− αβ         Eq. 3.4-5 

which is equal with 

0)cos( >−αβ         Eq. 3.4-6 

after trigonometric transformation  
 
 
 
 Eq. 3.4-6 

0)sin(*)sin()cos(*)cos( >+ βαβα  

 
 
 
 
 Eq. 3.4-7 

from Figure 3-40 following equations are obtained: 
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        Eq. 3.4-8 

note that equation 0)( 22 >+ yx is always satisfied. After substituting Eq. 3.4-8 into the  

 
 
 
 
 Eq. 3.4-7: 

0** >+ pnpn yyxx         Eq. 3.4-9 

Self shadowing algorithm is shown on Figure 3-41: 
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Figure 3-41: Self Shadowing Algorithm 

There is three case of self shadowing which can be obtained: 

• No self shadowing (k=4) 

• Partial self shadowing (0<k<4) 

• Total self shadowing (k=0) 
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Figure 3-42: No Shadowing 

 

 

Figure 3-43: Partial Self Shadowing 
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Figure 3-44: Total Self Shadowing 

3.4.3. Third Surface Shadowing 

Third surface shadowing is occurring when there is any third surface which blockade ray 
between surfaces. As in previous chapter, there are three possibilities for third surface 
shadowing: 

• No third surface shadowing (Figure 3-42) 

• Partial third surface shadowing 

• Total third surface shadowing 

To examine if intersection exist in determined area, algorithm uses line equations 
through two points (Figure 3-45).  
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Figure 3-45: Intersection Between Two Points 

Line equations between two points for these two lines are: 
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34
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1

21
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−
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−
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       Eq. 3.4-10 

Calculating intersection point from Eq. 3.4-10, following result is obtained: 

baba
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baba

bcbc
x

i
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−
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        Eq. 3.4-11 

where ix  and iy  denotes coordinates of intersection point, and 

432

211

342

121

34432

12211

**

**

xxb

xxb

yya

yya

yxyxc

yxyxc

−=

−=

−=

−=

−=

−=

        Eq. 3.4-12 

To determine if intersection point is on line between end points (intersection exist) or 
intersection point is out of line (no exist) see Figure 3-46 and Figure 3-47. 
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Figure 3-46: Intersection Exist 
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Figure 3-47: No Intersection 

 

Whether intersection exist or not following equation are always satisfied: 
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        Eq. 3.4-13 

in case when intersection exist 

21 rrrtot +=          Eq. 3.4-14 

and if intersection not exist 

21 rrrtot +<          Eq. 3.4-15 

Therefore, intersection between two lines exists only if Eq. 3.4-14 is satisfied for both 
line segments. 
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3.5. Frame Cavity Rectangularization 

3.5.1. Rectangularization Algorithm 

For unventilated irregularly shaped frame cavity, the geometry shall be converted into 
equivalent rectangular cavity according to ISO/DIS 10077-2. For these cavities, the 
following procedure shall be used to determine which surfaces belong to vertical and 
horizontal surfaces of equivalent rectangular cavity: 

• any surface whose normal is between 315 and 45 degrees is left vertical surface 

• any surface whose normal is between 45 and 135 degrees is bottom horizontal surface 

• any surface whose normal is between 135 and 225 degrees is right vertical surface 

• any surface whose normal is between 225 and 315 degrees is top horizontal surface 

Assume that frame cavity is divided into the finite elements which number of edge sides 
whose normal is between 315 and 45 degrees is equal to “n”. Rectangularization of left 
vertical surface is calculated using following equation: 

• Temperature 

hTotalLengt

templ

LeftTemp

n

i

ii∑
== 1

*

       Eq. 3.5-1 

where il  is line segment length, itemp  is mean segment temperature (mean 

temperature is calculate using mean temperature of segment nodes), hTotalLengt  is 

sum of all segment length which surface normal is between 315 and 45 degrees and “n” 
is number of segments which surface normal is between 315 and 45 degrees. 

• Emissivity 

hTotalLengt

emisl

LeftEmis

n

i

ii∑
== 1

*

       Eq. 3.5-2 

where il  is line segment length, iemis  is segment emissivity, hTotalLengt  is sum of all 

segment length which surface normal is between 315 and 45 degrees and “n” is number 
of segments which surface normal is between 315 and 45 degrees. 

Calculation of other three (top, bottom and right) rectangularized sides are calculated 
using same equations (Eq. 3.5-1 and Eq. 3.5-2). 

3.5.2. Rectangularization of Non Existing Sides Algorithm 

“Non Existing Side” occurs when number of segment which belongs to one of sides (left, 
right, top and bottom) is equal to zero. It means that equations Eq. 3.5-1 and Eq. 3.5-2 
can’t be applied because hTotalLengt  is equal to zero. 

Suppose that left side is “Non Existing” in rectangularized frame cavity (see Figure 
3-48). 



CONRAD 5 and VIEWER 5 Documentation Page 81  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

 

Figure 3-48: “Non Existing” Left Side of Rectangularized Frame Cavity 

)min( coordinatexnodewiththetamperatureLeftSideTe =    Eq. 3.5-3 

2/)( EmissivityBottomSidessivityTopSideEmiissivityLeftSideEm +=  Eq. 3.5-4 

Note that LeftSideTemperature is equal with temperature at node with minimal x-
coordinate. Similar equations are applied on other three sides: 

• Top 

)max( coordinateynodewiththetaperatureTopSideTem =    Eq. 3.5-5 

2/)( missivityRightSideEissivityLeftSideEmssivityTopSideEmi +=  Eq. 3.5-6 

• Bottom 

)min( coordinateynodewiththetaeTemperaturBottomSide =   Eq. 3.5-7 

2/)( missivityRightSideEissivityLeftSideEmEmissivityBottomSide +=  Eq. 3.5-8 

• Right 

)max( coordinatexnodewiththetaemperatureRightSideT =    Eq. 3.5-9 

2/)( EmissivityBottomSidessivityTopSideEmimissivityRightSideE +=  Eq. 3.5-10 

4. Description of Conrad Subroutines 

This chapter describes Conrad routines which use theoretical background described in 
previous chapters. 

 

4.1. Routine CONRAD 

Routine CONRAD is main routine which contains all calculations described in precious 
chapters. Routine CONRAD is used by THERM5 and it is implemented as dynamic link 
library (or dll) routine. 

List of arguments: 

in –  (input file) Input file name (*.con file) 

out –  (output file) Output file name (*.o file) 
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gaus – (output file) Output file name for flux results (*.sol file) 

view –  (output file) Output file from Viewer – view factors (*.view file) 

nerr –  (output value) Error flag 

List of commons: 

common /blk03/ 

nummat -  Number of materials 

numnp -  Number of node points 

numel - Number of elements 

igeom - type of geometry 

 eq.1: axisymetric 

 eq.2: 2D planar 

iband - bandwidth minimization 

 eq.0: no minimization 

 eq.1: minimization 

 eq.2: minimization – nodal destination 

nsl - number of slide lines (future implement) 

nslvt - total number of slave nodes (future implement) 

nmsrt - total number of master nodes (future implement) 

numels - number of slide line elements??? (future implement) 

nprof - matrix profile for actol solver 

sigma -  Stefan-Boltzmann constant [
42

86697.5
Km

W
e −  ] 

irtyp - equal 4 (always) 

itmax - Maximal number of Radiosity iterations – nonlinear iterations (100) 

tolb -  Radiosity convergence tolerance (def=1e-4) 

numelt - ? 

igenm - Thermal generation rate multiplier flag 

 eq.0: no thermal generation 

 eq.1: thermal generation 

igene - ? 

isotr - flag for material type 

 eq.0: isotropic 

 eq.1: orthotropic 
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mcut - ? 

isoln - equation solver for [A]{x}={b} (always 0) 

 eq.0: fissle direct solver 

 eq.1: actol direct solver 

 eq.2: nonsymmetric solver 

common /blk04/ 

nit - Number of nodes with temperature initial condition??? 

ntbc - Number of nodes with temperature boundary condition 

nfbc - Number of flux boundary condition segments 

ncbc - Number of convection boundary condition segments 

nrbc -  Number of radiation (Black Body) boundary condition segments 

nebc -  Number of enclosure radiation segments 

necurv -  Number of emissivity vs wavelength curves 

nfelm -  Number of fluid flow elements 

common /blk06/ 

nonl - Type of problem [NOTE: Radiation makes problem nonlinear] 

 eq.0: linear 

 eq.1: nonlinear 

maxrf - Maximum number of conductivity matrix reformations 

maxit - Maximum number of equilibrium iterations per reformation 

tol - Convergence tolerance (def = 1e-6) 

relax -  Divergence control parameter 10 ≤< p  (def = 1) 

step -  Number of steps to decrement divergence control parameter 

nsteps -  Step value for which is Divergence control parameter is decremented 

common /blk08/ 

title(1) - Project name 

head - name, date and version information 

longo - debug information flag 

 eq.0: no debug information 

 eq.1: debug information 

iconv - type of temperature scale 

 eq.1: Celsius (tscale=’c’ or ‘C’) 
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 eq.2: Fahrenheit (tscale=’f’ or ‘F’) 

 eq.-1: Kelvin (tscale=’k’ or ‘K’) 

 eq.-2: Rankin (tscale=’r’ or ‘R’) 

common /blk11/ 

h - Values of master element functions in gauss points for numerical 
integration 

dhdz - Values of first derivative of master element functions by x coordinate in 
Gauss points for numerical integration 

dhde - Values of first derivative of master element functions by y coordinate in 
Gauss points for numerical integration 

common /blk12/ 

mpcurv - Number of data points per curve 

common /blk18/ 

pi - Value of pi number (eq. 3.14159265358979323846) 

twopi - Value of two pi (eq. 2*pi) 

common /coniob/ 

iobuf - Buffer to store information 

common /iofilx/ 

fnames - Array to store names of input-output files 

common /errchk/ 

nperr - Error counter 

common /iter/ 

iter - Flag to show if new iteration is needed because frame cavity conditions 
are not satisfied 

 eq.0: new iteration is not needed 

 eq.1: need new iteration 

common /blk11/ 

gcon - Array of constants for gas conductivity calculation 

gvis - Array of constants for gas dynamic viscosity calculation 

gcp - Array of constants for gas specific heat calculation 

wght - Vector of Molecular weights for gasses 

Program flow for Conrad routine is shown in Figure 4-1. 
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Figure 4-1: Program Flow for CONRAD Routine 

4.2. Routine SOLVE 

Routine SOLVE is used to perform calculations (see Figure 4-1). 

List of arguments: 

lcount –  (input/output value) Current line number in input file(*.con) 

 

start 

Open files to read information and store results. Reading gas 

properties from table 

Call routines to reading data from input file. (Routine INPUT) 

Call routines to perform calculations and to store results into the 

output files (Routine SOLVE). 

Close all files and delete all pointers. 

exit 
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Figure 4-2: Program Flow for Routine SOLVE 

4.3. Routine STEADY 

Routine STEADY is used to calculate nodal temperatures according to element 
matrices and boundary conditions for linear and nonlinear problems. In this routine are 
called all routines which introduce element matrices and conditions at the defined 
boundaries. Routine STEADY also implement iterations for frame cavities (for both – 
linear and nonlinear problems) and automatic decrement of “relax” parameter. 

List of arguments: 

There is no list of arguments for this routine 

Program flow diagram is shown in Figure 4-3, Figure 4-4 and Figure 4-5. 

start 

Input initial conditions for frame cavities 

Bandwidth minimization? 

Bandwidth minimization – Nodal reorder 

YES 

NO 

Make some matrix profile using nodal 

numbers. (Purpose of this is still unknown) 

Call routine for calculate steady state 

solution (Routine STEADY) 

exit 
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Figure 4-3: Program Flow for Routine Steady 
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boundary conditions to global matrix.  

Solve global matrix equation 
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Is nonlinear problem? 
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NO 

exit 
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1 

2 

1 3 

2 
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Figure 4-4: Program Flow for SUBBLOCK1 (Routine STEADY) 

 

SUBBLOCK1 

enter 

Is relax parameter 

achieved minimum? 

Decrease relax parameter 

divergence = 0 

NO 

1 

2 

YES 
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Figure 4-5: Program Flow for SUBBLOCK2 (Routine STEADY) 

 

4.4. Routine BASIS 

Routine BASIS calculates shape functions and derivatives for master rectangular 
element (Eq. 2.7-2) in Gauss point integration (Table 2.15-1). 

List of arguments: 

There is no list of arguments for this routine 

Results are stored in following arrays: 

h(i,j), dhdz (i,j) and dhde(i,j) (common block) where 

i-number of Gauss point integration (for example i=1 mean first gauss point, i=2 means 
second gauss point etc.) 

Is achieved convergence less 

than in previous iteration? 

enter 

SUBBLOCK2 

divergence = divergence + 1 

NO 

Is divergence ≥ 10 

1 
YES 

NO 

Is relax parameter 

achieved minimum? 

YES 

2 
YES 

Decrease relax parameter 

divergence = 0 

NO 

3 
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j-function number 

For example: 

3

1
,

3

1
)2(~),(~)3,2( 223223 −==== ηξψηξψ gh ee    Eq. 4.4-1 

3

1
,

3

1)1(~),(~
)3,1( 11

3113 −=−=
∂

∂
=

∂

∂
= ηξ

ξ

ψ

ξ

ηξψ g
dhdz

ee

  Eq. 4.4-2 

3

1
,

3

1)2(~),(~
)4,2( 22

4224 −==
∂

∂
=

∂

∂
= ηξ

η

ψ

η

ηξψ g
dhde

ee

  Eq. 4.4-3 

Results are stored in common block /blk11/. 

4.5. Routine SHAPE 

Routine SHAPE calculates Jacobian matrix and determinant, and function derivatives in 
global coordinates (Eq. 2.10-10) for specified gauss point () for one element. 

List of arguments: 

ig –  (input value) Gauss point number 

ex –  (input value) Vector of node coordinates of element 

det –  (output value) Jacobian determinant 

sh –  (output value) Vector of function derivatives in global coordinates 

To shape function derivatives in global coordinates equations (Eq. 2.10-2), (Eq. 2.10-5) 
and (Eq. 2.10-10) are used. Jacobian matrix is stored in: 

J
xsxs

xsxs
=

)2,2()1,2(

)2,1()1,1(
       Eq. 4.5-1 

and 

y

yx
x

yx

ish

ish

igig

e

i

igig

e

i

∂

∂
∂

∂

=
),(

),(

),2(

),1(

ψ

ψ

       Eq. 4.5-2 

where ),( igig

e

i yxψ  is global element function in ig-th gauss point. 

4.6. Routine SHAPEV 

Routine SHAPEV calculates Jacobian matrix and determinant, and function derivatives 
in global coordinates (Eq. 2.10-10) for specified gauss point () for group of elements. 

List of arguments: 

ig –  (input value) Gauss point number 
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llt –  (input value) Number of elements 

Results are also stored in common blocks: 

/v01/ - vectors for Jacobian determinant, functions and function derivatives 

/v02/ - vectors for node coordinates of elements 

To shape function derivatives in global coordinates equations (Eq. 2.10-2), (Eq. 2.10-5) 
and (Eq. 2.10-10) are used. Jacobian matrix for i-th element is stored in: 

J
ixsixs

ixsixs
=

)(22)(21

)(12)(11
       Eq. 4.6-1 

and function derivatives in global coordinate system for i-th element 

y

yx
x

yx

iksh

iksh

igig

e

k

igig

e

k

∂

∂
∂

∂

=
),(

),(

)(2

)(1

ψ

ψ

       Eq. 4.6-2 

 

 

Figure 4-6: Program Flow for Routines SHAPE and SHAPEV 

4.7. Routine FORMKF 

Routine FORMKF calculates conduction matrix and internal heat generation matrix 
(equations 2.7.6 and 2.7.13) for all elements and assemble it in global matrix. Routine 
FORMKF also uses results evaluated in routine SHAPEV (common blocks /v01/ and 
/v02/). 

enter 

calculates Jacobian matrix and 

determinant in gauss point number ig 

shape function derivatives in global 

coordinates 

exit 
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List of arguments: 

x –  (input vector) Vector of node coordinates 

km –  (input vector) Vector of element data 

angl –  (input vector) Future use 

mtype –  (input vector) Vector of material types 

ptemp –  ( 

cv –  (input vector) Vector for material heat capacity 

cond1 –  (input vector) Vector for thermal conductivity (=k for isotropic, =k11 for 
orthotropic materials) 

cond2 –  (input vector) Future use (=k22 for orthotropic materials) 

ncgenm –  (input vector) Future use. Vector of thermal generation rate curve numbers 

genm –  (input vector) Future use. Thermal generation rate (multiplier in future use 
with ncgenm) 

ncgene –  (input vector) Future use 

gene –  (input vector) Future use 

dqgen -  ? 

curvx –  (input vector) Future use. X-coordinates of functions data 

curvy –  (input vector) Future use. Y-coordinates of functions data 

npc –  (input vector) Future use. Number of points for curve 

tmpc –  ( 

tmpk –  ( 

cvtr –  ( 

cntr –  ( 

jdiag –  ( 

tn –  (input vector) Node temperatures (or temperature difference for nonlinear 
problems) from previous iteration 

tnp –  (input vector) Node temperature derivatives. CHECK THIS 

gf –   

gk –   

au –   

ad –  

nonl –  (input value) =0 linear problem; =1 nonlinear problem 

rhoelm –   
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Routine FORMKF uses common blocks /v01/ and /v02/ which are calculated in routine 
SHAPEV. 

Conduction matrix (Eq. 2.9-16) is solved using function derivatives and Jacobian 
determinants calculated in routine SHAPEV (stored in common block /v01/) and 
material properties which are calculated in routine MATL. Conduction matrix is 
calculated in four Gauss points and stored by following equation (for i-th element): 

44434241

34333231

24232221

14131211

),10(),9(),8(),7(

),9(),6(),5(),4(

),8(),5(),3(),2(

),7(),4(),2(),1(

KKKK

KKKK

KKKK

KKKK

iekiekiekiek

iekiekiekiek

iekiekiekiek

iekiekiekiek

=   Eq. 4.7-1 

where ijK  is calculated by equations (Eq. 2.9-16) and (Eq. 2.15-1) in Gauss integration 

points. Internal heat generation matrix (Eq. 2.9-8) is also calculated in four Gauss point 
and stored by following equation (for i-th element): 

4

3

2

1

),4(

),3(

),2(

),1(

Q

Q

Q

Q

ief

ief

ief

ief

=         Eq. 4.7-2 

where ijQ  is calculated by equations (Eq. 2.9-8) and (Eq. 2.15-1) in Gauss integration 

points. Note that equations (Eq. 4.7-1) and (Eq. 4.7-2) are calculates for both (linear and 
nonlinear) types of problem. For linear problems equations (Eq. 4.7-1) and (Eq. 4.7-2) 
are assembled by equation (Eq. 2.9-6) into the global arrays. Each element of matrix ek 
and vector ef is assembled to corresponding element of global arrays which depends of 
node number. Matrix ek is assembled to left the left side of global matrix (Eq. 2.11-9) 
and vector ef is assembled to the right side of global matrix (Eq. 2.11-9). 

For nonlinear problems one more matrix is calculated: 

,
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,
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=    Eq. 4.7-3 

where 
,

ijQ  is calculated by equation (Eq. 2.9-14) and (Eq. 2.15-1) in Gauss integration 

points. For nonlinear problems equations (Eq. 4.7-1), (Eq. 4.7-2) and (Eq. 4.7-3) are 
assembled by equation (Eq. 2.9-13) into the global arrays. 
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Figure 4-7: Program Flow for Routine FORMKF 

 

 

enter 

number of passes = number of elements 

take material and element properties for 

all elements into the local arrays 

calculate additional element properties 

which depends of mean element 

temperature 

number of passes = number of Gauss 

points (=4) 

calculate element matrices for linear 

problem 

is a nonlinear problem? 

calculate additional element 

matrices for nonlinear problems 

assembling matrices into the global arrays 

exit 

NO 

YES 
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4.8. Routine BCCONV 

Routine BCCONV calculates convection boundary condition using equations (Eq. 
2.12-3) for linear problems and equation (Eq. 2.12-14) for nonlinear problems. Integrate 
these equations in two Gauss points (for line elements) and finally assembling all 
coefficients into the global arrays. 

List of arguments: 

x –  (input vector) Array of nodal coordinates 

ndbc –  (input vector) Node numbers of which is segment consist 

  EXAMPLE: ndbc(1,1,nseg) – first node of nsegth segment 

 ndbc(1,2,nseg) – second node of nsegth segment 

nctinf –  (input vector) Curve numbers 

tinfm –  (input vector) Outside film temperatures at segment 

 EXAMPLE: tinfm(1,nseg) – outside temperature at first node of nsegth 
segment 

 tinfm(2,nseg) – outside temperature at second node of nsegth segment 

nch –  (input vector) Curve numbers 

hm –  (input vector) Segment film coefficients 

 EXAMPLE: hm(nseg) – film coefficient at nsegth segment 

freex –  (input vector) 

curvx –  (input vector) x-axe values of curves 

curvy –  (input vector) y-axe values of curves 

npc –  (input vector) Number of points for curve 

jdiag –  (input vector) 

tn –  (input vector) Node temperatures (or temperature difference)  from current 
iteration 

tnp –  (input vector) Temperature derivatives. CHECK THIS 

gf –  (output vector) Used for assembling right-hand side of equations 

nctcbc –  (input vector) Curve numbers 

gk –  (output vector) 

au –  (output vector) 

ad –  (output vector) 

ncbc –  number of Convection Boundary Condition segments 

nonl –  type of problem (0=linear; 1=nonlinear) 

igeom –  type of geometry 
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Matrix A  (Eq. 2.12-4) is calculated for linear and nonlinear types of problem and results 
are stored in: 

ee

ee

AA

AA

lbckllbckl

lbckllbckl

2221

1211

),3(),2(

),2(),1(
=       Eq. 4.8-1 

where l=1 (always) and coefficients e

ijA  are calculated by equation (Eq. 2.12-4). Matrix 

B  (Eq. 2.12-5) is also calculated for linear and nonlinear types of problem and results 
are stored: 

e

e

B

B

lbcf

lbcf

2

1

),2(

),1(
=          Eq. 4.8-2 

where l=1 (always) and coefficients e

iB  are calculated by equation (Eq. 2.12-5). If 

problem type is linear, assembling matrices A  and B  is done by equation (Eq. 2.12-3) 
or in matrix notation (Eq. 2.12-6). 

For nonlinear type of problem there is three additional matrices which are calculated. 
First matrix is: 

2221

1211

),3(),2(

),2(),1(

CC

CC

lbcknlbckn

lbcknlbckn
=       Eq. 4.8-3 

where l=1 (always) and coefficients ijC  are calculated by equation (Eq. 2.12-11). 

Second matrix is: 

2221

1211

),3(),2(

),2(),1(

DD

DD

lbcknplbcknp

lbcknplbcknp
=      Eq. 4.8-4 

where l=1 (always) and coefficients ijD  are calculated by equation (Eq. 2.12-12). 

Third matrix is: 

2221

1211

),3(),2(

),2(),1(

EE

EE

lbckflbckf

lbckflbckf
=       Eq. 4.8-5 

where l=1 (always) and coefficients ijE  are calculated by equation (Eq. 2.12-13). 

For nonlinear type of problem, matrices are assembled by equation (Eq. 2.12-14). 
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Figure 4-8: Program Flow for Routine BCCONV 

enter 

number of passes = number of 

convection segments 

set local arrays to zero and take node numbers 

and material properties for current segment 

number of passes = number of Gauss point 

for integration (=2 for line segment) 

calculate determinant and average temperatures 

for current segment. Calculate film coefficient 

for average temperature of current segment 

calculates matrices A  and B  for current 

segment and current gauss point 

is a nonlinear problem? 

calculates matrices C , D  

and E  

YES 

assembling matrices into the 

global arrays (linear type) 

NO 

exit 

is a nonlinear problem? 

assembling matrices into the 

global arrays (nonlinear type) 

NO 

YES 
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4.9. Routine BCFLUX 

Routine BCFLUX calculates flux boundary condition using equations (Eq. 2.12-15) for 
linear problems and equation (Eq. 2.12-19) for nonlinear problems. Integrate these 
equations in two Gauss points (for line elements) and finally assembling all coefficients 
into the global arrays. 

List of arguments: 

x –  (input vector) Array of nodal coordinates 

ndbc –  (input vector) Node numbers of which is segment consist 

 EXAMPLE: ndbc(1,1,nseg) – first node of nsegth segment 

 ndbc(1,2,nseg) – second node of nsegth segment 

ncf –  ( 

fbcm –  ( 

curvx –  (input vector) x-axe values of curves 

curvy –  (input vector) y-axe values of curves 

npc –  (input vector) Number of points for curve 

jdiag –  (input vector) 

tn –  (input vector) Node temperatures (or temperature difference)  from current 
iteration 

tnp –  (input vector) Temperature derivatives. CHECK THIS 

gf –  (output vector) Used for assembling right-hand side of equations 

nctfbc –  (input vector) Curve numbers 

gk –  (output vector) 

au –  (output vector) 

ad –  (output vector) 

nbc –  number of Flux Boundary Condition segments 

nonl –  type of problem (0=linear; 1=nonlinear) 

igeom –  type of geometry 

Matrix Q  (Eq. 2.12-16) is calculated for linear and nonlinear types of problem and 

results are stored in: 

2

1

),2(

),1(

Q

Q

lbcf

lbcf
=         Eq. 4.9-1 

where l=1(always) and coefficients iQ  are calculated by Eq. 2.12-16. Eq. 4.9-1 are 

assembled into the right-hand side of global matrices. 
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For nonlinerar type of problem there is additional matrix which is calculated: 

2221

1211

),3(),2(

),2(),1(

FF

FF

lbckflbckf

lbckflbckf
=       Eq. 4.9-2 

where l=1 (always) and coefficients ijF  are calculated by Eq. 2.12-22. For nonlinear 

type of problem, assembling is done according to Eq. 2.12-21. 
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Figure 4-9: Program Flow for Routine BCCONV 

enter 

number of passes = number of flux 

segments 

set local arrays to zero and take node numbers 

and material properties for current segment 

number of passes = number of Gauss point 

for integration (=2 for line segment) 

calculate determinant and average temperatures 

for current segment. Calculate flux coefficient 

for average temperature of current segment 

calculates matrix Q  for current segment and 

current gauss point 

is a nonlinear problem? 

calculate matrix F  

YES 

NO 

exit 

assembling matrix into the 

global arrays (linear type) 

is a nonlinear problem? 

assembling matrix into the 

global arrays (nonlinear type) 

YES 

NO 
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4.10. Routine BCRAD1 

Routine BCRAD1 calculates black body boundary condition using linearized equation 
(Eq. 2.12-23) for nonlinear problems (radiation makes problem nonlinear) and integrate 
these equations in two Gauss points (for line elements) and finally assembling all 
coefficients into the global arrays. 

List of arguments: 

x –  (input vector) Array of nodal coordinates 

ndbc –  (input vector) Node numbers of which is segment consist 

 EXAMPLE: ndbc(1,1,nseg) – first node of nsegth segment 

 ndbc(1,2,nseg) – second node of nsegth segment 

nctinf –  (input vector) Curve numbers – for temperature multiplier 

tinfm –  (input vector) Outside film temperatures at segment 

 EXAMPLE: tinfm(1,nseg) – outside temperature at first node of nsegth 
segment 

 tinfm(2,nseg) – outside temperature at second node of nsegth segment 

nch –  (input vector) Curve numbers – for linearized film coeficient 

hm –  (input vector) equal with nsegσε  ( =nsegε segment emissivity) 

curvx –  (input vector) x-axe values of curves 

curvy –  (input vector) y-axe values of curves 

npc –  (input vector) Number of points for curve 

jdiag –  (input vector) 

tn –  (input vector) Node temperatures (or temperature difference)  from current 
iteration 

tnp –  (input vector) Temperature derivatives. CHECK THIS 

gf –  (output vector) Used for assembling right-hand side of equations 

nctrbc –  (input vector) Curve numbers 

gk –  (output vector) 

au –  (output vector) 

ad –  (output vector) 

nbc –  number of Black Body Radiation Boundary Condition segments 

igeom –  type of geometry 

Matrices calculated in routine BCRAD1 are stored in following arrays: 
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2221

1211

),3(),2(

),2(),1(

AA

AA

lbckllbckl

lbckllbckl
=       Eq. 4.10-1 

where ijA  is calculated by equation (Eq. 2.12-28), 

2

1

),2(

),1(

B

B

lbcf

lbcf
=         Eq. 4.10-2 

where iB  is calculated by equation (Eq. 2.12-29), 

2221

1211

),3(),2(

),2(),1(

CC

CC

lbcknlbckn

lbcknlbckn
=       Eq. 4.10-3 

where ijC  is calculated by equation (Eq. 2.12-30), 

2221

1211

),3(),2(

),2(),1(

DD

DD

lbcknplbcknp

lbcknplbcknp
=      Eq. 4.10-4 

where ijD  is calculated by equation (Eq. 2.12-31), and finally 

2221

1211

),3(),2(

),2(),1(

EE

EE

lbckflbckf

lbckflbckf
=       Eq. 4.10-5 

where ijE  is calculated by equation (Eq. 2.12-32) and l=1 in all previous equations in 

this chapter. Assembling is done according to Eq. 2.12-33. 
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Figure 4-10: Program Flow for Routine BCRAD1 

 

4.11. Routine RADIN2 

Routine RADIN2 is input routine which get data for radiation enclosure boundary 
condition calculation. Routine RADIN2 also performed some calculations which are 
used in radiation enclosure boundary condition calculations. 

 

enter 

number of passes = number of black body 

radiation segments 

set local arrays to zero and take node numbers and 

material properties for current segment 

number of passes = number of Gauss point for 

integration (=2 for line segment) 

calculate determinant and average temperatures for 

current segment. Calculate linearized radiation 

coefficient for average temperature of current 

segment 

calculates matrices EandDCBA ,,,  for 

current segment and current gauss point 

assembling matrices into the global arrays 

exit 
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List of arguments: 

x –  (input vector) Node coordinates 

nodes –  (output vector) Node numbers of radiation enclosure segments 

nrcond –  (output vector) Shows which part of radiation enclosure segment belongs 

 eq.0:segment is part of conduction el,  

 eq.1: segment is not part of conduction el 

ncrad – Not used in this routine 

thole –  (output vector) Radiation enclosure surface temperature 

emis –  Not used in this routine 

ipvt –  (output vector) The pivot vector from sgeco or sgefa 

work –  (input/output vector) Working vector.  Contents destroyed. 

area –  (output vector) Segment length 

aef –  (input/output vector) View factor matrix/Inverse AEF matrix 

nband –  Not used in this routine 

necurv –  Not used in this routine 

sigma –  Stefan-Boltzmann constant 8106693.5 −× [W/(m2K4)] 

irtype –  =4 always 

itmaxb –  maximum number of radiosity iterations 

tolb –  radiosity convergence tolerance 

igeom –  type of geometry 

nrdim –  number of column in aef and afrow matrices Used only for definition aef 
and afrow!!!! 

nebc –  number of radiation enclosure surfaces 

lcount –  number of column in input text 

longo –  output type 

labele –  gray body radiation bc edge id 

iconv –  type of temperature scale 

 eq.1: Celsius (tscale='c' or 'C') 

 eq.2: Farenheit (tscale='f' or 'F') 

 eq.-1: Kelvin (tscale='k' or 'K') 

 eq.-2: Rankin (tscale='r' or'R') 

emise –  emissivity of the surface 

iordr – reading flag 
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afrow – (input vector) View factor matrix CHECK THIS 

Calculation which is performed in routine RADIN2 is to calculate inverse matrix 1][ −
ijAEF  

according to equation (Eq. 2.12-35 and Eq. 2.12-36) and to store this matrix in: 
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Figure 4-11: Program Flow for Routine RADIN2 

 

4.12. Routine BCRAD2 

Routine BCRAD2 calculates radiation enclosure (gray body) boundary conditions and 
assemble results into the global arrays. 

List of arguments: 

x –  (input vector) Array of nodal coordinates 

start 

reading radiation enclosure data 

calculate inverse matrix 1][ −
ijAEF  

exit 
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ndbc –  (input vector) Node numbers of which is segment consist 

 EXAMPLE: ndbc(1,1,nseg) – first node of nsegth segment 

 ndbc(1,2,nseg) – second node of nsegth segment 

ncrad –  (input vector) Not used in this routine 

thole –  (input vector) Radiation enclosure surface temperature 

emis –  (input vector) Not used in this routine 

qnet –  (input vector) heat flow density of radiation enclosure segment 

ts –  (input vector) Segment temperature used for calculation 

aef –  (input vector) inverse AEF matrix calculated in routine RADIN2 

b –  (output vector) “radiation” matrix 

jdiag –  (input vector) 

tn –  (input vector) Node temperatures (or temperature difference)  from current 
iteration 

tnp –  (input vector) Temperature derivatives. CHECK THIS 

gf –  (output vector) Used for assembling right-hand side of equations 

gk –  (output vector) 

au –  (output vector) 

ad –  (output vector) 

nebc – number of Enclosure (Gray Body) Radiation Boundary Condition segments 

igeom –  type of geometry 

sigma –  Stefan-Boltzmann constant 8106693.5 −× [W/(m2K4)] 

nrdim –  number of column in aef and afrow matrices CHECK THIS 

emise –  (input vector) Radiation enclosure surface emissivity 

nrcond –  (input vector) Shows which part of radiation enclosure segment belongs 

 eq.0:segment is part of conduction el,  

 eq.1: segment is not part of conduction el 

Matrices calculated in routine BCRAD2 are stored in following arrays: 
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= === σ     Eq. 4.12-1 
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which is equal with equation (Eq. 2.12-37). 

Second matrix: 

2221

1211

),3(),2(

),2(),1(

GG

GG

lbckllbckl

lbckllbckl
=       Eq. 4.12-2 

where ijG  is calculated by equation (Eq. 2.12-50). 

Third matrix: 

2

1

),2(

),1(

N

N

lbcf

lbcf
=         Eq. 4.12-3 

where iN  is calculated by equation (Eq. 2.12-57). 

Fourth matrix: 

2221

1211

),3(),2(

),2(),1(

HH

HH

lbcknlbckn

lbcknlbckn
=       Eq. 4.12-4 

where ijH  is calculated by equation (Eq. 2.12-51). 

Fifth matrix: 

2221

1211

),3(),2(

),2(),1(

II

II

lbcknplbcknp

lbcknplbcknp
=      Eq. 4.12-5 

where ijI  is calculated by equation (Eq. 2.12-52). 

Sixth matrix: 

2221

1211

),3(),2(

),2(),1(

MM

MM

lbckflbckf

lbckflbckf
=      Eq. 4.12-6 

where ijM  is calculated by equation (Eq. 2.12-56), and l=1 (always) in all previous 

equations. 
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Figure 4-12: Program Flow for Routine BCRAD2 

 

4.13. Routine BCTEMP1 

Routine BCTEMP1 introduces temperature boundary conditions and assemble it into 
the global arrays. Assembling into the global matrices (Eq. 2.11-9 and Eq. 2.11-10) for 

ith node (at which temperature is defined and equal KNOWNT ) is working according to next 

equations (for ith node): 

 

start 

number of passes = number of enclosure segments 

calculate segment temperatures 

set local arrays to zero and get segment data 

number of passes = number of enclosure segments 

calculate matrix }{ jK  

calculate matrices 

LandMIHNG ,,,,  in Gauss 

points and assemble in global arrays 

exit 
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4.13.1. Linear Problem 

ininiiiii PTKTKTKTK =+++++ *...*...** ,,2,211,     Eq. 4.13-1 

and after assembling (in BCTEMP1) temperature for ith node equation (Eq. 4.13-1) 
becomes: 

KNOWNnniiii TeTKTeTKTK *181*...*181...** ,22,11, =+++++   Eq. 4.13-2 

which lead that in global matrix solution: 

KNOWNi TT =          Eq. 4.13-3 

because following equation is satisfied: 

181, ,....,,2,1, eKKK niii <<        Eq. 4.13-4 

4.13.2. Nonlinear Problem 

ininiiiii PTKTKTKTK =∆++∆++∆+∆ *...*...** ,,2,211,    Eq. 4.13-5 

and after assembling (in BCTEMP1) temperature for ith node equation (Eq. 4.13-1) 
becomes: 

0=∆ iT          Eq. 4.13-6 

because temperature difference for node at which is temperature defined is zero. 

List of arguments: 

ndbc –  (input vector) Segment (Node) at which temperature is defined 

ncbc –  (input vector) Curve number 

tbcm –  (input vector) Segment (node) temperatures 

curvx –  (input vector) x-axe values of curves 

curvy –  (input vector) y-axe values of curves 

npc –  (input vector) Number of points for curve 

jdiag –   

gf –   

gk –  

au –   

ad –   

ntbc –  Number of segments (Nodes) with temperature bc 

nonl –  type of problem (0=linear; 1=nonlinear) 
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Figure 4-13: Program Flow for Routine BCTEMP1 

4.14. Routine VARH 

Routine VARH calculates convective and radiative part of surfaces which have 
interaction with gasses (or gas mixtures), like surfaces inside IGU. Equations used in 
routine VARH are described in section 1.3.3.4. 

List of arguments: 

wl –  (input value) Glazing cavity (IGU) width 

x – (input value) Segment distance from Starting (Departing) Corner 

t1 –  (input value) Temperature of side number 1 

t2 –  (input value) Temperature of side number 2 

e1 –  (input value) Emissivity of side number 1 

e2 –  (input value) Emissivity of side number 2 

is – (input value) Flag for cavity orientation 

 eq.1 – Frame Cavity orientation DOWN 

 eq.-1 – Frame Cavity orientation UP 

height –  (input value) Height of IGU 

start 

number of passes = number of nodes with temperature bc 

take node number 

is a nonlinear problem? 

assembling equations 

(linear type) 

assembling equations 

(nonlinear type) 

exit 

NO 

YES 
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cond –  (output value) Thermal conductivity (gas property) 

dvisc –  (output value) Dynamic viscosity (gas property) 

rho –  (output value) Density (gas property) 

cp –  (output value) Specific heat (gas property) 

pr –  (output value) Prandtl number (gas property) 

tm –  (input value) Gas mean temperature 

sigma –  (input value) Stefan-Boltzmann constant 8106693.5 −× [W/(m2K4)] 

grav –  (input value) Gravity acceleration constant 9.81 [m/s2] 

h –  (output value) Film coefficient of segment 

icrrad –  (input value) radiation flag (eq.1 – include radiation; eq.0 – omit radiation) 

tscale –  (input value) Temperature scale 
 
 
 
 
  

 tscale='c' or 'C' - Celsius 

 tscale='f' or 'F' - Fahrenheit 

 tscale='k' or 'K' - Kelvin 

 tscale='r' or 'R' - Rankin 
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Figure 4-14: Program Flow for Routine VARH 

 

start 

Calculate gas properties at mean 

temperature of the segment and 

CRITERIA 

CRITERIA < 500 

Conduction Regime 

calculations 

Boundary Layer 

Regime calculations 

YES NO 

Calculate radiative part 

of film coefficient 

exit 
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Figure 4-15: Conduction Regime Calculation Program Flow 

 

start 

Is center of glass? 

Center of glass film coefficient 

calculations 

Is Starting Corner? 

YES 

NO 

Conduction Regime calculations 

Calculate film coefficient 

of Starting Corner 

Calculate film coefficient 

of Departing Corner 

exit 

YES NO 
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Figure 4-16: Boundary Layer Regime Calculation Program Flow 

4.15. Routine BANDW 

Routine BANDW implement bandwidth minimization described in 3.1. This routine 
determine does minimization take effect or not and if there is any effect. If there is effect 
then this routine determines two vectors which is used for renumbering.  

List of arguments: 

nrv –  (output vector) nodal reorder vector – transformation from reorder to 
original numbering system 

id – (output vector) inverse nodal reorder vector – transformation from original 
to reorder numbering system 

lcount –  (input value) number of column in input text 

longo –  (input value) output type 

 

start 

Is Starting Corner? 

Calculate film coefficient 

of Starting Corner 

Calculate film coefficient 

of Departing Corner 

exit 

YES NO 

Boundary Layer Regime calculations 
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Figure 4-17: Program Flow for Routine BANDW 

4.16. Routine RENUM 

Routine RENUM is used to renumber input data (node, element and boundary 
conditions data) from original to reorder numbering system. 

List of arguments: 

x –  (input/output vector) Node coordinates 

km – (input/output vector) Element information 

ndtbc –  (input/vector vector) Nodes with temperature boundary conditions 

ndfbc –  (input/vector vector) Nodes with flux boundary conditions 

ndcbc –  (input/vector vector) Nodes with convection boundary conditions 

ndrad –  (input/vector vector) Nodes with black body radiation boundary conditions 

ndrbc –  (input/vector vector) Nodes with enclosure radiation boundary conditions 

id –  (input vector) Inverse nodal reorder vector 

theta –  (input/vector vector) Node temperatures 

dum2d –  () Reference vector 

numnp –  (input value) Number of node points 

numelt –  (input value) Number of elements 

 

start 

Iband = 1 

Calculate nodal 

reorder vector (nrv) 

Read nodal reorder 

vector (nrv) from input 

file 

Calculate inverse nodal 

reorder vector (id) 

exit 

YES NO 
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Figure 4-18: Program Flow for Routine RENUM 

4.17. Routine IRENUM 

Routine IRENUM is used to renumber boundary conditions data from original to reorder 
(bandwidth) numbering system. 

4.18. Routine CALCEFFK1 

Routine CALCEFFK1 is used to renumber data used for frame cavity calculations from 
reorder (bandwidth) to original numbering system, to call routine CALCEFFK which 
calculates frame cavity properties (calculations are performed in original numbering 
system) and after that to renumber data from original to reorder numbering system. 

List of arguments: 

x –  (input vector) Node coordinates 

km – (input vector) Element information 

frcav - (input vector) Flag which is used to show if element side belong to edge of 
frame cavity, and if side belong to edge than to show which side of 
equivalent rectangularized frame cavity this side belong. This array contain 
4 flags for each element (first for side between nodes km1 and km2, 
second for side between node km2 and km3, third side between km3 and 
km4, fourth side between km4 and km1). Depending of value side is 
transformed to one of sides of rectangularized frame cavity: 

 eq.1: transform to left side 

Renumber node coordinates 

start 

Renumber node temperatures 

Renumber element 

information array 

Call subroutine IRENUM 

(five times) to renumber 

boundary condition data 

exit 



CONRAD 5 and VIEWER 5 Documentation Page 117  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

 eq.2: transform to down side 

 eq.3: transform to right side 

 eq.4:transform to upper side 

sideemis - (input vector) Show element side emissivity if side belong to edge of frame 
cavity, and equal with zero if not. 

cond1 - (input/output vector) used to store results – effective conductivitues of 
frame cavities. 

theta - (input vector) node temperatures. 

id – (input vector) inverse nodal reorder vector – transformation from original to 
reorder numbering system. 

nrv –  (input vector) nodal reorder vector – transformation from reorder to original 
numbering system. 

idir - (input/output vector) stored initial gravity heat flow direction and after 
calculations, stored calculated heat flow direction (it depends of frame 
cavity type). 

iscr - (input/output vector) stored initial screen heat flow direction and after 
calculations, stored calculated heat flow direction (it depends of frame 
cavity type). 

tc - (input/output vector) initial temperatures of rectangularized frame cavities 
and after calculations, stored calculated temperatures (it depends of frame 
cavity type). 

ec - (input vector) emissivity of element side. Equal with zero if side not belong 
to edge. 

pressure - (input vector) gas (or gas mixture) pressure in frame cavity. 

nmix -  (input vector) number of gases in gas mixture. 

iprop - (input vector) Indicate which gasses are implement in gas mixtures. Built in 
values: 

 eq.1: Air 

 eq.2: Argon 

 eq.3: Krypton 

 eq.4: Xenon 

frct - (input vector) Fraction part of gasses in gas mixture 

cavmod - (input vector) Cavity model: 

 eq.0: NFRC97 

 eq.1: CENISO 

 eq.2: CENISO VENTILATED 
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 eq.3: USER DIMENSION 

 eq.4: ISO15099 

 eq.5: ISO15099 VENTILATED 

cheight - (input vector) jambheight of frame cavity (see  

Figure 3-16) 

radiationflag - (input vector) flag for radiation calculations 

 eq.0: omit radiation 

 eq.1: include radiation 

MaxXDimension - (input vector) Equivalent “x” dimension of rectangularized cavity 

MaxYDimension - (input vector) Equivalent “y” dimension of rectangularized cavity 

CavArea - (input vector) frame cavity area 

t1old, t2old -  (input/output vector) used to store side (of rectangularized frame cavity) 
temperatures from previous iteration. 

Innum - (input vector) frame cavity ID 

Nusselt - (output vector) Calculated Nusselt number 

CavKeff - (output vector) Calculated Effective conductivity 

changehf - (input/output vector) detect change of heat flow direction 

 eq.0: heat flow direction in current iteration is same as in previous 

 eq.1: heat flow direction in current iteration is not same as in previous 

oscillate - (input/output vector) sign that heat flow direction on frame cavity side 
oscillate (change in every iteration). This flag is used to stop oscillations 
and cause that solution converge. 

iconv - (input value) temperature scale: 

 eq.1: Celsius 

 eq.2: Fahrenheit 

 eq.-1: Kelvin 

 eq.-2: Rankin 

numnp - (input value) number of node points 

numel - (input value) number of elements 

iband - (input value) is bandwidth minimization performed 

 eq.0: no bandwidth minimization 

 eq.1: bandwidth minimization is performed 
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Figure 4-19: Program Flow for Routine CALCEFFK1 

 

4.19. Routine CALCEFFK 

Routine CALCEFFK perform calculations described in ISO15099 standard [1]. 

List of arguments: 

see Routine CALCEFFK1 

 

start 

reorder data from bandwidth 

to original numbering system 

is bandwidth minimization 

performed? 

effective conductivities of frame cavities 

calculations (Routine CALCEFFK) 

is bandwidth minimization 

performed? 

reorder data from original to 

original numbering system 

exit 

YES 

YES 

NO 

NO 
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Figure 4-20: Program Flow for Routine CALCEFFK 

 

start 

number of passes = number of frame cavities 

is initial state? 

calculates effective conductivity of frame cavity 

for initial conditions and calculate properties for 

next iteration (needed for ISO type of cavities) 

YES 

SUBBLOCK1 

exit 
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Figure 4-21: SUBBLOCK1 

 

 

SUBBLOCK1 

cavity type is ISO15099? 

initialize local flags and counters used for calculations 

number of passes = number of elements 

is current element belong to current 

cavity? 

SUBBLOCK2 

NO 

NO 

YES 

YES 

calculate emissivites and temperatures for 

non existing sides of rectangular frame cavity 

calculate heat flow direction 

calculate effective conductivity of frame 

cavity (Routine LBLKeff) 

SUBBLOCK3 

exit 
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Figure 4-22: SUBBLOCK2 

 

SUBBLOCK2 

number of passes = 4 (sides of element) 

side belong to edge of frame 

cavity? 

NO 

take node numbers of current side 

YES 

check if current element nodes have maximal or minimal 

coordinates 

add segment temperature and emissivity to corresponding 

rectangularized frame cavity side 

exit 
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Figure 4-23: SUBBLOCK3 

5. Description of Viewer Subroutines 

This chapter describes routines which are used by viewer. 

5.1. Routine SEE 

Routine SEE is used to calculate self shadowing between two surfaces using equations 
and algorithm described in chapter 3.4.2. 

List of arguments: 

x –  (input vector) x-coordinates of nodes 

y - (input vector) y-coordinates of nodes 

z - (input vector) z-coordinates of nodes (not used in this version) 

SUBBLOCK3 

check if temperature difference from current and from 

previous iteration is less than Co1 . 

check if heat flow direction is changed. If heat flow is 

changed than increment counter (which count number 

of changes) - oscillate. 

is oscillate = Oscill 

return frame cavity properties from iteration 

in which conductivity has larger value. 

NO 

YES 

remember frame cavity properties for next 

iteration 

exit 
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xn –  (input vector) x-coordinates of surface normal 

yn - (input vector) y-coordinates of surface normal 

zn - (input vector) z-coordinates of surface normal (not used in this version) 

km - (input vector) node numbers of which are segment consist 

iseg - 
 (input value) number of iseg-th segment 

jseg - 
 (input value) number of jseg-th segment 

ndim - (input value) type of problem (2 = two dimensional) 

iedge - (output value) number of same nodes of i-th and j-th surfaces 

isee -  (output value) flag which shows self shadowing type 

 eq.-1: partial shadowing 

 eq.0: total shadowing 

 eq.1: no shadowing 

ibug - (output value) debug information 

 eq.0: no debug information 

 eq.1: minimal debug information 

 eq.2: maximum debug information 



CONRAD 5 and VIEWER 5 Documentation Page 125  

Carli, Inc. is Your Building Energy Systems and Technology Choice 

start

Is surfaces normal point in

same direction?

Number of passes = number of nodes in iseg

Number of passes = number of nodes in jseg

Calculates distance between nodes

Is distance < epsi?

Increase number of same nodes between

surfaces iseg and jseg (idge = idge + 1)

yes

no

no

Number of passes = number of nodes in iseg

Number of passes = number of nodes in jseg

Calculates if nodes “see” each other

Nodes “see” each other?

k=k+1

yes

no

Calculate type of

self shadowing

exit

 

Figure 5-1: Program Flow of Routine See 

5.2. Routine INTSEC2 

Routine INTSEC2 is used to determine if two lines has intersection point. Algorithm 
used in this routine is described in chapter 3.4.3. 

List of arguments: 

x1 –  (input value) x-coordinate of first node in line1 

y1 –  (input value) y-coordinate of first node in line1 

x2 –  (input value) x-coordinate of second node in line1 

y2 –  (input value) x-coordinate of second node in line1 
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x3 –  (input value) x-coordinate of first node in line2 

y3 –  (input value) y-coordinate of first node in line2 

x4 –  (input value) x-coordinate of second node in line2 

y4 –  (input value) x-coordinate of second node in line2 

int - (output value) show if intersection exist 

 eq.0: no intersection 

 eq.1: intersection exist 

5.3. Routine GRL2D 

Routine GRL2D is used to determine number and coordinates of grid cells that line pass 
through (see Figure 3-35 and Figure 3-36). 

List of arguments: 

x1 –  (input value) x-coordinate of first node 

y1 –  (input value) y-coordinate of first node 

x2 –  (input value) x-coordinate of second node 

y2 –  (input value) x-coordinate of second node 

xgrid -  (input vector) x-coordinates of grid net 

ygrid -  (input vector) y-coordinates of grid net 

xp - (output vector) x-coordinates of intersection points between grid net and 
line 

yp - (output vector) y-coordinates of intersection points between grid net and 
line 

nwk1 - (output vector) cells coordinates that line pass through: nwk1(1,i) contain 
cell coordinate of grid net and dimension of nwk1 is (1,numcell) where 
numcell is number of cells that line pass through. 

nwk2 - (output vector) cells coordinates that line pass through (in different form 
than in nwk1): nwk2(1,j) = 1 if line pass through cell with coordinate j and 
nwk2(1,j) if not. Dimension of nwk2 is (1,NumberOfCellsInGrid). 

nxg - (input value) number of grid cells in x direction 

nyg - (input value) number of grid cells in y direction 

numcell - (output value) number of cells that line pass through 
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start

Determine (i,j) grid

location for line end points

Determine cells the line

passes through

Determine intersection

points of line with x & y grid
lines

exit
 

Figure 5-2: Program Flow for Routine Grl2d 

5.4. Routine GRID 

Routine GRID is used to determine through which grid cells blocking surfaces pass. 
This is used for “Grid” Algorithm which is described in chapter 3.3. 

List of arguments: 

x –  (input vector) x-coordinates of nodes 

y - (input vector) y-coordinates of nodes 

z - (input vector) z-coordinates of nodes (not used in this version) 

km -  (input vector) blocking surfaces information array 

kbkl - (input vector) blocking surfaces number 

xgrid –  (input vector) x-coordinates of grid net 

ygrid - (input vector) y-coordinates of grid net 

zgrid - (input vector) z-coordinates of grid net (not used in this version) 

xp –  (input vector) x-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes 

yp - (input vector) y-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes 

zp - (input vector) z-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes (not used in this version) 

nwk1 - (temporary used vector) cells coordinate that blocking surface pass 
through 
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nwk2 - (temporary used vector) cells coordinate that blocking surface pass 
through 

ngr1 - (output vector) staring reading positions form array ngr3 

ngr2 - (output vector) number of blocking surfaces (for each grid cells) 

ngr3 - (output vector) blocking surfaces numbers (for each grid cells) 

igrid - (temporary used matrix) blocking surfaces number in grid cells 

ndim - (input value) type of problem (2 = two dimensional) 

nxg - (input value) number of grid cells in x direction 

nyg - (input value) number of grid cells in y direction 

nzg - (input value) number of grid cells in z direction (not used in this version) 

nxyz -   

numnp - (input value) number of node points 

numel - (input value)  

nl -  

nblk - (input value) number of blocking surfaces 

ibug - (input value) debug information flag 
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start

Calculates minimal and maximal

coordinates

Calculates coordinates of grid net

Number of passes = number of
blocking surfaces

Determine cell coordinates the

blocking surface belong

Number of passes = number of grid
cells

Write data to arrays which shows

blocking surfaces number that

belong to current cell

exit
 

Figure 5-3: Program Flow for Routine Grid 

 

5.5. Routine OBSTR 

Routine OBSTR is used to determine if ray between two surfaces is blocked by third 
(blocking) surface. 

List of arguments: 

xl1 –  (input value) x-coordinate of beginning of ray 

yl1 –  (input value) y-coordinate of beginning of ray 

zl1 –  (input value) y-coordinate of beginning of ray 

xl2 –  (input value) x-coordinate of end of ray 

yl2 –  (input value) y-coordinate of end of ray 

zl2 –  (input value) y-coordinate of end of ray 

x –  (input vector) x-coordinates of nodes 

y - (input vector) y-coordinates of nodes 
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z - (input vector) z-coordinates of nodes (not used in this version) 

xn –  (input vector) x-coordinates of surface normal 

yn - (input vector) y-coordinates of surface normal 

zn - (input vector) z-coordinates of surface normal (not used in this version) 

km -  (input vector) blocking surfaces information array 

nwk1 - (temporary used vector) cells coordinate that blocking surface pass 
through 

ngr1 - (input vector) staring reading positions form array ngr3 

ngr2 - (input vector) number of blocking surfaces (for each grid cells) 

ngr3 - (input vector) blocking surfaces numbers (for each grid cells) 

iseg - (input value) number of i-th segment 

jseg - (input value) number of j-th segment 

numcel - (input value) number of grid cells 

ndim - (input value) type of problem (2 = two dimensional) 

int - (output value) show if intersection exist 

 eq.0: no intersection 

 eq.1: intersection exist 
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start

Number of passes = number of grid cells

Take number of blocking surfaces for

current cell

Number of passes = number of blocking

surfaces in current cell

Check if current blocking surface intersect

ray

Is intersection exist?

no

yes

exit
 

Figure 5-4: Program Flow for Routine Obstr 

 

5.6. Routine VIEW2D 

Routine VIEW2D is used to calculate view factors by Eq. 1.3-49  for 2D planar 
geometry. If third surface shadowing exists, surfaces are divided into the subsurfaces 
which are used for partial view factor calculation (Eq. 1.3-50) 

List of arguments: 

x –  (input vector) x-coordinates of nodes 

y - (input vector) y-coordinates of nodes 

z - (input vector) z-coordinates of nodes (not used in this version) 

xn –  (input vector) x-coordinates of surface normal 

yn - (input vector) y-coordinates of surface normal 

zn - (input vector) z-coordinates of surface normal (not used in this version) 

xc –  (input vector) x-coordinates of surfaces center 
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yc - (input vector) y-coordinates of surfaces center 

zc - (input vector) z-coordinates of surfaces center (not used in this version) 

km - (input vector) node numbers of which are segment consist 

area - (input vector) segment length 

frow - ? 

xgrid –  (input vector) x-coordinates of grid net 

ygrid - (input vector) y-coordinates of grid net 

zgrid - (input vector) z-coordinates of grid net (not used in this version) 

xp –  (input vector) x-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes 

yp - (input vector) y-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes 

zp - (input vector) z-coordinates of intersection points of ray between surfaces 
with x, y and z grid planes (not used in this version) 

nwk1 - (input vector) cells coordinate that line pass through 

nwk2 - (input vector) cells coordinate that line pass through 

ngr1 - (input vector) staring reading positions form array ngr3 

ngr2 - (input vector) number of blocking surfaces (for each grid cells) 

ngr3 - (input vector) blocking surfaces numbers (for each grid cells) 

ibug - (input value) debug information flag 

nrcond - (input vector) show to which enclosure segment belongs 

 eq.n0: segment belong to n-th enclosure and it is part of conduction 
element (type of enclosure is manual) 

 eq.n1: segment belong to n-th enclosure and it is not part of conduction 
element (type of enclosure is manual) 

 eq.n2: segment belong to n-th enclosure and it is part of conduction 
element (type of enclosure is automatic) 

 eq.n3: segment belong to n-th enclosure and it is not part of conduction 
element (type of enclosure is automatic) 

nrdim - (input value) type of problem (2 = two dimensional) 

f - (output vector) view factors 
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Start of View

Factor
Calculation

Number of passes = number of radiation enclosure segments

current segment number = nseg

Take next segment for view factor calculation
segment number = jseg

iseg = jseg?
View factor = 0

f(iseg, jseg) = 0
yes

iseg and nseg belong to same enclosure?

no

no

Calculate self shadowing between iseg and nseg

yes

Is a total shadowing between nseg and iseg? yes

Is a total view between nseg and iseg?

no

Calculate view

factor using cross
string rule

yes

SUBBLOCK1

Calculate if third blocking surface

between nseg and iseg exist

no

Is third blocking surface exist?
(Intersection = 1)

no

SUBBLOCK2
Calculate view factor dividing

nseg and iseg on subsurfaces

no

exit

 

Figure 5-5: Program Flow for Routine View2d 
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SUBBLOCK1

Calculate if ray C-C have blocking surface.
(C-C is line which connect center of nseg and iseg)

intersection = 0

C-C is blocked by third surface?

intersection = 1

yes

Calculate if ray 1-1 have blocking surface.

(1-1 is line which connect node1 of nseg and node1 of iseg)

no

1-1 is blocked by third surface?

intersection = 1

yes

Calculate if ray 1-2 have blocking surface.

(1-1 is line which connect node1 of nseg and node2 of iseg)

no

1-2 is blocked by third surface?

intersection = 1

yes

Calculate if ray 2-1 have blocking surface.

(1-1 is line which connect node2 of nseg and node1 of iseg)

no

2-1 is blocked by third surface?

intersection = 1

yes

Calculate if ray 2-2 have blocking surface.

(1-1 is line which connect node2 of nseg and node2 of iseg)

no

2-2 is blocked by third surface?

intersection = 1

yes

no

exit
 

Figure 5-6: Subblock1 
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SUBBLOCK2

Calculate coefficient which is used as parameter

for dividing surfaces into the subsurfaces

Divide nseg and iseg into the subsurfaces

Number of passes = number of subsurfaces on

nseg

Calculate “x” and “y” coordinates of nseg

subsurface

Number of passes = number of subsurfaces on

iseg

Calculate “x” and “y” coordinates of iseg

subsurface

Calculate self shadowing between

subsurfaces

Is a total shadowing between subsurfaces?

Calculate if third surface shadowing exist

no

Is a third surface shadowing exist?

Calculate subsurface view factor and add to total view

factor between nseg and iseg

no

yes

yes

exit
 

Figure 5-7: Subblock2 

 

5.7. Routine GEOMVW 

Routine GEOMVW is used to calculate surfaces normal and center. 

List of arguments: 

x –  (input vector) x-coordinates of nodes 

y - (input vector) y-coordinates of nodes 

z - (input vector) z-coordinates of nodes (not used in this version) 

xn –  (output vector) x-coordinates of surface normal 
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yn - (output vector) y-coordinates of surface normal 

zn - (output vector) z-coordinates of surface normal (not used in this version) 

xc –  (output vector) x-coordinates of surfaces center 

yc - (output vector) y-coordinates of surfaces center 

zc - (output vector) z-coordinates of surfaces center (not used in this version) 

km - (input vector) node numbers of which are segment consist 

area - (output vector) segment length 

numel - (input value) number of radiation enclosure segments 

ndim - (input value) dimension of problem (in this version is =2 or 2D planar) 

 

Start of Geomvw
Routine

Number of passes = number of enclosure surfaces

Take surface coordinates and calculate surface
length

Calculate surface center and surface nornal

End of routine
 

Figure 5-8: Program Flow for Routine Geomvw 

 

6. Examples 

6.1. Bandwidth Minimization 

Aim of bandwidth minimization is explained in section 3.1.  
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Figure 6-1: Bandwidth Minimization Example in Original Numbering System (before 
minimization) 

In Table 6.1-1 are shown results obtained for this example. Vector nrv is used for 
1−

BWM  transformation and vector id is used for BWM  transformation. For example, 
node numbered with 3 in original numbering system becomes 4 in reorder numbering 
system (Figure 6-2). 
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Table 6.1-1: Nodal Reorder and Inverse Nodal Reorder Vectors 

node number in 
original numbering 

system 
nrv(1,i) 

id(1,i)-node number in 
reorder numbering system 

1 1 1 

2 2 2 

3 5 4 

4 3 13 

5 6 3 

6 9 5 

7 13 9 

8 16 14 

9 7 6 

10 10 10 

11 14 15 

12 17 17 

13 4 7 

14 8 11 

15 11 16 

16 15 8 

17 12 12 
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Figure 6-2: Node Numbers in Reordering System 

6.2. Assembling to Global Matrix Equation 

Example which is used for assembling is shown in Figure 6-3: 

 

Figure 6-3: Example 

Elements with local nodes numbering are shown in Figure 6-4, Figure 6-6, Figure 6-7 
and Figure 6-8. 

For first element, node coordinates (signed in local domain) are: 

mymx

mymx

mymx

001194.0,02754.0

00515.0,0459.0

00515.0,02712.0

33

22

11

−==

−==

−==

      Eq. 6.2-1 

and material conductivity (all elements) 
mK

W
cond 2233.0= . Shape functions for 

triangular element is calculated by Eq. 2.7-3 and for first element coordinates 
coefficients (Eq. 2.7-4) are equal: 
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0.01878-0.00042,-0.01836,

0,0.003956,-0.00396,

05,-9.67E-0.00011,05,-8.7E

321

321

321

===

===

===

γγγ

βββ

ααα

    Eq. 6.2-2 

To obtain conductivity matrix, first derivative of element shape functions are equal: 

e

i

e

e

i

e

i

e

e

i

Ay

Ax

γ
ψ

β
ψ

*
2

1

*
2

1

=
∂

∂

=
∂

∂

        Eq. 6.2-3 

when replacing in Eq. 2.9-7 following equation is obtained: 

)(
4

*)(
4

)(
4

)(
4

2

22

jiji

e

ejiji

e

jiji

e

jiji

e

e

ij

A

k
A

A

k

dxdy
A

k
dxdy

A

k
K

mm

γγββγγββ

γγββγγββ

+=+=

=+=+= ∫∫
ΩΩ

  Eq. 6.2-4 

and for first element conductivity matrix is: 

0.52978970.011848-0.517941-

0.011848-0.0237740.011925-

0.517941-0.011925-0.5298665

333231

232221

131211

==
III

III

III

I

ij

KKK

KKK

KKK

K   Eq. 6.2-5 

Conduction matrix in Eq. 6.2-5 is obtained using shape element equations described in 
section 2.7.1.3. Important note is that Conrad uses equations for linear rectangular 
element to integrate over the triangular element. Local nodes numbering for triangular 
element in therm is shown in Figure 6-5. 

 

 

Figure 6-4: First Element in Local Node Numbering 
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Figure 6-5: Local Node Numbering in Conrad 

Conduction matrix obtained in Conrad (using equations for rectangular element) is: 

5775.05657.02378.22193.1

5657.00837.12193.152998.0

2378.22193.12378.22193.1

2193.152998.02193.152998.0

−−−−

−−−

−−−−−−

−−−−

=

ee

e

eeee

ee

K
I

ij   Eq. 6.2-6 

and this local system of linear equations for triangular element can be presented as: 

0

0

0

0

*

5775.05657.02378.22193.1

5657.00837.12193.152998.0

2378.22193.12378.22193.1

2193.152998.02193.152998.0

4

3

2

1

=

−−−−

−−−

−−−−−−

−−−−

I

I

I

I

T

T

T

T

ee

e

eeee

ee

  Eq. 6.2-7 

 

because II
TT 43 = , Eq. 6.2-7 can be presented as following system: 

0

0

0

*

5298.02185.151805.0

2185.12378.22193.1

51805.02193.152998.0

3

2

1

=

−−−

−−−−−

−−−

I

I

I

T

T

T

e

eee

e

   Eq. 6.2-8 

where conduction matrix is approximately equal with conduction matrix in Eq. 6.2-5. 
Replacing notation from local to global Eq. 6.2-8 becomes: 

0

0

0

*

5298.02185.151805.0

2185.12378.22193.1

51805.02193.152998.0

2

1

3

=

−−−

−−−−−

−−−

T

T

T

e

eee

e

   Eq. 6.2-9 

which leads that conductivity coefficients are assembled into the global matrix by 
following: 
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5298.0,2185.1,51805.0

,2185.1,2378.2,2193.1

,51805.0,2193.1,52998.0

222123

121113

323133

=−−=−=

−−=−=−−=

−=−−==

KeKK

eKeKeK

KeKK

   Eq. 6.2-10 

To obtain element conductivity matrices is explained in chapter 2.9. For rectangular 
element shown in Figure 6-6 following results are obtained from equations described in 
2.9: 

 

 

Figure 6-6: Second Element in Local Node Numbering 

Node coordinates of element number 2 in local domain notation: 

mymx

mymx

mymx

mymx

00515.0,0

,00515.0,0019.0

,001194.0,02754.0

,00515.0,02712.0

44

33

22

11

−==

=−=

−==

−==

     Eq. 6.2-11 

Gauss point integration is calculated in following points: 

Table 6.2-1: Gauss Points for Numerical Integration 

point ξ η 
I 0.57735027 0.57735027 

II 0.57735027 -0.5773503 

III -0.5773503 0.57735027 

IV -0.5773503 -0.5773503 

Inverse Jacobian Matrices in Gauss points are: 

11.174225-229.470604

71.016513-39.6591972
1 =−

J

IPOINT

     Eq. 6.2-12 
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0.9187015-378.465351

69.24406-65.4098248
1 =−

J

IIPOINT

     Eq. 6.2-13 

11.485454-224.948995

72.994492-10.9226275
1 =−

J

IIIPOINT

     Eq. 6.2-14 

0.961681-377.840934

72.4835-18.3464512
1 =−

J

IVPOINT

     Eq. 6.2-15 

Shape function derivatives in local domain are: 

Table 6.2-2: Function Derivatives in Local Domain (for element numbered with 2) 

point I point II point III point IV 

-0.1056624 -0.3943376 -0.1056624 -0.3943376 

0.10566243 0.39433757 0.10566243 0.39433757 

0.39433757 0.10566243 0.39433757 0.10566243 

 
 

-0.3943376 

 
 

-0.1056624 

 
 

-0.3943376 

 
 

-0.1056624 

        

-0.1056624 -0.1056624 -0.3943376 -0.3943376 

-0.3943376 -0.3943376 -0.1056624 -0.1056624 

0.39433757 0.39433757 0.10566243 0.10566243 

 
 

0.10566243 

 
 

0.10566243 

 
 

0.39433757 

 
 

0.39433757 

 

Table 6.2-3: Function Derivatives in Global Domain (for element numbered with 2) 

point I point II point III point IV 

3.31329026 -18.477055 27.6303592 21.3482721 

32.1949662 53.0990854 8.86688704 14.8934779 

-12.365368 -20.394173 -3.4055733 -5.7202523 

 
 

-23.142889 

 
 

-14.227857 

 
 

-33.091673 

 
 

-30.521498 

            

-23.065726 -149.14603 -19.239512 -148.61765 

28.6528388 149.605384 24.982239 149.098488 

86.0824631 39.6272912 87.4922585 39.8219787 

 
 

-91.669575 

 
 

-40.086642 

 
 

-93.234985 

 
 

-40.302819 

 

Conduction matrices at gauss points are: 

ξ

ψ

∂

∂ e

i
ˆ

ξ

ψ

∂

∂ e

i
ˆ

ξ

ψ

∂

∂ e

i
ˆ

ξ

ψ

∂

∂ e

i
ˆ

η

ψ

∂

∂ e

i
ˆ

η

ψ

∂

∂ e

i
ˆ

η

ψ

∂

∂ e

i
ˆ

η

ψ

∂

∂ e

i
ˆ

x

e

i

∂

∂ψ

y

e

i

∂

∂ψ

y

e

i

∂

∂ψ

y

e

i

∂

∂ψ

y

e

i

∂

∂ψ

x

e

i

∂

∂ψ

x

e

i

∂

∂ψ

x

e

i

∂

∂ψ
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0.125910.10712-0.04749-0.028703

0.10712-0.1065310.0291350.02854-

0.04749-0.0291350.0261640.00781-

0.0287030.02854-0.00781-0.007649

=first

ijK    Eq. 6.2-16 

0.0154530.01109-0.05767-0.053306

0.01109-0.0169630.0413830.04726-

0.05767-0.0413830.2152280.19894-

0.0533060.04726-0.19894-0.192892

sec =ond

ijK    Eq. 6.2-17 

0.1341320.11024-0.03594-0.012052

0.11024-0.1050610.029540.02436-

0.03594-0.029540.009630.00323-

0.0120520.02436-0.00323-0.015535

=third

ijK    Eq. 6.2-18 

0.0208530.01167-0.05274-0.043552

0.01167-0.0132050.0477460.04928-

0.05274-0.0477460.183180.17819-

0.0435520.04928-0.17819-0.183921

=fourth

ijK    Eq. 6.2-19 

and finally 

fourth

ij

third

ij

ond

ij

first

ijij KKKKK +++= sec      Eq. 6.2-20 

after substituting 

0.2963470.24012-0.19384-0.137613

0.24012-0.241760.1478030.14944-

0.19384-0.1478030.4342030.38817-

0.1376130.14944-0.38817-0.399997

=ijK    Eq. 6.2-21 

Therefore, local system of linear equation is: 

0

0

0

0

*

0.2963470.24012-0.19384-0.137613

0.24012-0.241760.1478030.14944-

0.19384-0.1478030.4342030.38817-

0.1376130.14944-0.38817-0.399997

4

3

2

1

=

II

II

II

II

T

T

T

T

   Eq. 6.2-22 

which is in global notation equal: 
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0

0

0

0

*

0.2963470.24012-0.19384-0.137613

0.24012-0.241760.1478030.14944-

0.19384-0.1478030.4342030.38817-

0.1376130.14944-0.38817-0.399997

5

4

2

3

=

T

T

T

T

   Eq. 6.2-23 

Eq. 6.2-23 is calculated by equations (using EXCEL spreadsheet) presented in previous 
chapters. Results from Conrad (in global notation) are: 

0

0

0

0

*

2963.02401.01938.013758.0

2401.02417.014777.01494.0

1938.014777.04341.03881.0

13758.01494.03881.00.3999

5

4

2

3

=

−−

−−

−−

−−

T

T

T

T

   Eq. 6.2-24 

which leads that conductivity coefficients are assembled into the global matrix by 
following: 

2963.0,2401.0,1938.0,13758.0

,2401.0,2417.0,14777.0,1494.0

,1938.0,14777.0,4341.0,3881.0

,13758.0,1494.0,3881.0,3999.0

55545253

45444243

25242223

35343233

=−=−==

−===−=

−===−=

=−=−==

KKKK

KKKK

KKKK

KKKK

  Eq. 6.2-25 

Third element calculations are same as for second element. Node coordinates (in local 
domain) are: 

mymx

mymx

mymx

mymx

00085.0,02754.0

,00515.0,0019.0

,00515.0,0

,00515.0,027.0

44

33

22

11

−=−=

=−=

−==

−=−=

      Eq. 6.2-26 

 

Figure 6-7: Third Element in Local Node Numbering 
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Using same equations as for previous element, following system of linear equation is 
obtained: 

0

0

0

0

*

0.3636960.1202450.1471-0.33684-

0.1202450.2483290.21067-0.15791-

0.1471-0.21067-0.2354930.122276

0.33684-0.15791-0.1222760.372469

4

3

2

1

=

III

III

III

III

T

T

T

T

   Eq. 6.2-27 

or in global notation 

0

0

0

0

*

0.3636960.1202450.1471-0.33684-

0.1202450.2483290.21067-0.15791-

0.1471-0.21067-0.2354930.122276

0.33684-0.15791-0.1222760.372469

6

4

5

7

=

T

T

T

T

   Eq. 6.2-28 

Eq. 6.2-28 is calculated using excel spreadsheet, and results from Conrad are: 

0

0

0

0

*

0.364280.120280.1475-0.33716-

0.120280.248290.21078-0.15779-

0.1475-0.21078-0.235680.12249

0.33716-0.15779-0.122490.37246

6

4

5

7

=

T

T

T

T

   Eq. 6.2-29 

which leads that conductivity coefficients are assembled into the global matrix by 
following: 

36428.0,12028.0,1475.0,33716.0

,12028.0,24829.0,21078.0,15779.0

,1475.0,21078.0,23568.0,12249.0

,33716.0,15779.0,12249.0,37246.0

66646567

46444547

56545557

76747577

==−=−=

==−=−=

−=−===

−=−===

KKKK

KKKK

KKKK

KKKK

 Eq. 6.2-30 

 

Figure 6-8: Fourth Element in Local Node Numbering 

Fourth element is triangular and same equations as for first element are used. Node 
coordinates (in local domain) are: 
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mymx

mymx

mymx

00515.0,02702.0

,00515.0,0459.0

,00085.0,02754.0

33

22

11

−=−=

−=−=

−=−=

      Eq. 6.2-31 

and system of linear equation (from EXCEL spreadsheet) is: 

0

0

0

*

10.4890971160.01237757-50.47671953-

60.01237757-30.0258004560.01342287-

50.47671953-60.01342287-10.49014241

3

2

1

=
IV

IV

IV

T

T

T

  Eq. 6.2-32 

or in global domain: 

0

0

0

*

10.4890971160.01237757-50.47671953-

60.01237757-30.0258004560.01342287-

50.47671953-60.01342287-10.49014241

7

8

6

=

T

T

T

  Eq. 6.2-33 

and results from Conrad (in global domain) 

0

0

0

0

*

54186.052951.02578.2234271.1

52951.000637.1234271.14903.0

2578.2234271.125784.223427.1

234271.14903.023427.14903.0

7

7

8

6

=

−−−−

−−−

−−−−−−

−−−−

T

T

T

T

ee

e

eeee

ee

 Eq. 6.2-34 

which is equal with: 

0

0

0

*

48921.001235.04769.0

01235.025784.223427.1

4769.023427.14903.0

7

8

6

=

−−

−−−−

−−−

T

T

T

ee

e

   Eq. 6.2-35 

and this is assembled by following: 

48921.0,01235.0,4769.0

,01235.0,25784.2,23427.1

,4769.0,23427.1,4903.0

777876

878886

676866

=−=−=

−=−=−−=

−=−−==

KKK

KeKeK

KeKK

   Eq. 6.2-36 

All previous matrices are assembled into the Left-Hand side of global matrix. Next step 
is assembling boundary conditions. This example contains only convection boundary 
condition. Equations for convection boundary condition are linear type and main 
equation is Eq. 2.12-6 which solution is assembled into the Left and Right-Hand sides of 
global matrix. Example contain hot and cold surfaces (Figure 6-9 and Figure 6-10) with 
following properties: 

Cold Surface: 

CT

mK

W
h

O

c

16

]
2^*

[78

−=

=

∞
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Hot Surface: 

CT

mK

W
h

O

c

21

]
2^*

[32

=

=

∞

 

 

Figure 6-9: Cold Surface 

 

Figure 6-10: Hot Surface 

Solutions of matrix equation for cold and hot segment are: 

Segment with nodes 1 and 2: 

Node coordinates (in global domain): 

mymx

mymx

0011938.0,02712.0

,00515.0,0459.0

22

11

−==

−==
 

From EXCEL spreadsheet: 

20.00939070det

188.3559

188.3559
*

0.4883160.244158

0.2441580.488316

2

1

=

=
T

T

     Eq. 6.2-37 

and results from Conrad are: 
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356.188

356.188
*

48831.024415.0

24415.048831.0

2

1
=

T

T
     Eq. 6.2-38 

which is assembled into the global matrix by: 

356.188

,356.188

48831.0,24415.0

,24415.0,48831.0

2

1

2221

1211

=

=

==

==

P

P

KK

KK

      Eq. 6.2-39 

Segment with nodes 2 and 4: 

Node coordinates (in global domain): 

mymx

mymx

00515.0,0019.0

0011938.0,02712.0

44

22

=−=

−==
     Eq. 6.2-40 

From EXCEL spreadsheet: 

70.01505746det

302.0181

302.0181
*

0.7829880.391494

0.3914940.782988

4

2

=

=
T

T

     Eq. 6.2-41 

and results from Conrad are: 

026.302

026.302
*

783.03915.0

3915.0783.0

4

2
=

T

T
      Eq. 6.2-42 

which is assembled into the global matrix by: 

026.302

,026.302

783.0,3915.0

,3915.0,783.0

4

2

4442

2422

=

=

==

==

P

P

KK

KK

       Eq. 6.2-43 

Segment with nodes 4 and 6: 

Node coordinates (in global domain): 

mymx

mymx

00085.0,02754.0

,00515.0,0019.0

66

44

−=−=

=−=
 

From EXCEL spreadsheet: 

60.01316633det

123.9321

123.9321
*

0.2808820.140441

0.1404410.280882

6

4

=

=
T

T

     Eq. 6.2-44 

and results from Conrad are: 
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934.123

934.123
*

28089.014044.0

14044.028089.0

6

4
=

T

T
     Eq. 6.2-45 

which is assembled into the global matrix by: 

934.123

,934.123

28089.0,14044.0

,14044.0,28089.0

6

4

6664

4644

=

=

==

==

P

P

KK

KK

      Eq. 6.2-46 

Segment with nodes 6 and 8: 

Node coordinates (in global domain): 

mymx

mymx

00515.0,0459.0

,00085.0,02754.0

88

66

−=−=

−=−=
 

From EXCEL spreadsheet: 

90.00942840det

88.74773

88.74773
*

0.2011390.10057

0.100570.201139

8

6

=

=
T

T

     Eq. 6.2-47 

and results from Conrad are: 

7455.88

7455.88
*

20113.010057.0

10057.020113.0

8

6
=

T

T
     Eq. 6.2-48 

which is assembled into the global matrix by: 

7455.88

,7455.88

20113.0,10057.0

,10057.0,20113.0

8

6

8886

6866

=

=

==

==

P

P

KK

KK

      Eq. 6.2-49 

 

Assembling all previous equations into the global matrix, following matrices are 
obtained: 

01-2.27E0.01235-02-8.71E00000

0.01235-0.861670.81406-0.122490.15779-000

02-8.71E0.81406-1.33660.1475-0.26072000

00.122490.1475-0.531980.45088-0.137580.1938-0

00.15779-0.260720.45088-1.553880.1494-0.539270

0000.137580.1494-0.929880.90615-02-1.19E-

0000.1938-0.539270.90615-2.2352101-2.32E

0000002--1.19E01-2.32E01-5.12E

=SideLeft  
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88.75

0

212.7

0

426

0

490.4

188.4

=SideRight  

which lead to temperature solution (in Celsius): 

,19.638,23.5935,24.8956,-4.50922

,-4.70532,-18.7447,-18.9567,-14.715

o

8

o

7

o

6

o

5

o

4

o

3

o

2

o

1

CTCTCTCT

CTCTCTCT

====

====
 

and results from Conrad (THERM5) are: 

,19.78036,23.62488,24.92907,-4.574031

,4.692912-,-18.77889,-18.99834,-14.70458

o

8

o

7

o

6

o

5

o

4

o

3

o

2

o

1

CTCTCTCT

CTCTCTCT

====

====
 

6.3. Speed of View Factors Calculation 

This chapter presents speed of view factor calculation on several examples with 
different density of net grid. 
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6.3.1. B928mr04 

 

Figure 6-11: Example 1 

 

Table 6.3-1 

number of enclosure radiation bc segments  652 

number of blocking surfaces  236 
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Table 6.3-2 

nxgrid= nygrid= 
Calculation Time 

[seconds] 

1 1 12 

2 2 12 

3 3 8 

5 5 10 

7 7 6 

10 10 6 

15 15 5 

20 20 4 

25 25 5 

30 30 6 

40 40 7 

50 50 11 

100 100 40 

 

6.3.2. Trr99_mr_manual 
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Figure 6-12: Example 2 

 

Table 6.3-3 

number of enclosure radiation bc segments  621 

number of blocking surfaces  614 
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Table 6.3-4 

nxgrid= nygrid= 
Calculation Time 

[seconds] 

1 1 41 

2 2 21 

3 3 15 

5 5 12 

7 7 11 

10 10 9 

15 15 9 

20 20 9 

25 25 10 

30 30 12 

40 40 15 

50 50 24 

100 100 86 
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6.3.3. Pfm01_h_rf_manual 

 

Figure 6-13: Example 3 

 

Table 6.3-5 

number of enclosure radiation bc segments  286 

number of blocking surfaces  282 
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Table 6.3-6 

nxgrid= nygrid= 
Calculation Time 

[seconds] 

1 1 15 

2 2 11 

3 3 10 

5 5 7 

7 7 4 

10 10 4 

15 15 4 

20 20 6 

25 25 6 

30 30 7 

40 40 12 

50 50 17 

100 100 63 
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6.3.4. trr01sill_CI (CI run) 

 

Figure 6-14: Example 4 

 

Table 6.3-7 

number of enclosure radiation bc segments  1297 

number of blocking surfaces  551 
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Table 6.3-8 

nxgrid= nygrid= 
Calculation Time 

[seconds] 

1 1 79 

2 2 51 

3 3 32 

5 5 26 

7 7 18 

10 10 17 

15 15 14 

20 20 17 

25 25 20 

30 30 24 

40 40 36 

50 50 53 

100 100 191 
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6.3.5. trr99_mr_CI (CI run) 

 

 

Figure 6-15: Example 5 

 

Table 6.3-9 

number of enclosure radiation bc segments  1279 

number of blocking surfaces  801 
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Table 6.3-10 

nxgrid= nygrid= 
Calculation Time 

[seconds] 

1 1 256 

2 2 135 

3 3 95 

5 5 73 

7 7 59 

10 10 49 

15 15 41 

20 20 43 

25 25 47 

30 30 54 

40 40 76 

50 50 107 

100 100 447 
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