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! Why do we want ions?

BERKELEY LAB

1. Surface Preparation (“etching”) with metal ions
o The basic idea of the ABS process

2. Energetic Condensation:

Kinetic energy can be controlled by E-field (bias!)
Spatial distribution can be influenced by B-field
Growth of films from hyper-thermal species
Sub-surface insertion, and other processes

O O O 04

}

3. Film properties:

o intermixed layer

o dense films, high modulus, high hardness, texture may evolve
o Trench and via filling possible
O

Often good adhesion, however, stress can be excessive;
need for stress control

© Andre Anders, Plasma Applications Group, 2006
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=<2 \Why bothering with pulsing?

There are many reasons, some are related to each other:
PULSING is a means of...

1. ...Ssuppress arcing in sputtering,

2. ...enhancing the momentary power input while
keeping average power unchanged, leading to

o Higher degree of ionization of plasma, hence allowing us to
use bias more efficiently,

o Creating greater atomic excitation,
o Creating greater degree of dissociation in molecular gases.

3. ...obtaining new parameters for process control (duty
cycle, pulse duration, peak amplitude, etc.)

© Andre Anders, Plasma Applications Group, 2006



Why not using metal vapor, or a straight-
forward sputtering technique?

Long throw sputterlng [Photo courtesy P. Slemroth]



Metal Plasmas:

A very brief overview of how
to produce It



-~

O Phase transitions, starting from solid metal
O lonization by electron impact in discharge (Mattox,1964)

bias

Properties

|>4

cathode
heating

[HI

o Very high rate for
low vapor pressure
materials

o Low degree of (" substrate)
lonization
o Little control in thermionic cathode

terms of energy and in Whenelt cylinder
distribution plasma

\ / |
\L / anode arc suppi
+ -

~
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Magnetron Discharge with lonization

target

RF
power

supply

magnetron power
supply

—

vacuum
pump
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-"| lon Plating with Metal Plasmas

Many incarnations:
Today a whole family of techniques.
However:
Focus here is on PULSED Plasmas!

« Power input provides in short pulses
* Peak power can be orders of magnitude above DC values
 pulse range may cover ms (e.g. pulsed arcs) to 100 fs (laser)
- Plasma parameters can be significantly different, e.qg.

* ilon charge and energy distributions

- Film formation by energetic condensation is greatly affected

© Andre Anders, Plasma Applications Group, 2006



ANpUIsediplasma: Terawatt peak power



| A Wire Shadowgrams of exploding wires
e : (Shift=160um, Cu, d=50um)
Explosion

O Phase transition
from solid by rapid
Ohmic heating of

metal
0O Not well suited for
coatings purposes t=600ns ol t=750ns

t=820ns t=000ns
University of California, Irvine



streaming,
clean metal
plasma

A. Anders, Surf. Coat.
Technol. 120-121 (1999) 319




-~

Cathodic Arc Plasmas: Macroparticles

A side benefit of pulsing: reduction of macroparticle production

~ 10" ———————m
3 E 10 e%g0¢
o 107 e o e CuDC arc '
c E A Cu pulsed arc E
— 9
g e 10 AX
“EJE’; AT °

1 e

s 2 10°
T O I .
OLJ % 107 - 1/d3,38
e E 1| artifacts of .
o * 6 1 \ _
- 106 4| measuring RN
£ :E 3| resolution t 4 -
c T i 2
L w®
S = 2 1/d*% “RE &
£ 9 10 A
[ 41 I A
S © ; Ll
= 3 10
1
=9 10% — e ———

© -1 0 1

10 10 10

Macroparticle diameter (pm)

Data from P. Siemroth, Dresden, Germany, see also O. Zimmer, Surf. Coat. Technol. 200 (2005) 440



Pulsed Laser Ablation

Typical laser power
density at target
~ 1013 W/m?

(interestingly, the
same order of
magnitude as
cathode spot)

Example from http://www.geocities.com/afserghei/LVE.htm
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Pulsed Plasma &
lonized Sputtering: I-PVD

L Magnetron

\\

« Two developments

Thermalized

lonized

®

Collimated
@

Dense
Plasma

=

v__ v

J
v sheath

=S

R @ = inert gas atom
O = metal atom
@ = metal ion

wafer

Medium Frequency

sputtering
* lonized sputtering

O Slowing down the
sputtered atoms to
enhance the
likelihood of
lonization

Once ionized, metal
lons can contribute to
sputtering:

O self-sputtering

O

J. Hopwood, Phys. Plasmas 5 (1998) 1624
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Self-Sputter Yield

Self-sputtering yield (atoms/ion)

102 103 10* Monte Carlo Simulations
Anders, et al, IEEE Trans.

Energy of primary ions (eV
gy of primary ons {cV) Plasma Sci. 23 (1995) 275
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coece) .’.\.l Self-Sputtering
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W. M. Posadowski and Z. Radzimski, JVST A 11 (1993) 2980



o Late 1990s:
cescec?] High Power Impulse Sputtering

Cu target, 65 mPa Ar

Delay: no simmer |[ T T T T
discharge
- Peak power |[1*"
o 500 KW
2 100 2
gﬂ 1000 H ] g
S Ja00 %
> j 4200
DEIII..IISDII..]ELIﬂIIIISDII 00 250

Time [ps]

o anre nies e memicir. V + KKOUZNETSOV, €t al., Surf. Coat. Technol. 122, 290-293 (1999)
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eeeer®] HIPIMS:
ol The “Ingredients™ to it make happen!
pulse hlgh VOltage

modulator ’ generator

. - i@ 1190,
(switch) < vacuum vessel

(here: substrate)

Target

A (sorry, no
:, 1 magnets
Legly vet...1872)

energy storage
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Some lonization Physics...
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Distribution Functions, Cross

— Sections, and Rate Coefficients
1
Mean free path 2, :(Znﬂ%ﬂ]
B Cross

section

Electron distribution
function

Rate coefficient P
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lonization Energies:
The Relative Ease of Metal lonization

Eio (6V) |Ei (eV) [Ejp (eV)
Al 5.99 18.83 28.45
Cu [.73 20.29 36.84
Ti 6.82 13.58 27.49
Nb 6.88 14.32 25.0
Cr 6.7/ 16.50 31.0
NI 7.64 18.17 35.3
Zr 6.84 13.13 23.1

much lower than\ comparable /nuch higher than
to

E. (Ar)=15.76 eV
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lonization Cross Sections
S » oAy Ty . D RN, .

< | Copper gy
. & * % — — 3d orbital .
| -=-- 3p orbital
2 ! % Freund 1990 |
“5’ 3 Rolorizadeh 1993 :
2 .
o
&
ks
-

Tail of Maxwell beam of sheath-accelerated
distribution acts here electrons acts here

P. L. Bartlett and A. T. Stelbovics, Phys. Rev. A 66 (2002) 102707
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...and sometimes, particle cross sections
fatter even in real life...
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! Pulsing = Sequence of Events...

EEEEEEEEEEE

Applied voltage increases
Target sheath expands
Energy of impacting Ar* increases

Sputter yield and secondary electron (SE) yield increase, giving
raise to increasing current

secondary electrons gain higher energy

rate coefficient increases
plasma density increases
Sheath contracts;

sputter rate increases
Density of sputtered atoms
Increases

fraction becomes

lonized ....

J(€), o,

© Andre Anders, Plasma Applications Group, 2006



g,

e Time-Resolved Measurements of Plasma
Density in High Power Pulsed Sputtering

Video: Courtesy of Johan B6hlmark, Linkdping,
Sweden; see also J. Bohlmark, et al., IEEE
Trans. Plasma Sci. 33 (2005) 346 and
http://ieeexplore.ieee.org for a 2 MB AVI clip

O (Plasma density)?-33 visualizing the dynamics of the plasma

d Time scale: 0-1.8 ms
O 15 cm diameter target

n0.33
Langmuir probe data

Target

26 cm

-

o T e -

A
e, e
e

28 cm
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Time resolved
OES

lonization of sputtered
material iIs obvious

O lonization is
observed for Cu and
Ag even at moderate
power density and
high frequency

Vicek, Pajdarova, Musil,

Contrib. Plasma Phys. 44 (2004) 426

© Andre Anders, Plasma Applications Group, 2006

Intensity (counts/s)
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E

300-550 W/cm?

A
l4,=50A
t_=50-70ps

21-25 W/cm?

=5A
t_=50-60us
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g Why is there a higher impedance at
— higher peak power?

. en
Low degree of ionization: |0, = ~— | friction term
mezveh*
h

High degree of ionization (Spitzer): |Tspiper ~ CONSt T,72

2000 F

. E A dcMS

S 1500F o HiPIMS

& 1000 [ s ;

e i citation oA steeper slope is

o - r e

= [ n=7 j Indicative of the

m (11 . ' 77

2 500 e - difficulty” to transport

©

- ' the current between target
N A (cathode) and the anode

1 10 100 1000

Targel current density (mA/cm?)

A.Ehiasarian, et al., Vacuum 65 (2002) 147
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i"| Factors affecting plasma impedance

The Kkink in characteristic may indicate:

A dynamic effect that the plasma is not yet in equilibrium
(the V-I relation is not in steady state)

* A change of the character of the plasma to “fully ionized,”
l.e. greater “Coulomb friction”

o Self-sputtering becomes important, creating more
scattering targets for electrons

 Magnetic confinement by permanent magnets is
weakened by self-field of discharge and ExB current

« Plasma creation in region with less magnetic confinement
causes electron losses

 Onset of gas rarefaction due to heating of neutrals
(Rossnagel 1988)

© Andre Anders, Plasma Applications Group, 2006
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Why is there a higher impedance at
higher peak power?

Self-sputtering cannot be the reason:

continuous dynamic
900 SR i St il S T el R R 7 E.rn...l T T Ty T
: Ag 5 2000 E
2 800 [Emgt 0 o o W
) & ot T8 "~ = e HIPIMS
G 700 2 ;
ls 700 | E 1000 F
O 600 |1 s
| o :
0 500 > 500 -
O : | ] =
c r .
< 400 _ll ; "12x10° Torr E
o, Enitids iy AL N DU U 1 10 100 1000
0 5 10 15 20 25 30 Target current density (mA/cm?)

TARGET CURRENT [A]

Posadowski, et al., JVST A 11 (1993) 2980 Ehiasarian, et al., Vacuum 65 (2002) 147



Energetic Condensation
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,’N Equilibrium Film Growth Modes

EEEEEEEEEEE

" V-W Frank - van der Merve
d

E-m Volmer-Weber
(b)
—

Stranski-Kastranov

S-K
(c)

=2 Non-Equilibrium Film Growth Modes
R I 7 S [ ——
!

e additional defects as
(d) W nucleation sites
e sub-surface insertion of ions

© Andre Anders, Plasma Applications Group, 2006
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Non-Equilibrium Plasma Processing

EMITTED PARTICLES

LOW ENERGY ,‘ REFLECTED PARTICLES
INCOMING IONS \ !  SPUTTERED {IONS OR NEUTRALS)
@ \ @B MOLECULES
\ \ [ SPUTTERED
! |ATOMS OR IONS

IMPLANTATION,

a TOOOTC  [eremon srecrs
NG,
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J. L. Vossen and W. Kern, Thin Film Processes Il (Academic Press, Boston, 1991).



on Film Microstructure

O Densification of Ti film by Ti ions (self-ion assistance)

Effect of lon Bombardment
O MC computer simulation

BERKELEY LAB
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Boundary between plasma volume and wall

Control Of Energy:
Plasma Sheaths Driven by Biasing

un-driven sheath driven (high-voltage) sheath
e voltage drop ~ kgT, e voltage drop >> kgT,
e often stationary e often non-stationary

I

used for pulsed surface engineering

In sheath, quasineutral condition does not apply, a
very strong electric field exist.

© Andre Anders, Plasma Applications Group, 2006
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.,.‘ Kinetic and Potential Energy

Energy brought to substrate / film by ions

Q-1
E(Q) — Ekin,O Qevsheath Eic T Eexc T Q'Z—O EQ‘

AN

e

potential

The greatest contributor, controlled by bias .

© Andre Anders, Plasma Applications Group, 2006 A. Anders, Appl. Phys. Lett. 80, 1100 (2002).



eeen] LLargest Contribution to Potential
{ Energy: lonization Energy

O summation of ionization energies for

multiply charged ions
Q-1
sum
Eqr = 2 Eo
Q=0

O Example: Gold ions (in eV)

0 +1 +2 +3 +4

9.23 29.7 67.1 122 193



> A

o | Au arc, -100 V pulsed bias
bias on
lon Energy 2+
Distribution Function 1
+ 3+
T T | |
|deaI|_zed _dls_trlbutlon of the / Yy 34 23 34 £y
Kinetic ion energy f(E) A
all ions during bias off time
time-averaged distribution 2+
of the kinetic energy with / 1+ 3+
significant pulse rise and —
fall times () A E (eV)
as above, but with ” T 2+
lonization energies and — 3+ 1+ M3+
cohesive energy 6283120 162 283 207

© Andre Anders, Plasma Applications Group, 2006
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! Self-Sputtering

* 1 ¥ | ) 1 ¥ 1
0.7 1 _ .
- 1 Ni
0.6 1 100 eV =
- 0.5- |
[0 | |
>.
2 0.4+ 75 eV g
= |
o
qU,_J 0.3 _
% -
0.2 50 eV .
0.14 |
i 25 eV |
0.0 » » ' . — N
0 20 40 60 80

Angle of Incidence

o andre Anders, Plsma ampiications oroup, 2. - 2. HANSON, et al., J. Vac. Sci. Technol. A 19 (2001) 820
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Sticking Probability

BERKELEY LAB

1.0 F7—=

0.8 1

O
(0))
]

S
s
|

Sticking Probability

o
N
]

o
o
]

20 40 60 80

Angle of Incidence
o Andre Ancers, Prasma appiicaions croup 2. D+ 2« H@NSON, et al., J. Vac. Sci. Technol. A 19 (2001) 820
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Results &
Applications

(closing the loop to Motivation)
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O Example: Al target, Ar/O,

Arc Prevention In Reactive Sputtering

mixture, bipolar pulsed = 1'; L _.-;;rr.__.-,: 7 J_|_,_|_I .
O If pulse duration long, or 1000 FE@laLt] (B o
frequency low, arcing ~

9A
OCcurs

80017

600+
Conditions for explosive

electron emission fulfilled #Z 400}

arc
—+
4 =6

% ........ I F I 200 1 |
-~ . "9
. - -: - [:I 1 ; .é;\
SRS e \:'_';
»e " 30 40 5 60 &
irrev Ton Tyl tﬂd 12.) 70 gp %0

o Andre Ancers. s mosiicaions croup 200 - BEIKING, et al., 41st Annual Tech. Conf. SVC, Boston, 1998.
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-"‘ Stress Control

O Subplantation growth is
associated with high
compressive stress

O Effect of ion energy on stress
relaxation and adhesion of
Ag/YBa,Cu;0, film on Si
produced by MePIIID. S -

-200 V bias, 10% duty cycle S,

-2000 V bias, 10% duty cycle

A.Anders, JVST B 12 (1994) 815
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Tuning Film Density and Stress

stress
oA
2 | of order 100 eV
. _

energy

compressive o

\ stress relaxation due to
atomic scale
heating/annealing

o anie ncers e o V1 BlleK @and D. McKenzie, Surf. Coat. Technol. 200 (2006) 4345
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eeen § Stress Maximum and Stress Relaxation
| by lon Bombardment

10.0 f;\
8.0 —e—Ta-C on Si (Shi, [7])

—a—DLC on CP-Ti (Peng, [6])

—A—Cron Si (Misra, [5))

—e—Tion Si (Ljungcrantz, [3])

—%—TiN on WC+6%Co
(Ljungcrantz, [4])

Compressive Stress, GPa

200 400 800

Substrate Bias, Volt

© Andre Anders, Plasma Applications Group, 2006 R.N. Tarrant et al., Surf. Coat. Technol. 136 (2001) 188



ta-C / a-C Multilayer made by Carbon PI1ID
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300 nm

a-C (2200 V) |

ta-C (100 V)

AN

Si

S.Anders et al., Surf. Coat. Technol. 94-95 (1997)189
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Hard Disk Drive Slider with read/write head

Dense, ultrathin ta-C films for magnetic
recording applications

Ultrathin (~ 2 nm) a-C protective layer /

© Andre Anders, Plasma Applications Group, 2006
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EEEEEEEEEEE

Deposition of
Diffusion Barrier
Layers

O Copper diffuses in
silicon --> need for
diffusion barrier

O Tacan be deposited
conformally:
nanotechnology for

future ICs 0.6 um

O.R. Monteiro, JVST B 17 (1999) 1094

© Andre Anders, Plasma Applications Group, 2006
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Courtesy of Peter Siemroth, Dresden

© Andre Anders, Plasma Applications Group, 2006



Copper Metallization using pulsed
arc + pulsed bias

Cu

O.R. Monteiro, JVST B 17 (1999) 1094
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Summar
y

O Plasmas, as opposed to gas and vapors, lead to energetic
processes on surfaces:

o ion etching, energetic
o condensation,
o subsurface insertion, etc
O Both kinetic and potential energy is brought to the surface
O The largest energy contribution comes from ion
acceleration in the sheath, determined by bias voltage and
charge state
O Pulsing enables very enhanced peak power, new ranges of
effects are accessible
O Applications:
o Stress reduction,
o control of coating’s microstructure
o conformal deposition on submicron scale

© Andre Anders, Plasma Applications Group, 2006
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