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Motivation: Motivation: 
Plasma and Related Technologies Plasma and Related Technologies 

❏ a wake up call: energy crisis in early 1970s led to first 
low-emissivity coatings (e.g. thin gold films)

❏ development of (static) low-E and solar control: stack 
with Ag films and antireflection coatings

❏ in 1980s: first small-area switchable (dynamic) devices
❏ no quick development to commercial windows: technical 

difficulties and related costs were underestimated
❏ in 1980-90s: important improvements in sputtering, 

plasma technology and diagnostics,materials 
characterization, process controls, computer simulation

❏ late 1990s: explosive growth of nanotechnology
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Surface and Coatings Engineering Surface and Coatings Engineering 
with Plasmaswith Plasmas

❏ Advantages of plasmas in processing: 
❏ in-situ etching (cleaning) of substrate
❏ activation of film-forming species lead to enhanced control of 

stoichiometric composition
❏ kinetic energy of ions can be enhanced and controlled by 

applied potentials (energetic condensation): denser films
❏ potential energy of condensing species is enhanced: local 

heating, smoother films
❏ many free process parameters

❏ Disadvantages:
❏ Vacuum process: high cost 
❏ relatively complicated, not always understood
❏ (too) many free process parameters
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Plasma Coating on Glass: Plasma Coating on Glass: 
The Very First StepsThe Very First Steps

❏ Discharges and Plasmas made as soon as energy 
storage was invented (1743):

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) August issue, in print.
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❏ Priestley 1766: first 
cathodic arc coatings 
of oxides on glass 

Plasma Coating on Glass: Plasma Coating on Glass: 
The Very First StepsThe Very First Steps

A. Anders, IEEE Trans. Plasma Sci. 31 (2003) August issue, in print.
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Development of SputteringDevelopment of Sputtering
❏❏ Diode SputteringDiode Sputtering

❏ observed as early as in 
1850s

❏ actually: pulsed diode 
sputtering
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Development of SputteringDevelopment of Sputtering

❏❏ Magnetron sputteringMagnetron sputtering: Enhancement of the plasma 
density at the target by a magnetic field;

❏❏ Unbalanced magnetron sputteringUnbalanced magnetron sputtering: the magnetic field 
lines are not closed at the target, thus flow to the 
substrate is enhanced;

❏❏ Reactive sputteringReactive sputtering: use of reactive gas in sputter gas 
mixture, deposition of compound films;

❏❏ RF sputteringRF sputtering: insulating targets can be used;
❏❏ Dual or twin magnetron sputteringDual or twin magnetron sputtering: Two targets 

working with alternating current, often at medium 
frequency, the problem of the “disappearing anode” is 
solved
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Development of SputteringDevelopment of Sputtering

❏❏ Dual or twin magnetron sputteringDual or twin magnetron sputtering: Two targets 
working with alternating current (ACAC), often at medium 
frequency (MFMF), the problem of the “disappearing anode” 
is solved

❏❏ HollowHollow--cathode gas flow sputteringcathode gas flow sputtering: The to be 
sputtered material has hollow cathode shape, sputter 
gas flows through it and facilitates transport of material 
to substrate

❏❏ Ionized sputtering Ionized sputtering (ii--PVDPVD): Additional plasma 
ionization, usually by RFRF-fields between magnetron and 
substrate

❏ pulsed sputtering, especially high power pulsed high power pulsed 
magnetron sputteringmagnetron sputtering (HPPMSHPPMS):  Power to magnetron 
is pulsed at a level > 100 x usual power
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❏❏ Rotating magnetron sputteringRotating magnetron sputtering, often with 
cylindrical cathodes: target utilization is greatly 
improved;

❏❏ HighHigh--Pulsed power magnetron sputteringPulsed power magnetron sputtering: During 
pulses, the current (hence power) is increased by 
orders of magnitude; the degree of ionization and 
particle energy can be greatly enhanced.

Development of SputteringDevelopment of Sputtering
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Pulsed SputteringPulsed Sputtering

❏ Proposed by Kouznetsov and co-workers in late 1990s
❏ use of traditional sputter magnetron
❏ increase power during pulses by > 2 orders of 

magnitude
❏ average power is within acceptable level by using low 

duty cycle
❏ observe increased degree of ionization
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VoltageVoltage--Current Waveform for Current Waveform for 
Pulsed SputteringPulsed Sputtering

V. Kouznetsov, et al., Surf. Coat. Technol. 122, 290-293 (1999)

(no simmer 
discharge)

Peak power 
500 kW (!)

Cu target, 65 mPa  Ar
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SelfSelf--Sustained SelfSustained Self--SputteringSputtering
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SelfSelf--Sputter YieldSputter Yield

Monte Carlo 
Simulations

Carbon cannot go in 
mode of self-sustained 

self-sputtering

AgAg
CuCu
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Closing the Feedback LoopClosing the Feedback Loop

3
Deposition

process

Film
structure

Coating
properties

1 2

generic, but not trivial:

add add 
plasma, bias, plasma, bias, 
diagnosticsdiagnostics

add add 
inin--situ situ 

characterizationcharacterization

make adjustments make adjustments 
during processingduring processing
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Thorton Zone DiagramThorton Zone Diagram

J. A. Thornton,  J. Vac. Sci. 
Technol. 11, 666, 1974
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Film Growth and PropertiesFilm Growth and Properties

❏ Growth Modes: Layer-by-Layer versus Islands
❏ Equilibrium: Substrate material and temperature 

determines growth
❏ when kinetic factors included: growth can occur 

far from thermodynamic  equilibrium
❏ examples for kinetically driven deposition 

(“energetic condensation”): 
❏ i-PVD, HPPMS
❏ filtered cathodic arc deposition
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Energetic Relation Between Energetic Relation Between 
Implantation and Deposition ProcessesImplantation and Deposition Processes
Io

n 
En
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gy

Deposition

Subplantation

Implantation

sputter yield = 1 for Ei=300-1200 eV

}Film growth is still possible for 
low duty cycle of bias

evaporation

sputtering

cathodic arc deposition

Ion plating, MePIIID
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Effect of selfEffect of self--ion bombardment ion bombardment 
on film microstructureon film microstructure

Martin et al. JVST 5 (1987) 22

❏ Densification of Ti film by Ti ions (self-ion assistance) 
at room temperature
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Example: Energetic Condensation Example: Energetic Condensation 
using Filtered Cathodic Arcsusing Filtered Cathodic Arcs

streaming, clean 
metal plasma

• ta-C
• metal films 
e.g. Ag films

• compounds
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Coalescence and PostCoalescence and Post--Deposition Deposition 
Dynamics of Ultrathin Silver FilmDynamics of Ultrathin Silver Film
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Deposition of Ultrathin Silver FilmsDeposition of Ultrathin Silver Films

0 2 4 6 8 10 12 14 16 18 20
100

101

102

103

104

105

106

107

108

 FCVA (Ag/glass)
 FCVA (Ag/ZnO)

 Sputtering (Ag/glass)
 Sputtering (Ag/ZnO)

 

 

Sh
ee

t r
es

is
ta

nc
e 

( ΩΩ ΩΩ
/ !! !!

)

Thickness (nm)

limit of instrument

• in-situ
• seconds after 
deposition

E. Byon et al.,  Appl. Phys. Lett. 82 (2003) 1634
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PostPost--Deposition DynamicsDeposition Dynamics

❏ thermodynamic forces may can lead to diffusion and 
rearrangement, 

❏ lowering the total energy of system, including
❏ film atom - substrate atom interaction energy
❏ film atom - film atom interaction energy
❏ strain energy

❏ thermodynamic forces are the stronger the further 
the system is from thermodynamic equilibrium

❏ higher temperature promotes system to move to 
equilibrium
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PostPost--Deposition DynamicsDeposition Dynamics
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E. Byon et al.,  Appl. Phys. Lett. 82 (2003) 1634
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CoalescenceCoalescence

❏ thermal motion and 
island growth by 
continued deposition 
lead to coalescence

coalesence.gif

High-resolution TEM video clip 
courtesy of C. Nelson, National 
Center for Electron Microscopy, 

Berkeley, 2003.

AuAu
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Ag on SiAg on Si33NN44 -- TEMTEM

• energetic condensation of 
Ag ions (about 70 eV/ion)
• ~ 6-8 nm film shows island 
growth 
• “same” film on ZnO shows 
good electronic conduction 
hence coalescence has 
occurred
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Sculptured Films: PrincipleSculptured Films: Principle

- β 

+ β

Atom FluxAtom Flux

+ β

Atom FluxAtom Flux

non-chiral sculptures
(can be made compatible with large-

area coating) chiral sculptures
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10 µm

Sculptured Films: ChevronsSculptured Films: Chevrons

O. R. Monteiro, et al., J. Phys. D: Appl. Phys. 31, 3188 (1998)
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2 µm

Sculptured Films: Helicoidal Sculptured Films: Helicoidal 
Bianisotropic Thin FilmsBianisotropic Thin Films

❏ films show optical activity with nematic liquid crystals: determine/ 
change transmission of polarized light

10-turn chiral SiO2 sample made by Paul Sundahl, Penn State University
(see also web page of Dr. Akhlesh Lakhtakia and Dr. Russell Messier, Penn State)
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TCO (transparent conductive oxides)

Transparent ElectronicsTransparent Electronics

• optical coating
•“passive” coatings

• used in low and high-tech:
•solar control coatings
•antistatic coatings
•touch display panels
•solar cells
•heaters, defrosters
•RF shields

•“active” transparent 
electronics 

or
•“invisible” electronics

•used in high-tech, e.g.:
•AMLCD (active 
matrix liquid crystal 
display)
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Transparent ElectronicsTransparent Electronics

• nn- and pp-type material needed
demonstrated e.g. for ZnOZnO
• wide band-gap: to be transparent
• higher conductivity should be 
obtained by enhanced mobility thus 
purer material with less grain 
boundaries 
• great collection of papers: MRS 
Bull. 25 no 8 (2000)
• if both nn and pp-type available, and 
suitable band structure, light can be 
emitted or “harvested”
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❏ a principal issue: high transmittance           a large portion of solar 
energy cannot be harvested

❏ is it more likely that façade elements other than windows are used 
for harvesting solar energy

Windows Harvesting Solar Energy?Windows Harvesting Solar Energy?

However, there is hope:
• Windows need to transmit 
only < 25% when sun 
brightest
• window does not need to 
be transparent when room is 
not occupied
• if materials and process 
economical, harvesting of 
the IR may be useful
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Windows as Areal Lights and Displays ?Windows as Areal Lights and Displays ?

• TFET(transparent field effect transistor)
• single-crystalline material: very 
high mobility demonstrated
• fabrication: PLD with annealing, 
hence currently not suitable for 
large areas.

• even if technology issues resolved: 
cost issues remain!

K. Nomura et al., Science 300 (2003) 1269
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Summary, Main ConclusionsSummary, Main Conclusions

❏ Plasma coating on glass is technology older than 
usually presumed

❏ Family of sputtering technologies has matured but 
developments is still very much underway, for example 
in MF dual magnetron sputtering and pulsed sputtering

❏ Process and Materials examples:
❏ low-E coatings with Ag film: there are thermodynamic and 

kinetic factors,  important for post-deposition dynamics
❏ sculptured thin films as nanostructured coatings
❏ ZnO as TCO as well as active coating for devices in 

“transparent electronics”


