Natural Convection Effects in Three-Dimensional Window Frames with Internal Cavities

TitleNatural Convection Effects in Three-Dimensional Window Frames with Internal Cavities
Publication TypeJournal Article
Year of Publication2000
AuthorsArlid Gustavsen, Brent T Griffith, Dariush K Arasteh
JournalASHRAE Transactions
Volume107, Part 2
Date Published06/2001

This paper studies three-dimensional natural convection effects in window frames with internal cavities. Infrared (IR) thermography experiments, computational fluid dynamics (CFD) simulations, and calculations with traditional software for simulating two-dimensional heat conduction were conducted. The IR thermography experiments mapped surface temperatures during steady-state thermal tests between ambi-ent thermal chambers set at 0 deg. C and 20 deg. C. Using anon-contact infrared scanning radiometer and an external referencing technique, we were able to obtain surface temperature maps with a resolution of 0.1 deg. C and 3 mm and an estimated uncertainty of 0.5 deg. C and +/-3 mm. The conjugate CFD simulations modeled the enclosed air cavities, frame section walls, and foam board surround panel. With the two-dimensional heat conduction simulation software, weusedcorrelations to model heat transfer in the air cavities. For both the CFD simulations and the conduction simulation software, boundary conditions at the external air/solid interface were modeled using constant surface heat-transfer coefficients with fixed ambient air temperatures.Different cases were studied, including simple, four-sided frame sections (with one open internal cavity), simple vertical sections with a single internal cavity, and horizontal sections with a single internal cavity. The sections tested in the Infrared Thermography Laboratory (IR lab) were made of PVC. Both PVC and thermally broken aluminum sections were modeled. Based on the current investigations, it appears that the thermal transmittance or U-factor of a four-sided section can be found by calculating the average of the thermal transmittance of the respective single horizontal and vertical sections. In addition, we conclude that two-dimensional heat transfer simulation software agrees well with CFD simulations if the natural convection correlations used for the internal cavities are correct.

LBNL Report Number